The problem you want to solve is, find ϕ such that:

$$
\left\{\begin{aligned}
-\Delta \phi & =0, \text { in } M \text { with }, \\
\nabla \phi \cdot \mathbf{n} & =f \text { on } M_{x \min }, \\
\nabla \phi \cdot \mathbf{n} & =-f \text { on } M_{x \max }, \\
\nabla \phi \cdot \mathbf{n} & =0 \text { on } M_{y \min } \cup M_{y \max } \cup M_{z \min }, \text { and } \\
\alpha \phi+\nabla \phi \cdot \mathbf{n} & =0 \text { on } M_{z \max },
\end{aligned}\right.
$$

where \mathbf{n} is the exterior normal on the boundaries of M.
In order to "simplify" the reading of the establishment of this variational formula, I will deliberately omit the functional spaces needed here (namely Sobolev spaces). If you need more information about this, check P-G Ciarlet's book on finite elements for instance.

We start considering the PDE defined in M. Here, we have

$$
-\Delta \phi=0 .
$$

Thus, for any (test) function ψ, we also have

$$
\forall \psi, \quad-\Delta \phi \times \psi=0
$$

which can be written also

$$
\forall \psi, \quad \int_{M}-\Delta \phi \times \psi=0
$$

Using integration by part (Green formula here) we will have the boundary conditions arising:

$$
\forall \psi, \quad \int_{M} \nabla \phi \cdot \nabla \psi-\int_{\partial M} \nabla \phi \cdot \mathbf{n} \psi=0
$$

Now we will replace the boundary conditions within $\int_{\partial M} \nabla \phi \cdot \mathbf{n} \psi$. We have

$$
\begin{aligned}
\int_{M_{x \min }} \nabla \phi \cdot \mathbf{n} \psi & =\int_{M_{x \min }} f \psi \\
\int_{M_{x \max }} \nabla \phi \cdot \mathbf{n} \psi & =-\int_{M_{x a x}} f \psi, \\
\int_{M_{y \min } \cup M_{y \max }} M_{z \min } \nabla \phi \cdot \mathbf{n} \psi & =0 \\
\int_{M_{x \max }} \nabla \phi \cdot \mathbf{n} \psi & =-\int_{M_{x \max }} \alpha \phi \psi
\end{aligned}
$$

So the weak form is

$$
\forall \psi, \quad \int_{M} \nabla \phi \cdot \nabla \psi+\int_{M_{x \max }} \alpha \phi \psi=\int_{M_{x \min }} f \psi-\int_{M_{x a x}} f \psi
$$

