1. Presentation

This document proposes a possible implementati@nte$t campaign manager for dtest.
The suggested solution provides in one hand a mexhato launch multiple tests
sequentially, and on the other hand, a simple ozgdon to manage most needs of test
processes.

This project is almost independent of dtest andcparfectly be left aside from it. However,
such an evolution in the dtest project could makendier.

The three following themes are discussed in thaudeent:
* The project’s global concepts,
* Test campaigns,
* Tests implementation.

2. Concepts and terminology

A testcampaign file is a XML file referencing differertests to execute. Some parameters
can be included in theampaign file, which will be passed to thests before execution. The
proposed mechanism is generic and will match nessing needs.

A test is a python class matching a specific templateamethods must be implemented, or
inherited from the provided ParentTestClass).

As the repetitive testing needs for a given projegtlies repetitive code blocks, inheritance
mechanisms should be used abusively duedg implementation.

The tests manager is a module that first parses the teatpaign file to get the campaign’s
specific parameters and the list of thas to launch.
Eachtest is then:

* Instanced,

» Given the campaign’s file parameters,

* Initialized,

* Launched,

3. Test campaigns

The following describes the XML campaign’s filewstture.

The root element of the file is <campaign>, andtams the following elements:
* <parameter name="parameter_name" value="parameiee'y>
0 A campaign file contains zero or more <parameter> elements.
0 The attributes name and value describe one parathatewill be passed to the
test class instance before launching the test.
o The parameters are added to a python dictionarychwBuggests that no
parameter element should have the same "namdjdéis value.
» <test_module path="/path/to/a/test directory/"/>

0 At least one <test_module> element must be presehecampaign file.
o This element’s path attribute contains a path aliractory containing a file
named test.py, itself containing at least teseclass.

Below is an example of tesampaign file:

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<canpai gn>

<par anet er nane="server_i p" val ue="192. 168. 0. 21"/ >
<par aneter nane="client_ip" value="192. 168.0.42"/>

<test _nodul e path="/hone/test/test1l/">
<test _nodul e path="/hone/test/test2/">
<test _nodul e path="/hone/test/test3/">

</ canpai gn>

4. Test classes

A test file’s name is test.py. It is located inatsn test directory (pointed to by the
<test_module> element of the campaign file).

The file test.py must declare at least one clalésviong the template below:
* A constructor with no parameters.
* An addParameter method with 2 parameters (key ahg)
o Invoking this method adds the key/value pair toraéernal attribute which
type is dictionary.
0 This method is used during the campaign file’s ipgrsvhen a <parameter>
element is encountered.
* AninitTest method that does whatever you wanhibyour test.
* ArunTest method with no parameters that laundhesest.

The class could inherit from the provided PareniTkss. This class could be used to
implement functionalities commonly used during stitey process (execute a single remote
command; transfer a file etc.).

The inheritance mechanism could be used the fotigumanner:

ParentTest
DtestMaster
+__init__(self)
+addParameter(self, key, value)
+initTest(self)
+runTest(self)

—

Projectl Project2

#configurePlatform(self, ip) #makeCoffee(self, sugar)
#doSomething(self, thing)

AN

Testl TestN Testl
+initTest(self) +initTest(self) +initTest(self)

»

In the example above, the ProjectN classes areusdy to provide useful methods and will
never be instanced. Here, the initTest methoded fsr:

» Dtest objects creation and setup
* DtestMaster setup

Usually the runTest method won’t have to be redefibecause its purpose is only to start the
DtestMaster, and can consequently be defined iarPBest.

