Google Summer of Code 2017

gr-bokehgui: A web based GUI for GNU Radio

Kartik Patel

April 2, 2017

1 Introduction

Currently GNU Radio works on a local system (many times connected to
a hardware). The display of GNU Radio is based on QT GUI framework.
In addition to that, various input widgets of QT framework are used to
interact with the ongoing simulations. The QT framework contrains the
input /output operations from the system running the simulation.

In software development, the new paradigm is moving towards web based
systems because of simple usability for the user and wide range of available
frameworks for developers. In this project, an OOT module for web based
GUI is proposed for GNU Radio. The primary focus of the project will be an
display mechanism which will be used to interact with ongoing simulation
based on the parameters provided through interactive HITML inputs.

In the proposal, the focus is on the flow of the final OOT module and
implementation details. The details of minute tasks like arrangement of
plots & widgets inside the output, the color and labeling of the plots etc.
have been intentionally left out but will be implemented taking gr-qtgui
module as guideline.

1.1 Primary features of the project

1. Alternative output mechanism other than Python QT framework
2. Real-time visualization and interaction with the program remotely
3. Simultaneous real-time multi-user interaction with the program

4. Flexible module to incorporate the future development in direction
web-based software

2 Proposed workflow of the module

At present, GNU Radio plots various plots in the window based on QT
Framework. Similarly, the proposed module will show various plots through
HTML page served from the system running the simulations. This section
explains working of the module from perspectives of the User and GNU
Radio.

The working prototype of entire project is available here [1]. The file
time_sink_f.py implements basic sink for floating point input and the file
top_block.py is an example on how the sinks will be used. You can review
the output here.

2.1 Using the module - User’s perspective

The usage of module will be similar to the current QT based GUI. The steps
will be as follows:

1. The user selects the BokehGUI from the options menu in generation
options.

2. A optional variable session_id will allow the user to assign a ID to
the session of the program. The program will be identified by the
session ID.

3. The sinks and widgets from BokehGUI module will be included in
flowcharts according to requirements.

4. Upon running the simulation, a server process will be started.

5. The user opens the URL server:port/7?session-id=session_id through
the web browser over the network. The response will be the Document
instance corresponding to the session identified by session_id.

Note: As of now, the layout of HTML will be a default layout. If time
permits, I am planning to include a jQuery based library [2] to arrange the
plots and widgets from the frontend.

2.2 Interaction with GR - GR’s perspective

In this subsection, the overall backend workflow of module is explained in
main GNU Radio software. In addition to that, the working of major fea-
tures of the module is introduced.

In particular, this OOT module uses Bokeh [3] library will be used to
setup the server, sessions, documents and plots. The figure 1 provides com-
parison of proposed mechanism with the current structure.

https://github.com/kartikp1995/gr-htmlgui/
https://github.com/kartikp1995/gr-htmlgui/blob/master/python/time_sink_f.py
https://github.com/kartikp1995/gr-htmlgui/blob/master/examples/top_block.py
http://terminal.kartikpatel.in:5006/?bokeh-session-id=h4NyPINXVEniemWudNItOhpEwM1U9NvoC3WaHu1Dmfyr

w N e

S .
O . ' Initialise | &,
o — ' . server e
X Initialise QT ' . . (o)
> Dialog box : ' ' %
i 1 i — i - - ﬁ
‘1 1 i Initialise session with o)
! 1. " session_id ?‘,
. 1 ! —
[1| |Intop_blockpy 0 ¥
! I 1 L -1
. . [Create a "Document”
Initialise plots in ! . rea !
Dialog box : . inside the session
| -l I
! [
v ! R]
[
i work i
Process input and 0 ' Initialise plots in a Document
e Update plots F=-e ! i Setup websockets
/ Vol "
i) f - ! i
- Trigger T : ¥ v "
___________________ - - i worl
In each sinks| i Process input and
L - | sireamto the plots M
[! L
: el Trigger e
oo T)

Figure 1: Comparison of gr-qtgui with gr-bokehgui

2.2.1 Understanding top_block.py

First of all, a GRC file builds top_block.py which initializes all the sinks and
blocks. A example of top_block.py having a signal source, a throttle block
and BohekGUIT time sink is given in [1]. Important snippets of the code are
explained here.

class top_block (gr.top_block):

def __init-_(self):
gr.top_block. __init__(self , "Top Block”)

self .doc = curdoc ()
self.session = push_session(self.doc, session_id=session_id)

Here, the line #5 and #6, initialize a Document instance and a Session
instance. All the clients connected to the session identified by session_id,
will have a single Document instance. Hence, there is only one Document
and session instance on the server. It implies changing the parameters or
plot configurations on one client will ensure the change is displayed to all
clients viewing the same document.

self . htmlgui_time_sink_f_0 = htmlgui.time_sink_f(self.doc, 0.1)

Followed by code to configure the plots of the sink

It initializes and configures the time sink. More details on the sink

[N

implementation is explained in following section.

2.2.2 Proposed implementation of sinks and widgets

Consider a sample floating point time_sink f.py in the following snippet.

class time_sink_f(gr.sync_block):
def __init__(self, doc, update_time):
gr.sync-block. __init__(self
name="time_sink _f” |
in_sig=[numpy. float32],
out_sig=None)

self.doc = doc # the Document instance of the program

self.plot = None

self.ds = None # datasource instance to the clients
self . initialize ()

other configurations

def initialize(self): # initialize the plot and datasource
self.plot = figure ()
self .ds = ColumnDataSource (data=dict (x=[], y=][]))
self.plot.line(x="x’, y="y’, source = self.ds)
self .doc.add_root (self.plot) # Add plot to the document

Other methods to configure the plots

A constructor of the sink that connects the sink to Document instance.
Initialize the plots and data source.
def work(self, input_items, output_items):

new_data = dict ()

Processing the input_items

self .ds.stream (new_data, rollover = 1000)

streaming to the Document instance
return len (input_items [0])

The function work () in the sink instance processes the data and stream
the data to the Document instance through the datasource.

In the sample program, only Python is used to explain the idea. But in
general, Python is much slower than C++. Hence, the OOT module will
have both Python and C++4 code as structured in figure 2. Python will be
used to interact with the plots and other blocks whereas C++ will be used
to pre-process the data before sending to the plots. This will ensure fast
processing and easy implementation.

1. sink_impl : C++ class which will be inherited. Contains functions
related to processing of the data.

2. sink : Python class inherited from sink_impl class containing meth-
ods to configure and communicate with the plots. All processing of

time_sink_f.py

Class variables:

s Instance of the Plot
* [nstance of the stream to the Plot
* Plot configuration options

Class functions:

s Constructor()
s |nitialize()
« work()
o Calls to process() of time_sink_f_impl.cc with argument as input_items
and gets output_ifems.
o Stream the output_ifems after appropriate casting of the variables

time_sink_f_impl.cc
Class functions:
process():

= Called by work() from python. All inputs and output of the process
will be PMT objects.

= function work() calls the function with PMT vectors
input_items returns output_ifems, number_of outputs, it will be then
used to stream and plot the data.

Figure 2: Proposed structure and flow of the program

the data will be done in functions of sink_impl.

3. widgets : Bokeh provides all required input widgets with appropriate
mechanism for javascript as well as backend callbacks. Hence, this
class will take care of all such widgets and their corresponding python

callback functions.

4. forms/toolbars (If time permits) : The group of widgets that forms
a toolbar. For an instance: in frequency plots, one can have a range
slider for the range of frequency of interest, button for ”autorange”
and similarly more. Grouping all these makes the system modular

and easy to extend.

Note: The sink_impl and sink is a generic term to point all sinks. e.g. in
case of floating point time sink, it will be time_sink_f impl and time_sink_f.
Based on this, overall flow of the OOT module gr-bokehgui is as follows:

1. GRC creates a top_block.py.

2. top_block.py initialize the server, session, doc and sinks.
3. The sinks have instance of the corresponding doc, and initialises plot.

4. The work() function process the input_items and stream the output_-
items to the plot.

5. Connect the system through the browser using specific URL.

Please note that, at present, it is considered that the output plots are
displayed on the same system or on the small network. In other words,
the application for the output over the Internet is not considered for now.
Hence, it can be safely assumed that the samples will not be required to
be dropped. Also, during streaming of the data, re-streaming will not be
necessary.

3 The proposed work during GSoC 2017

A summary of proposed features are as follows:

1. Following plots will be implemented for the web based GUI. Most
plots are directly available in Bokeh library. Others can be developed
by providing the formatted input values to existing plots in Bokeh
library.

e Constellation Display

Histogram Display
BER Sink
e Frequency Display

Time Display
e Waterfall Display (If time permits)

2. Following input widgets will be implemented for the web based GUIL.
All these widgets are already available in Bokeh library.
e Checkbox
Chooser (Drop-down menu in HTML)
TextBox
Label (Non-editable textbox)
Push Button

Range Slider
Slider

3. Add GRC blocks for the Sinks

e Add option in Options block and define building of top_block.py

e Add GRC blocks for each sinks and input widgets mentioned
above

4 Timeline

The timeline provided by Google suggests a 1 month of community bond-
ing period. But since, the registration for graduate studies at University of
Southern California are around end of August, I will be available for the
duration of May-August except 3-4 days sometimes in June or July to com-
plete my visa process. Although I will keep on contributing to GNU Radio,
I would like to start coding from 20th May (10 days earlier than suggested
date), so that the three month duration ends at 20th August to avoid any
loss of work during the registration process at the University.

The necessary documentation will be done in parallel to to the develop-
ment. According to the timeline of GSoC 2017, there are 13 weeks of coding
period. I scheduled the deliverables into 1-week period, planning to work
full-time from Monday to Saturday and using the Sunday as additional time
buffer. My tentative GSoC timeline is given below:

Table 1: Timeline

May 4 - May 20 Define minute details of the projects like plot
configuration parameters

Understanding why Cyberspectrum is the best
spectrum.

May 21 - May 27 Initial setup: Define ” Generate Options” for
Bokeh GUI

Complete coding time_sink_f_impl.cc

Work on Python part of time sink for float
inputs

May 28 - June 3 Complete time sink for float inputs
Conclude time sink for complex inputs

Create GRC block for Time Sink

June 4 - June 10 Add Python and GRC example for time sink
Complete input widgets: Label and textbox
June 11 - June 17 Define GRC blocks for Label and textbox
Start frequency sink
June 18 - June 24 Conclude frequency sink
Add GRC block for frequency sinks
Add Python and GRC example for frequency sink
June 25 - July 1 Complete Constellation sink
July 2 - July 8 Add GRC block for Constellation sink

Add Python and GRC example for Constellation
sink

Start BER sink
July 9 - July 15 Complete BER sink
Add GRC block for BER sink
Add Python and GRC example for BER sink
July 16 - July 22 Conclude Checkbox and add GRC block
Conclude Chooser (dropdown) and add GRC block
July 23 - July 29 Conclude Push button and add GRC block
Conclude slider and add GRC block
July 30 - August 5 Conclude range slider and add GRC block
August 6 - August 12 Complete remaining tasks
Initiate wrap up the project
August 13 - August 20 Wrap up the project
Submit the final report

I am also planning to publish my weekly progress on discuss-gnuradio
forum in order to keep my work transparent.

5 License

The entire project will be open-source, available on GitHub, included the
GPLv3 licensed code of GSoC.

6 Acknowledgement

I have read the rules of conduct for GSoC of GNU Radio and acknowledge
the tree strikes rule. Therefore I am going to intensively communicate with
the mentor and keep my work transparent and my working progress up to
date.

7 Personal background and previous experience

I am a final year undergraduate student at Department of Electronics and
Communication Engineering, Indian Institute of Technology Roorkee, India.
I will be joining University of Southern California for Ph.D. in Electrical and
Computer Engineering with majors in Electrical Engineering. My area of
interests revolve around Communication systems and I have developed web
and software development as my hobby.

I am proficient in 3 human languages including English and many com-
puter languages including Python, C++, Javascript, and HTML/CSS. I will
be connected to Internet throughout GSoC period. Overall, I will be always
available over the email for any discussion or questions. In addition to that,
I can be available on Skype and Google Hangout whenever necessary.

My experience in programming and in particular open-source develop-
ment is as follows:

e Implementation of Bluetooth Low Energy module in NS3
(Documentation)
Designed and implemented Bluetooth Low Energy protocol stack in
NS3. Initially developed the basic idea and then implemented entire
module within 4 weeks.

e Chief Technical Lead, Information Management Group (IMG),
IIT Roorkee - IMG develops and maintains the II'T Roorkee Intranet
& Internet systems. We manage the Institute website, Content Man-
agement System, Placement Portal and many other official applica-
tions for the institute.

— I am responsible for all aspects of the backend stack including
performance management and security.

— Initiated changes in development cycle to optimize the resource
usage of servers and reduce the load on servers and databases.

— Developed and maintained the official placement portal of the in-
stitute containing more than 20,000 lines of codes. The student
side interface which includes company information, application
details and the interface for placement office which includes con-
tact manager and related administrative tasks were developed
based on Python/Django framework.

http://kartikpatel.in/ns-3-dev-git/
http://img.channeli.in
http://img.channeli.in

e Since January 2017, I contributed to GNU Radio in order to get famil-
iar with organization and codebase. Following are my contributions
to the code:

— Pull request with the feature to Duplicate flowgraph and Save a
Copy(PR: # 1188).

— Pull request with the change cout to gr::logger (PR: # 1178)

— Solved issue # 1124: Added plot configuration options for Line2
in case of input type Complex Messages in QT GUI Time Sink
block.

— Solved issue # 1192: Removed redundant configuration options
in QT GUI Time Sink block.

In addition to the contributions to the code, I have been involved
in the GNU Radio mailing list to get in touch with the community.
Although I had no need to ask doubts on the forum because of excellent
tutorials and documentations over the Internet, I have tried to answer
the queries according to my knowledge and capacity. I am highly
interested to continue the contributions to GNU Radio even after the
GSoC period.

Note: Due to copyright and other constraints, the code for BLE stack in
NS3 and code by IMG, II'T Roorkee can’t be published.

I have also worked on several research projects. For details of projects
and other details, please refer to my resume available here.

Contact details

Address : Ahmedabad, Gujarat, India

Email . kartikpatel1995Qgmail.com

Website : http://kartikpatel.in

Github : https://github.com/kartikp1995/

Skype ID : kartikp1995

LinkedIn : https://www.linkedin.com/in/kkpatel95/

8 Conclusion

An overview of the module for web based GUI for GNU Radio is given in
the previous sections. With example of a small scale implementation, the
flow of development is explained. All tasks are divided into proper timeline
so that mentor(s) and community can track the progress of the project.

10

https://github.com/gnuradio/gnuradio/pull/1188
https://github.com/gnuradio/gnuradio/pull/1178
https://github.com/gnuradio/gnuradio/pull/1124
https://github.com/gnuradio/gnuradio/pull/1192
http://kartikpatel.in/Backup/Documents/CV.pdf
mailto:kartikpatel1995@gmail.com
http://kartikpatel.in
https://github.com/kartikp1995/
https://www.linkedin.com/in/kkpatel95/

References

[1] gr-htmlgui - miniature version of entire project. https://github.com/
kartikp1995/gr-htmlgui/, 2017.

[2] 15 jquery plugins for creating dynamic layouts. https://speckyboy.
com/15-jquery-plugins-for-creating-dynamic-layouts/, 2017.

[3] Welcome to bokeh - bokeh 0.12.4 documentation. http://bokeh.
pydata.org/en/latest/, 2015.

11

https://github.com/kartikp1995/gr-htmlgui/
https://github.com/kartikp1995/gr-htmlgui/
https://speckyboy.com/15-jquery-plugins-for-creating-dynamic-layouts/
https://speckyboy.com/15-jquery-plugins-for-creating-dynamic-layouts/
http://bokeh.pydata.org/en/latest/
http://bokeh.pydata.org/en/latest/

	Introduction
	Primary features of the project

	Proposed workflow of the module
	Using the module - User's perspective
	Interaction with GR - GR's perspective
	Understanding top_block.py
	Proposed implementation of sinks and widgets

	The proposed work during GSoC 2017
	Timeline
	License
	Acknowledgement
	Personal background and previous experience
	Conclusion

