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ABSTRACT 
The forced convection problem in a fluid saturated porous medium is considered. For the 
self-similar boundary-layer flows past a plane or axisymmetric body with arbitrary shape 
embedded in this medium and having a power-law surface temperature distribution, 
analytical solutions are given. In the range ~, >_ 0 of the temperature exponent, the 
analytical results show an excellent agreement with previous numerical findings. In the 
range ~ < - 1 / 2 ,  the exiJ~enca era  new class of unique solutions, while for - 1/2 < ,~ < 0 
the occurrence of multiple solutions is reported. The heat transfer characteristics and the 
physical meaning of all these forced convection boundary-layer flows are discussed in 
detail. © 2001 Elsevier Science Ltd 

Introduction 

Convective flow in porous media is one of the main topics ofhent transfer, which has many 

practical applications. These include the utilization of geothermal energy, high performance insulation for 

buildings, the control of pollutant spread in groundwater, the design of  nuclear reactors, compact heat 

exchangers, solar power collectors, food processing casting and welding of a manufacturing process, etc. 

Recent monographs by Nield and Bejan [1], Ingham and Pop [2] and Vafai [3] give a comprehensive 

summary of the work on the subject. 
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The object of this Note is to present exact amlytical solutions for the problem of forced convection flow 

over plane or ~xis3Tametric bodies of arbitrary shape and a power-law surface temperature distribution which are 

embedded in a fluid-saturated porous medium This problem has first been investigated by Nakayama and 

Koyama [4], Nakayama and Pop [5] and Nakayama [6,7] In the range ~ _> 0 of the temperature 

exponent, the present analytical results compare excellently with the numerical results reported 

previously In addition, in the range ~ < - 1 / 2 a new class of unique solutions and for - 1 / 2 < ~ < 0 a 

class of multiple solutions has been found The paper discusses the heat transfer characteristics and the 

physical meaning of all these forced convection boundary-layer flows in detail 

Basic Equations 

We consider a plane or axisymmetric body of arbitrary shape, which is embedded, in a fluid- 

saturated porous medium. The wall temperature of the heated body is Tw(x), where x stands for the 

coordinate measured along the surface of the body The external velocity of the fluid is u,(x) and its 

external temperature T, is assumed to be constant. Nakayama and Pop [5] have shown that under the 

non- boundary-layer and Boussinesq approximation the basic equations of both the Darcy and Darcy 

mixed convection flows can be transformed to the following form: 

/, 

e" :2) 

subject to the boundary conditions 

f=0, 0=I on T/=0 
(3) 

0--)0 as 7--)oo 

Here f is the dimensionless stream function, 0 is the dimensionless temperature, n(x) and I(x) are 

functions associated with the wall temperature distribution, Gr* and Re* are the modified local Grashof 

and Reynolds numbers for a porous medium and primes denote differentiation with respect to the 

similarly variable 17. 

If  we now assume that Re*+ Re" >> G r .  which corresponds to the forced convection flow 

regime, Eq (1) then gives 
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f ' =  1 (4) 

In addition, we assume that the temperature difference AT,.(x) = T,.(x) - T, varies as AT.,(x) oc ~ 

where ,~ is a constant and ~ is the transformed streamwise coordinate, see Nakayama and Koyama [4]. 

Then, we have 

nl  = ~ (5) 
I+2R 

and Eq. (2) reduces to the following ordinary differential equation 

I R t 

O"a 2(I+2)~) r/0- I+2~0 0 (6) 

subject to the boundary conditions 

0(0)=  1 (7a) 

0-->0 as r/--)oo (Tb) 

Ansdvtieal Solutions 

We shall now give some exact analytical solutions of Eq. (6) which were not been presented 

before. 

I. Case ,~ = 0 

Equation (6) now becomes 

with the solution 

0" + I r/O' = 0 (8) 

if the boundary conditions (7) are used. Here erfc(...) denotes the complementary error function, see 

Abramowitz and Stegun [8]. 

The reduced wall heat flux is 

0'(0) = -~ = -0.564189 (10) 

2. Case ~ = -I/2 

In this case, Eq. (6) reduces to 

q0'+0=0 (ID 
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and it has the solution 

O = const. (12) 
q 

The solution (12) satisfies the boundary condition (To) but it violates the condition (Ta). This means that 

the boundary value problem governed by Eqs. (6) and (7) does not admit solutions on the r/-scale ff 

R = - 1 / 2. In order to obtain a solution for 2 = - 1/2,  a scale change is required (see below). 

3. The cases 3. ---) : ~ .  

In both these cases, Eq. (6) reduces to 

e.-le=o (13) 
2 

and admits the solution 

-I 0 = exp - with 0'(0) = -~ (14a,b) 

which obviously satisfies the boundary conditions (7). 

4. The general case. 

Using the new independent and dependent variables z and Y(z,,~) defined by 

._ q 

one obtains from (6) the equation 

d2y 

dz 2 

and Y(z,g) = O(r/,X) e +¼: (15a,b) 

~ - ( I z 2  + 2 2 + I I Y  = 0  (16) 

of the parabolic cylinder functions, see Abramowitz and Stegun [8]. 

With the aid of the parabolic cylinder functions Y(z,A) the general solution of Eq. (6) can be 

expressed in terms of Kummefs confluent hypergeometric function M(a, b, x) as, see Abramowitz and 

Stegun [8] 

where A and B are as yet arbitrary constants. The boundary condition (7a) implies A = 1, while B 

remains to be specified with the aid of (Tb). On the other hand, having in view that the new independent 

variable (15a) is real only for 2 > - 1 / 2 ,  while it becomes imaginary for A < - 1 / 2 ,  it is convenient to 

write the general solution (17) in the form: 
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112 2 l)  2 2  2 < - - -  2 

0(~,2)  = 

1 )M(-2,1,-Iz'~+B, zM(-2+1-,3,-1-z'3 for 3 . > - -  
L ~, 2 2 ) ~, 2 2  2 )  2 

(18) 

where B~ and B 2 are constants to be determined from (7b) and 

6"-  r/ 
I 

2~121 2 
(19) 

is the real independent variable for 2 < - 1 / 2 .  Further, if we take into account that, see Abramowitz and 

Stegun [s], 

I F(b) x,,_,,eX as 

M ( a , b , x )  = l F(a) x --~ +oo 

x as x ---~ ---~ 

one obtains for 0 the asymptotic behavior 

_ +L~-: 1 I~t-~-~[ x/2 B, 21,1,e2 i f  2 < - - -  

(20) 

(21) 

where F denotes the Gamma function. 

The asymptotic expression (21) shows that: 

i) in the range 2 < - 1 / 2  the boundary condition (To) can only be obtained if 

r13.1) 
In this case, the solution is unique and has the expression 

(22) 
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l l " r(l l 

and the wall heat flux is given by 

(23) 

0'(0"2) = - ~ f ~ -  1 rtz[) (24) 

ii) in the range - 1 / 2 < 2 < 0  the boundary conditicm (Tb) is satisfied for any value of B 2 -=B and 

therefore (18) yields the multiple solutions: 

0(.,2) =M(- 2;z2)+ +1)_122 2Jz2] (2,) 
which daeays algebraically like r/2a as r/--~ oo. The wall heat flux of these multiple solutions is given by 

B _ 1 < R < 0 (26) o ' ( o , ~ ) = ~ ,  2 

iii) in the range 2 > 0 the boundary condition (Tb) can only be obtained if 

r(~ +1) 
B~ =-4~r (~+2)  (27) 

The solution is unique again and reads 

The wall heat flux is now given by 

1 r(2 +l) 
0' (0 ,2)  = - ~ -  r (29) 

4 2 2  + 1 1 ~ 2  + 1 )  

Discussion 

The expressions (24) and (29) for the wall boat flux are negative for any A, < - 1 / 2 and 2. > 0, 

re~peotively. Therefore, the eorre~onding unique solutions (23) and (28) lead to the "usual" wall heat 

flux, dir~-tod from the wall to the fluid. All the tetr~erature profil~ show a monotonic decrease from 1 to 

zero as r/---~ oo. In Table 1 a couple of values of 8 ' (0 ,2)  are given for different values of 2 .  In the 
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range g. __ 0 they show an excellent agreement with the results of Nakayama [7] obtained by numerically 

solving the boundary value problem (6)-(7). For both A --* _+oo one has 0'(0,,~) --* - 1 / v ~ .  In these 

limiting cases the corresponding solutions (23) and (28) reduce to the same elementary solution (14). It is 

easy to show that the limiting cases A --~ _+oo of AT~.(x) oc ~:~ correspond on the ~'-scale to the 

exponential surface temperature distribution 

where T o and y are constants. In the special case ~, -- O, expression (27) reduces to (10) and from (26) 

one immediately recovers the elementary solution (9): 

O(r;,O): 1- LM(1,3,-Ir;2]= l-erf[~-]:erfc( ~-] (31) 
x/re \ 2  2 4 J \ 2 )  ~,2j 

As shown above, in the range - 1/2 < A < 0,  the boundary condition (7b) is not able to specify 

the value of the constant B 2 ---B and, therefore, it results the algebraically decaying multiple solutions 

(25). Obviously, for the special value of B =  B2 given by (27), the corresponding number of the multiple 

solutions (25) coincides precisely with the unique solution (28). In this case, an exponential one replaces 

the algebraic decay. However, in addition to this special value of B ,  there are an infinite number of ~Aer 

possible values of the constant B. They may be restricted to some extent by the physical requirement that 

0(r/,)~) > 0 for any 0 < r /< oo and - 1 / 2 < ,~ < 0. The necessary (but not sufficient) condition for this 

behavior of the temperature profile (25) is / / > / / 2 ,  with //2 being given by (27). The necessary and 

sufficient condition which is able to specify the constant//  uniquely, emerges from the requirement that 

no heat flow exists at infinity, i.e. besides 0(Qo) = 0 we also have 

g ' (r / , , ~ ) - ,  0 as ,1 ~ ~ (32) 

and this is automatically satisfied for ~ < - 1 / 2  and 1l->0. By making use of the properties of 

Kummer's confluent hypergeometric function M(a, b, Jc), it is easily to show that (32) is satisfied if and 

only i f / /  coincides precisely with//2 given by (27). In this way, (25) coincides with (28) and the latter 

represents the (exponentially decaying) solution of the problem (6)-(7) in the whole range A > - 1 / 2 .  

The values of the wall heat flux calculated from (29) with ,~. ~ ( - 1 / 2 , 0 )  coincide to a high accuracy 

with the values obtained numerically by Nakayama [7] for A = -0.1 and - 0.3. 

Finally, the case A = - 1 / 2  deserves a special attention. As pointed out above, in this case the 

boundary value problem (6)-(7) does not admit solutions on the r/ -scale (see Eq.(12)). However, by 
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whole range 2 > - 1 / 2 .  The values of the wall heat flux calculated from (29) with 2 ~ ( - 1 / 2 , 0 )  

coincide with the values obtained numerically by Nakayama [7] for 2 =-0 .1  and -0 .3  to a high 

accuracy, with the flow on the z -scale, such a solution does exist. It may be obtained as the special case 

2 = - 1 / 2  and B = 0 of the multiple solutions (25) and reads: 

O=M:II-Iz2~=exp(-2z2)[,2"2" 2 J (33, 

This solution satisfies obviously the boundary conditions 0 = I on z = 0 and 0 ---) 0 as z --) ao 

and leads to a vanishing wall heat flow: dO/dzl..= o = O. 

We may conclude therefore that the forced convection problem considered in this paper admits 

(on the scale of the usual similarity variable r/) exponentially decaying unique solutions for any real 

2 ~e-1/2.  These solutions are available in the exact analytical form (23) and (28). In the range 

- 1 / 2 < 2 < 0 the unicity of the solutions requires in addition to the boundary condition (To) that at 

infinity also the heat flux becomes vanishing (a requirement which for 2 < - 1 / 2  and ~, ___ 0 is satisfied 

automatically). In all these cases a direct wall heat flow is obtained. Finally it is worth mentioning that, 

while in the case 2 > - 1 / 2  the numerical approach to the boundary value problem (6)-(7) is a standard 

matter, in the case 2 < - 1 / 2  it becomes a difficult task. This circumstance is connected to the fact that 

the nsymptotic state O=O represents for 2 > - 1 / 2  a stable focus whereas for A < - l / 2  it becomes an 

unstable focus of Eq.(6). Therefore, the new analytic solutions (23) valid for 2 < - 1 / 2  plays an 

important role in this parameter range. 

0 
0.I 
0.2 
1/3 
0.5 
0.8 
1.0 
1.5 
2.0 

TABLE 1 
Values of  - 0 ' ( . ,  2~ , . .  

- >__ o) 

Numerical results 
Nakayama [71 

0.564 

Present 
Results 
Eq.(27) 

0.564189 
0.583 0.583176 
0.598 0.597813 
0.613 0.612781 
0.627 0.626657 
0.644 0.643608 
0.651 0.651470 
0.665 0.664670 
0.673 0.672835 

2 

-0.55 
-0.60 
-0.65 
-0.70 
-0.75 
-0.80 
-1.0 
-3.0 
-5.0 

<-I/2) 

Present 
Results 
r~.(27) 
1.90486 
1.42848 
1.23014 
1.11841 
1.04605 
0.99519 
0.886227 
0.743124 
0.726983 



Vol. 28, No. 2 FORCED CONVECTION FLOW IN A POROUS MEDIUM 241 

References 

1. D.A. Nield and A. Bejan, Convection in Porous Media (2nd edition). Springer, New York (1999). 

2. D.B. lngham and I. Pop, Transport Phenomana in Porous Media. Pergamon, Oxford (1998). 

3. K. Vafai, Handbook of Porous Media. Marcel Dekker, New York (2000). 

4. A. Nakayama and H. Koyama, J. Heat Transfer 109, 1041(1987). 

5. A. Nakayama and I. Pop, Int. J. Heat Mass Transfer 34, 357(1991). 

6. A. Nakayama, PC-Aided Numerical Heat Transfer and Convective Flow. CRC Press, Tokyo (1995). 

7. A. Nakayama, A unified treatment of Darcy-Forchheimer boundary-layer flows. In: Transport 
Phenomem in Porous Media (DB. lngham and I. Pop, eds.). Pergamon Press, Oxford, pp.179- 
204(1998). 

8. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. Dover, New York (1964). 

Received November 22, 2000 


