Index: gcc-7-7.2.0-12.1/src/libgo/go/runtime/netpoll_gnu.go =================================================================== --- /dev/null +++ gcc-7-7.2.0-12.1/src/libgo/go/runtime/netpoll_gnu.go @@ -0,0 +1,32 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// FIXME: Fake network poller for gnu. +// +build gnu + +package runtime + +func netpollinit() { + return +} + +func netpollopen(fd uintptr, pd *pollDesc) int32 { + return 0 +} + +func netpollclose(fd uintptr) int32 { + return 0 +} + +func netpollarm(pd *pollDesc, mode int) { + throw("unused") +} + +// polls for ready network connections +// returns list of goroutines that become runnable +func netpoll(block bool) (gp *g) { + // Implementation for platforms that do not support + // integrated network poller. + return +} Index: gcc-7-7.2.0-12.1/src/libgo/go/runtime/os_gnu.go =================================================================== --- /dev/null +++ gcc-7-7.2.0-12.1/src/libgo/go/runtime/os_gnu.go @@ -0,0 +1,86 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package runtime + +import "unsafe" + +type mOS struct { + waitsema uintptr // semaphore for parking on locks +} + +//extern malloc +func libc_malloc(uintptr) unsafe.Pointer + +//go:noescape +//extern sem_init +func sem_init(sem *_sem_t, pshared int32, value uint32) int32 + +//go:noescape +//extern sem_wait +func sem_wait(sem *_sem_t) int32 + +//go:noescape +//extern sem_post +func sem_post(sem *_sem_t) int32 + +//go:noescape +//extern sem_timedwait +func sem_timedwait(sem *_sem_t, timeout *timespec) int32 + +//go:nosplit +func semacreate(mp *m) { + if mp.mos.waitsema != 0 { + return + } + + var sem *_sem_t + + // Call libc's malloc rather than malloc. This will + // allocate space on the C heap. We can't call malloc + // here because it could cause a deadlock. + sem = (*_sem_t)(libc_malloc(unsafe.Sizeof(*sem))) + if sem_init(sem, 0, 0) != 0 { + throw("sem_init") + } + mp.mos.waitsema = uintptr(unsafe.Pointer(sem)) +} + +//go:nosplit +func semasleep(ns int64) int32 { + _m_ := getg().m + if ns >= 0 { + var ts timespec + ts.set_sec(ns / 1000000000) + ts.set_nsec(int32(ns % 1000000000)) + + if sem_timedwait((*_sem_t)(unsafe.Pointer(_m_.mos.waitsema)), &ts) != 0 { + err := errno() + if err == _ETIMEDOUT || err == _EAGAIN || err == _EINTR { + return -1 + } + throw("sem_timedwait") + } + return 0 + } + for { + r1 := sem_wait((*_sem_t)(unsafe.Pointer(_m_.mos.waitsema))) + if r1 == 0 { + break + } + if errno() == _EINTR { + continue + } + throw("sem_wait") + } + return 0 +} + +//go:nosplit +func semawakeup(mp *m) { + if sem_post((*_sem_t)(unsafe.Pointer(mp.mos.waitsema))) != 0 { + throw("sem_post") + } +} + Index: gcc-7-7.2.0-12.1/src/libgo/go/runtime/signal_gnu.go =================================================================== --- /dev/null +++ gcc-7-7.2.0-12.1/src/libgo/go/runtime/signal_gnu.go @@ -0,0 +1,606 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// +build gnu + +package runtime + +import ( + "runtime/internal/sys" + "unsafe" +) + +// For gccgo's C code to call: +//go:linkname initsig runtime.initsig +//go:linkname crash runtime.crash +//go:linkname resetcpuprofiler runtime.resetcpuprofiler +//go:linkname sigtrampgo runtime.sigtrampgo + +//go:linkname os_sigpipe os.sigpipe +func os_sigpipe() { + systemstack(sigpipe) +} + +func signame(sig uint32) string { + if sig >= uint32(len(sigtable)) { + return "" + } + return sigtable[sig].name +} + +const ( + _SIG_DFL uintptr = 0 + _SIG_IGN uintptr = 1 +) + +// Stores the signal handlers registered before Go installed its own. +// These signal handlers will be invoked in cases where Go doesn't want to +// handle a particular signal (e.g., signal occurred on a non-Go thread). +// See sigfwdgo() for more information on when the signals are forwarded. +// +// Signal forwarding is currently available only on Darwin and Linux. +var fwdSig [_NSIG]uintptr + +// channels for synchronizing signal mask updates with the signal mask +// thread +var ( + disableSigChan chan uint32 + enableSigChan chan uint32 + maskUpdatedChan chan struct{} +) + +func init() { + // _NSIG is the number of signals on this operating system. + // sigtable should describe what to do for all the possible signals. + if len(sigtable) != _NSIG { + print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") + throw("bad sigtable len") + } +} + +var signalsOK bool + +// Initialize signals. +// Called by libpreinit so runtime may not be initialized. +//go:nosplit +//go:nowritebarrierrec +func initsig(preinit bool) { + if preinit { + // preinit is only passed as true if isarchive should be true. + isarchive = true + } + + if !preinit { + // It's now OK for signal handlers to run. + signalsOK = true + } + + // For c-archive/c-shared this is called by libpreinit with + // preinit == true. + if (isarchive || islibrary) && !preinit { + return + } + + for i := uint32(0); i < _NSIG; i++ { + t := &sigtable[i] + if t.flags == 0 || t.flags&_SigDefault != 0 { + continue + } + fwdSig[i] = getsig(i) + + if !sigInstallGoHandler(i) { + // Even if we are not installing a signal handler, + // set SA_ONSTACK if necessary. + if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { + setsigstack(i) + } + continue + } + + t.flags |= _SigHandling + setsig(i, getSigtramp()) + } +} + +//go:nosplit +//go:nowritebarrierrec +func sigInstallGoHandler(sig uint32) bool { + // For some signals, we respect an inherited SIG_IGN handler + // rather than insist on installing our own default handler. + // Even these signals can be fetched using the os/signal package. + switch sig { + case _SIGHUP, _SIGINT: + if fwdSig[sig] == _SIG_IGN { + return false + } + } + + t := &sigtable[sig] + if t.flags&_SigSetStack != 0 { + return false + } + + // When built using c-archive or c-shared, only install signal + // handlers for synchronous signals. + if (isarchive || islibrary) && t.flags&_SigPanic == 0 { + return false + } + + return true +} + +func sigenable(sig uint32) { + if sig >= uint32(len(sigtable)) { + return + } + + t := &sigtable[sig] + if t.flags&_SigNotify != 0 { + ensureSigM() + enableSigChan <- sig + <-maskUpdatedChan + if t.flags&_SigHandling == 0 { + t.flags |= _SigHandling + fwdSig[sig] = getsig(sig) + setsig(sig, getSigtramp()) + } + } +} + +func sigdisable(sig uint32) { + if sig >= uint32(len(sigtable)) { + return + } + + t := &sigtable[sig] + if t.flags&_SigNotify != 0 { + ensureSigM() + disableSigChan <- sig + <-maskUpdatedChan + + // If initsig does not install a signal handler for a + // signal, then to go back to the state before Notify + // we should remove the one we installed. + if !sigInstallGoHandler(sig) { + t.flags &^= _SigHandling + setsig(sig, fwdSig[sig]) + } + } +} + +func sigignore(sig uint32) { + if sig >= uint32(len(sigtable)) { + return + } + + t := &sigtable[sig] + if t.flags&_SigNotify != 0 { + t.flags &^= _SigHandling + setsig(sig, _SIG_IGN) + } +} + +func resetcpuprofiler(hz int32) { + var it _itimerval + if hz == 0 { + setitimer(_ITIMER_PROF, &it, nil) + } else { + it.it_interval.tv_sec = 0 + it.it_interval.set_usec(1000000 / hz) + it.it_value = it.it_interval + setitimer(_ITIMER_PROF, &it, nil) + } + _g_ := getg() + _g_.m.profilehz = hz +} + +func sigpipe() { + if sigsend(_SIGPIPE) { + return + } + dieFromSignal(_SIGPIPE) +} + +// sigtrampgo is called from the signal handler function, sigtramp, +// written in assembly code. +// This is called by the signal handler, and the world may be stopped. +//go:nosplit +//go:nowritebarrierrec +func sigtrampgo(sig uint32, info *_siginfo_t, ctx unsafe.Pointer) { + if sigfwdgo(sig, info, ctx) { + return + } + g := getg() + if g == nil { + c := sigctxt{info, ctx} + if sig == _SIGPROF { + _, pc := getSiginfo(info, ctx) + sigprofNonGoPC(pc) + return + } + badsignal(uintptr(sig), &c) + return + } + + setg(g.m.gsignal) + sighandler(sig, info, ctx, g) + setg(g) +} + +// sigpanic turns a synchronous signal into a run-time panic. +// If the signal handler sees a synchronous panic, it arranges the +// stack to look like the function where the signal occurred called +// sigpanic, sets the signal's PC value to sigpanic, and returns from +// the signal handler. The effect is that the program will act as +// though the function that got the signal simply called sigpanic +// instead. +func sigpanic() { + g := getg() + if !canpanic(g) { + throw("unexpected signal during runtime execution") + } + + switch g.sig { + case _SIGBUS: + if g.sigcode0 == _BUS_ADRERR && g.sigcode1 < 0x1000 { + panicmem() + } + // Support runtime/debug.SetPanicOnFault. + if g.paniconfault { + panicmem() + } + print("unexpected fault address ", hex(g.sigcode1), "\n") + throw("fault") + case _SIGSEGV: + if (g.sigcode0 == 0 || g.sigcode0 == _SEGV_MAPERR || g.sigcode0 == _SEGV_ACCERR) && g.sigcode1 < 0x1000 { + panicmem() + } + // Support runtime/debug.SetPanicOnFault. + if g.paniconfault { + panicmem() + } + print("unexpected fault address ", hex(g.sigcode1), "\n") + throw("fault") + case _SIGFPE: + switch g.sigcode0 { + case _FPE_INTDIV: + panicdivide() + case _FPE_INTOVF: + panicoverflow() + } + panicfloat() + } + + if g.sig >= uint32(len(sigtable)) { + // can't happen: we looked up g.sig in sigtable to decide to call sigpanic + throw("unexpected signal value") + } + panic(errorString(sigtable[g.sig].name)) +} + +// dieFromSignal kills the program with a signal. +// This provides the expected exit status for the shell. +// This is only called with fatal signals expected to kill the process. +//go:nosplit +//go:nowritebarrierrec +func dieFromSignal(sig uint32) { + setsig(sig, _SIG_DFL) + unblocksig(sig) + raise(sig) + + // That should have killed us. On some systems, though, raise + // sends the signal to the whole process rather than to just + // the current thread, which means that the signal may not yet + // have been delivered. Give other threads a chance to run and + // pick up the signal. + osyield() + osyield() + osyield() + + // If we are still somehow running, just exit with the wrong status. + exit(2) +} + +// raisebadsignal is called when a signal is received on a non-Go +// thread, and the Go program does not want to handle it (that is, the +// program has not called os/signal.Notify for the signal). +func raisebadsignal(sig uint32, c *sigctxt) { + if sig == _SIGPROF { + // Ignore profiling signals that arrive on non-Go threads. + return + } + + var handler uintptr + if sig >= _NSIG { + handler = _SIG_DFL + } else { + handler = fwdSig[sig] + } + + // Reset the signal handler and raise the signal. + // We are currently running inside a signal handler, so the + // signal is blocked. We need to unblock it before raising the + // signal, or the signal we raise will be ignored until we return + // from the signal handler. We know that the signal was unblocked + // before entering the handler, or else we would not have received + // it. That means that we don't have to worry about blocking it + // again. + unblocksig(sig) + setsig(sig, handler) + + // If we're linked into a non-Go program we want to try to + // avoid modifying the original context in which the signal + // was raised. If the handler is the default, we know it + // is non-recoverable, so we don't have to worry about + // re-installing sighandler. At this point we can just + // return and the signal will be re-raised and caught by + // the default handler with the correct context. + if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { + return + } + + raise(sig) + + // Give the signal a chance to be delivered. + // In almost all real cases the program is about to crash, + // so sleeping here is not a waste of time. + usleep(1000) + + // If the signal didn't cause the program to exit, restore the + // Go signal handler and carry on. + // + // We may receive another instance of the signal before we + // restore the Go handler, but that is not so bad: we know + // that the Go program has been ignoring the signal. + setsig(sig, getSigtramp()) +} + +func crash() { + if GOOS == "darwin" { + // OS X core dumps are linear dumps of the mapped memory, + // from the first virtual byte to the last, with zeros in the gaps. + // Because of the way we arrange the address space on 64-bit systems, + // this means the OS X core file will be >128 GB and even on a zippy + // workstation can take OS X well over an hour to write (uninterruptible). + // Save users from making that mistake. + if sys.PtrSize == 8 { + return + } + } + + dieFromSignal(_SIGIOT) +} + +// ensureSigM starts one global, sleeping thread to make sure at least one thread +// is available to catch signals enabled for os/signal. +func ensureSigM() { + if maskUpdatedChan != nil { + return + } + maskUpdatedChan = make(chan struct{}) + disableSigChan = make(chan uint32) + enableSigChan = make(chan uint32) + go func() { + // Signal masks are per-thread, so make sure this goroutine stays on one + // thread. + LockOSThread() + defer UnlockOSThread() + // The sigBlocked mask contains the signals not active for os/signal, + // initially all signals except the essential. When signal.Notify()/Stop is called, + // sigenable/sigdisable in turn notify this thread to update its signal + // mask accordingly. + var sigBlocked sigset + sigfillset(&sigBlocked) + for i := range sigtable { + if sigtable[i].flags&_SigUnblock != 0 { + sigdelset(&sigBlocked, i) + } + } + sigprocmask(_SIG_SETMASK, &sigBlocked, nil) + for { + select { + case sig := <-enableSigChan: + if sig > 0 { + sigdelset(&sigBlocked, int(sig)) + } + case sig := <-disableSigChan: + if sig > 0 { + sigaddset(&sigBlocked, int(sig)) + } + } + sigprocmask(_SIG_SETMASK, &sigBlocked, nil) + maskUpdatedChan <- struct{}{} + } + }() +} + +// This is called when we receive a signal when there is no signal stack. +// This can only happen if non-Go code calls sigaltstack to disable the +// signal stack. +func noSignalStack(sig uint32) { + println("signal", sig, "received on thread with no signal stack") + throw("non-Go code disabled sigaltstack") +} + +// This is called if we receive a signal when there is a signal stack +// but we are not on it. This can only happen if non-Go code called +// sigaction without setting the SS_ONSTACK flag. +func sigNotOnStack(sig uint32) { + println("signal", sig, "received but handler not on signal stack") + throw("non-Go code set up signal handler without SA_ONSTACK flag") +} + +// This runs on a foreign stack, without an m or a g. No stack split. +//go:nosplit +//go:norace +//go:nowritebarrierrec +func badsignal(sig uintptr, c *sigctxt) { + needm(0) + if !sigsend(uint32(sig)) { + // A foreign thread received the signal sig, and the + // Go code does not want to handle it. + raisebadsignal(uint32(sig), c) + } + dropm() +} + +// Determines if the signal should be handled by Go and if not, forwards the +// signal to the handler that was installed before Go's. Returns whether the +// signal was forwarded. +// This is called by the signal handler, and the world may be stopped. +//go:nosplit +//go:nowritebarrierrec +func sigfwdgo(sig uint32, info *_siginfo_t, ctx unsafe.Pointer) bool { + if sig >= uint32(len(sigtable)) { + return false + } + fwdFn := fwdSig[sig] + + if !signalsOK { + // The only way we can get here is if we are in a + // library or archive, we installed a signal handler + // at program startup, but the Go runtime has not yet + // been initialized. + if fwdFn == _SIG_DFL { + dieFromSignal(sig) + } else { + sigfwd(fwdFn, sig, info, ctx) + } + return true + } + + flags := sigtable[sig].flags + + // If there is no handler to forward to, no need to forward. + if fwdFn == _SIG_DFL { + return false + } + + // If we aren't handling the signal, forward it. + if flags&_SigHandling == 0 { + sigfwd(fwdFn, sig, info, ctx) + return true + } + + // Only forward synchronous signals. + c := sigctxt{info, ctx} + if c.sigcode() == _SI_USER || flags&_SigPanic == 0 { + return false + } + // Determine if the signal occurred inside Go code. We test that: + // (1) we were in a goroutine (i.e., m.curg != nil), and + // (2) we weren't in CGO (i.e., m.curg.syscallsp == 0). + g := getg() + if g != nil && g.m != nil && g.m.curg != nil && g.m.curg.syscallsp == 0 { + return false + } + // Signal not handled by Go, forward it. + if fwdFn != _SIG_IGN { + sigfwd(fwdFn, sig, info, ctx) + } + return true +} + +// msigsave saves the current thread's signal mask into mp.sigmask. +// This is used to preserve the non-Go signal mask when a non-Go +// thread calls a Go function. +// This is nosplit and nowritebarrierrec because it is called by needm +// which may be called on a non-Go thread with no g available. +//go:nosplit +//go:nowritebarrierrec +func msigsave(mp *m) { + sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) +} + +// msigrestore sets the current thread's signal mask to sigmask. +// This is used to restore the non-Go signal mask when a non-Go thread +// calls a Go function. +// This is nosplit and nowritebarrierrec because it is called by dropm +// after g has been cleared. +//go:nosplit +//go:nowritebarrierrec +func msigrestore(sigmask sigset) { + sigprocmask(_SIG_SETMASK, &sigmask, nil) +} + +// sigblock blocks all signals in the current thread's signal mask. +// This is used to block signals while setting up and tearing down g +// when a non-Go thread calls a Go function. +// The OS-specific code is expected to define sigset_all. +// This is nosplit and nowritebarrierrec because it is called by needm +// which may be called on a non-Go thread with no g available. +//go:nosplit +//go:nowritebarrierrec +func sigblock() { + var set sigset + sigfillset(&set) + sigprocmask(_SIG_SETMASK, &set, nil) +} + +// unblocksig removes sig from the current thread's signal mask. +// This is nosplit and nowritebarrierrec because it is called from +// dieFromSignal, which can be called by sigfwdgo while running in the +// signal handler, on the signal stack, with no g available. +//go:nosplit +//go:nowritebarrierrec +func unblocksig(sig uint32) { + var set sigset + sigemptyset(&set) + sigaddset(&set, int(sig)) + sigprocmask(_SIG_UNBLOCK, &set, nil) +} + +// minitSignals is called when initializing a new m to set the +// thread's alternate signal stack and signal mask. +func minitSignals() { + minitSignalStack() + minitSignalMask() +} + +// minitSignalStack is called when initializing a new m to set the +// alternate signal stack. If the alternate signal stack is not set +// for the thread (the normal case) then set the alternate signal +// stack to the gsignal stack. If the alternate signal stack is set +// for the thread (the case when a non-Go thread sets the alternate +// signal stack and then calls a Go function) then set the gsignal +// stack to the alternate signal stack. Record which choice was made +// in newSigstack, so that it can be undone in unminit. +func minitSignalStack() { + _g_ := getg() + var st _stack_t + sigaltstack(nil, &st) + if st.ss_flags&_SS_DISABLE != 0 { + signalstack(_g_.m.gsignalstack, _g_.m.gsignalstacksize) + _g_.m.newSigstack = true + } else { + _g_.m.newSigstack = false + } +} + +// minitSignalMask is called when initializing a new m to set the +// thread's signal mask. When this is called all signals have been +// blocked for the thread. This starts with m.sigmask, which was set +// either from initSigmask for a newly created thread or by calling +// msigsave if this is a non-Go thread calling a Go function. It +// removes all essential signals from the mask, thus causing those +// signals to not be blocked. Then it sets the thread's signal mask. +// After this is called the thread can receive signals. +func minitSignalMask() { + nmask := getg().m.sigmask + for i := range sigtable { + if sigtable[i].flags&_SigUnblock != 0 { + sigdelset(&nmask, i) + } + } + sigprocmask(_SIG_SETMASK, &nmask, nil) +} + +// unminitSignals is called from dropm, via unminit, to undo the +// effect of calling minit on a non-Go thread. +//go:nosplit +func unminitSignals() { + if getg().m.newSigstack { + signalstack(nil, 0) + } +}