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Pressure and Forces

In the mining industry, the roof (hangingwall) tends to drop as the face of
the tunnel (stope) is excavated for rock containing gold.

As one can imagine, a roof falling on one’s head is not a nice prospect!
Therefore the roof needs to be supported.

The roof is not one big uniform chunk of rock. Rather it is broken up into
smaller chunks. It is assumed that the biggest chunk of rock in the roof has a
mass of less than 20 000 kgs therefore each support has to be designed to resist
a force related to that mass. The strength of the material (either wood or steel)
making up the support is taken into account when working out the minimum
required size and thickness of the parts to withstand the force of the roof.

Sometimes the design of the support is such that the support needs to with-
stand the rock mass without the force breaking the roof..

Therefore hydraulic supports (hydro = water) use the principles of force
and pressure such that as a force is exerted on the support, the water pressure
increases. A pressure relief valve then squirts out water when the pressure (and
thus the force) gets too large. Imagine a very large, modified doctor’s syringe.

In the petrochemical industry, there are many vessels and pipes that are
under high pressures. A vessel is a containment unit (Imagine a pot without
handles, that has the lid welded to the pot that would be a small vessel) where
chemicals mix and react to form other chemicals, amongst other uses.

The end product chemicals are sold to companies that use these chemicals to
make shampoo, dishwashing liquid, plastic containers, fertilizer, etc. Anyway,
some of these chemical reactions require high temperatures and pressures in
order to work. These pressures result in forces being applied to the insides of
the vessels and pipes. Therefore the minimum thickness of the pipe and vessels
walls must be determined using calculations, to withstand these forces. These
calculations take into account the strength of the material (typically steel, plastic
or composite), the diameter and of course the pressure inside the equipment.
Let examine the concepts of force and pressure in further detail.
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Chapter 1

Heat and Properties of

Matter

1.1 Phases of matter

1.1.1 Density

Matter is a substance which has mass and occupies space. The density of matter
refers to how much mass is in a given volume. Said differently, you can imagine
the density to be the amount of mass packed into a given volume.

density =
Mass

V olume

If we consider a bar of soap and a bar of steel with the same volume, the
steel will have more mass because it has a greater density. The density is
greater in steal because more atoms are closely packed in comparison to the
soap. Although they are both the same size, the bar of steel will be ”heavier”
because it has more mass.

Worked Example 1

Density of objects

A bar of aluminum (Al) has dimensions 2cm x 3cm x 5cm with a
mass of 81g. A bar of lead (Pb) has dimensions 3cm x 3cm x 5cm
and a mass of 510.3g. Calculate the density of the aluminum and
lead.
Solution:

First we calculate the volume of Al and Pb:

volume = Length ∗ Width ∗ Height

For Aluminum: volume = 2cm ∗ 3cm ∗ 5cm = 30cm3
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For Lead: volume = 3cm ∗ 3cm ∗ 5cm = 45cm3

We can now calculate the densities using the mass and volume of
each material.

For Aluminum: density = 81g
30cm3 = 2.7g/cm3

For Lead: density = 510.3g
45cm3 = 11.34g/cm3

Now that you know the density of aluminum and lead, which object
would be bigger (larger volume): 1kg of Lead or 1kg of Aluminum.

Solution:

1kg of aluminum will be much larger in volume than 1kg of lead.
Aluminum has a smaller density so it will take a lot more of it to
have a weight of 1kg. Lead is much more dense, so it will take less
for it to weigh 1kg.

The density of liquids and gases can be calculated the same way as in solids.
If the mass and volume of a liquid is known, the density can be calculated. We
can often determine which liquid has a greater density by mixing two liquids
and seeing how they settle. The more dense liquid will fall towards the bottom,
or ’sink’. If you have ever added olive oil to water, you have seen it sits on the
surface, or ’floats’. This is because olive oil is less dense than water. Fog occurs
when water vapor becomes more dense than air(”a cloud that sinks in air”).

This principle can be used with solids and liquids. In fact, it is the density of
an object that determines if it will float or sink in water. Objects with densities
greater than water will sink.

Worked Example 2

Objects floating in water

Ivory soap is famous for ”soap that floats”. If a 5cm x 3cm x 10cm
bar of ivory soap weighs 1.35 Newtons, show that its density is less
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than water.

Solution:

First calculate the bars volume: volume = 3cm ∗ 5cm ∗ 10cm =
150cm3

Now we must determine the mass of the bar based on its weight. We
will use Newton’s Second law (F = ma):

Weight = mass ∗ gravity =⇒ Weight = 9.8m/s2 ∗ Mass

Mass =
1.35N

9.8m/s2
= .138kg

Using the mass and the volume we determine the density of the soap:

density =
138g

150cm3
= .92g/cm3

Water has a density of 1g/cm3, therefore the soap is less dense than
water, allowing it to float.

1.2 Phases of matter

Although phases are conceptually simple, they are hard to define precisely. A
good definition of a phase of a system is a region in the parameter space of the
system’s thermodynamic variables in which the free energy is analytic. Equiva-
lently, two states of a system are in the same phase if they can be transformed
into each other without abrupt changes in any of their thermodynamic proper-
ties.

All the thermodynamic properties of a system – the entropy, heat capacity,
magnetization, compressibility, and so forth – may be expressed in terms of
the free energy and its derivatives. For example, the entropy is simply the
first derivative of the free energy with temperature. As long as the free energy
remains analytic, all the thermodynamic properties will be well-behaved.

When a system goes from one phase to another, there will generally be a
stage where the free energy is non-analytic. This is known as a phase transition.
Familiar examples of phase transitions are melting (solid to liquid), freezing
(liquid to solid), boiling (liquid to gas), and condensation (gas to liquid). Due
to this non-analyticity, the free energies on either side of the transition are two
different functions, so one or more thermodynamic properties will behave very
differently after the transition. The property most commonly examined in this
context is the heat capacity. During a transition, the heat capacity may become
infinite, jump abruptly to a different value, or exhibit a ”kink” or discontinuity
in its derivative.

In practice, each type of phase is distinguished by a handful of relevant
thermodynamic properties. For example, the distinguishing feature of a solid
is its rigidity; unlike a liquid or a gas, a solid does not easily change its shape.
Liquids are distinct from gases because they have much lower compressibility:
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a gas in a large container fills the container, whereas a liquid forms a puddle in
the bottom. Many of the properties of solids, liquids, and gases are not distinct;
for instance, it is not useful to compare their magnetic properties. On the other
hand, the ferromagnetic phase of a magnetic material is distinguished from the
paramagnetic phase by the presence of bulk magnetization without an applied
magnetic field.

To take another example, many substances can exist in a variety of solid
phases each corresponding to a unique crystal structure. These varying crystal
phases of the same substance are called polymorphs. Diamond and graphite are
examples of polymorphs of carbon. Graphite is composed of layers of hexago-
nally arranged carbon atoms, in which each carbon atom is strongly bound to
three neighboring atoms in the same layer and is weakly bound to atoms in the
neighboring layers. By contrast in diamond each carbon atom is strongly bound
to four neighboring carbon atoms in a cubic array. The unique crystal struc-
tures of graphite and diamond are responsible for the vastly different properties
of these two materials.

Metastable phases
Metastable states may sometimes be considered as phases, although strictly

speaking they aren’t because they are unstable. For example, each polymorph
of a given substance is usually only stable over a specific range of conditions. For
example, diamond is only stable at extremely high pressures. Graphite is the
stable form of carbon at normal atmospheric pressures. Although diamond is
not stable at atmospheric pressures and should transform to graphite, we know
that diamonds exist at these pressures. This is because at normal temperatures
the transformation from diamond to graphite is extremely slow. If we were to
heat the diamond, the rate of transformation would increase and the diamond
would become graphite. However, at normal temperatures the diamond can
persist for a very long time.

Another important example of metastable polymorphs occurs in the pro-
cessing of steel. Steels are often subjected to a variety of thermal treatments
designed to produce various combinations of stable and metastable iron phases.
In this way the steel properties, such as hardness and strength can be adjusted
by controlling the relative amounts and crystal sizes of the various phases that
form.

Phase diagrams
The different phases of a system may be represented using a phase diagram.

The axes of the diagrams are the relevant thermodynamic variables. For sim-
ple mechanical systems, we generally use the pressure and temperature. The
following figure shows a phase diagram for a typical material exhibiting solid,
liquid and gaseous phases.

The markings on the phase diagram show the points where the free energy is
non-analytic. The open spaces, where the free energy is analytic, correspond to
the phases. The phases are separated by lines of non-analyticity, where phase
transitions occur, which are called phase boundaries.

In the above diagram, the phase boundary between liquid and gas does not
continue indefinitely. Instead, it terminates at a point on the phase diagram
called the critical point. This reflects the fact that, at extremely high temper-
atures and pressures, the liquid and gaseous phases become indistinguishable.
In water, the critical point occurs at around 647 K (374 C or 705 F) and 22.064
MPa.
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The existence of the liquid-gas critical point reveals a slight ambiguity in
our above definitions. When going from the liquid to the gaseous phase, one
usually crosses the phase boundary, but it is possible to choose a path that never
crosses the boundary by going to the right of the critical point. Thus, phases can
sometimes blend continuously into each other. We should note, however, that
this does not always happen. For example, it is impossible for the solid-liquid
phase boundary to end in a critical point in the same way as the liquid-gas
boundary, because the solid and liquid phases have different symmetry.

An interesting thing to note is that the solid-liquid phase boundary in the
phase diagram of most substances, such as the one shown above, has a positive
slope. This is due to the solid phase having a higher density than the liquid,
so that increasing the pressure increases the melting temperature. However,
in the phase diagram for water the solid-liquid phase boundary has a negative
slope. This reflects the fact that ice has a lower density than water, which is an
unusual property for a material.

1.2.1 Solids, liquids, gasses

1.2.2 Pressure in fluids

1.2.3 change of phase

1.3 Deformation of solids

1.3.1 strain, stress

Stress (σ) and strain (ε) is one of the most fundamental concepts used in the
mechanics of materials. The concept can be easily illustrated by considering a
solid, straight bar with a constant cross section throughout its length where a
force is distributed evenly at the ends of the bar. This force puts a stress upon
the bar. Like pressure, the stress is the force per unit area. In this case the area
is the cross sectional area of the bar.

stress =
Force

Areacrosssection

=⇒ σ =
F

A

(A) Bar under compression (B) Bar under tension

Figure 1.1: Illustration of Bar

The bar in figure 1a is said to be under compression. If the direction of

the force (
−→
F ), were reversed, stretching the bar, it would be under tension (fig.

1b). Using intuition, you can imagine how the bar might change in shape under
compression and tension. Under a compressive load, the bar will shorten and
thicken. In contrast, a tensile load will lengthen the bar and make it thinner.
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Figure 1.2: Bar changes length under tensile stress

For a bar with an original length L, the addition of a stress will result in
change of length 4L. With 4L and L we can now define strain as the ratio
between the two. That is, strain is defined as the fractional change in length of
the bar:

Strain ≡ 4L

L

L 4L

Figure 1.3: Left end of bar is fixed as length changes

1.3.2 Elastic and plastic behavior

Material properties are often characterized by a stress versus strain graph (figure
x.xx). One way in which these graphs can be determined is by tensile testing.
In this process, a machine stretches a the material by constant amounts and
the corresponding stress is measured and plotted. Typical solid metal bars will
show a result like that of figure x.xx. This is called a Type II response. Other
materials may exibit different responses. We will only concern ourself with Type
II materials.

The linear region of the graph is called the elastic region. By obtaining the
slope of the linear region, it is easy to find the strain for a given stress, or vice-

|
|

+

Figure 1.4: dashed line represents plastic recovery **incomplete**
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Figure 1.5: dashed line represents plastic recovery **incomplete**

versa. This slope shows itself to be very useful in characterizing materials, so it
is called the Modulus of Elasticity, or Young’s Modulus:

E =
stress

strain
=

F/A

∆L/L

The elastic region has the unique property that allows the material to return
to its original shape when the stress is removed. As the stress is removed it will
follow line back to zero. One may think of stretching a spring and then letting
it return to its original length. When a stress is applied in the linear region, the
material is said to undergo elastic deformation.

When a stress is applied that is in the non-linear region, the material will
no longer return to its original shape. This is referred to as plastic deformation.
If you have overstretched a spring you have seen that it no longer returns to
its initial length; it has been plastically deformed. The stress where plastic
behavior begins is called the yield strength (point A, fig x).

When a material has plastically deformed it will still recover some of its shape
(like an overstretched spring). When a stress in the non-linear region is removed,
the stress strain graph will follow a line with a slope equal to the modulus of
elasticity (see the dashed line in figure x.xx). The plastically deformed material
will now have a linear region that follows the dashed line.

Greater stresses in the plastic region will eventually lead to fracture (the
material breaks). The maximum stress the material can undergo before fracture
is the ultimate strength.

1.4 Ideal gasses

Author: Gérald Wigger

Gérald Wigger started his Physics studies at ETH in Zuerich, Switzerland. He
moved to Cape Town, South Africa, for his Bachelor of Science degree (with hon-
ours) in Physics from the University of Cape Town in 1998. Returned to Switzerland,
he finished his Diploma at ETH in 2000 and followed up with a PhD in the Solid
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State Physics group of Prof. Hans-Ruedi Ott at ETH. He graduated in the year
2004. Being awarded a Swiss fellowship, he moved to Stanford University where
he is currently continuing his Physics research in the field of Materials with novel
electronic properties.

Any liquid or solid material, heated up above its melting point, undergoes a
transition into a gaseous state. For some materials such as iron, one has to heat
up to several thousand degrees Celsius (◦C), whereas Helium is a gas already at
-269 ◦C. As we find very strong bonding between the atoms in a solid material,
a gas consists of molecules which do interact very poorly. If one forgets about
any electrostatic or intermolecular attractive forces between the molecules, one
can assume that all collisions are perfectly elastic. One can visualize the gas as
a collection of perfectly hard spheres which collide but which otherwise do not
interact with each other. In such a gas, all the internal energy is in the form of
kinetic energy and any change in internal energy is accompanied by a change in
temperature. Such a gas is called an ideal gas.

In order for a gas to be described as an ideal gas, the temperature should
be raised far enough above the melting point. A few examples of ideal gases
at room temperature are Helium, Argon and hydrogen. Despite the fact that
there are only a few gases which can be accurately described as an ideal gas, the
underlying theory is widely used in Physics because of its beauty and simplicity.

A thermodynamic system may have a certain substance or material whose
quantity can be expressed in mass or mols in an overall volume. These are exten-
sive properties of the system. If the substance is evenly distributed throughout
the volume in question, then a value of volume per amount of substance may
be used as an intensive property. For an example, for an amount called a mol,
volume per mol is typically called molar volume. Also, a volume per mass for
a specific substance may be called specific volume. In the case of an ideas gas,
a simple equation of state relates the three intensive properties, temperature,
pressure, and molar or specific volume. Hence, for a closed system containing an
ideal gas, the state can be specified by giving the values of any two of pressure,
temperature, and molar volume.

1.4.1 Equation of state

1661 - Robert Boyle used a U-tube and Mercury to develop a mathematical re-
lationship between pressure and volume. To a good approximation, the pressure
and volume of a fixed amount of gas at a constant temperature were related by

p · V = constant (1.1)

In other words, if we compress a given quantity of gas, the pressure will
increase. And if we put it under pressure, the volume of the gas will decrease
proportionally.

Worked Example 3

compressed Helium gas
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Figure 1.6: Pressure-Volume diagram for the ideal gas at constant temperature.

A sample of Helium gas at 25◦C is compressed from 200 cm3 to
0.240 cm3. Its pressure is now 3.00 cm Hg. What was the original
pressure of the Helium?
Solution:

It’s always a good idea to write down the values of all known vari-
ables, indicating whether the values are for initial or final states.
Boyle’s Law problems are essentially special cases of the Ideal Gas
Law:
Initial: p1 = ?; V1 = 200 cm3;
Final: p2 = 3.00 cm Hg; V2 = 0.240 cm3;
Since the number of molecules stays constant and the temperature
is not changed along the process, so

p1 · V1 = p2 · V2

hence

p1 = p2 · V2/V1 = 3.00cmHg · 0.240cm3/200cm3

Setting in the values yields p1 = 3.60 · 10−3 cm Hg.
Did you notice that the units for the pressure are in cm Hg? You
may wish to convert this to a more common unit, such as millimeters
of mercury, atmospheres, or pascals.
3.60 · 10−3 Hg · 10mm/1 cm = 3.60 · 10−2 mm Hg
3.60 · 10−3 Hg · 1 atm/76.0 cm Hg = 4.74 · 10−5 atm
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One way to experience this is to dive under water. There is air in your
middle ear, which is normally at one atmosphere of pressure to balance the air
outside your ear drum. The water will put pressure on the ear drum, thereby
compressing the air in your middle ear. Divers must push air into the ear
through their Eustacean tubes to equalize this pressure.

Worked Example 4

pressure in the ear of a diver

How deep would you have to dive before the air in your middle ear
would be compressed to 75% of its initial volume? Assume for the
beginning that the temperature of the sea is constant as you dive.
Solution:

First we write down the pressure as a function of height h:

p = p0 + ρ · g · h

where we take for p0 the atmospheric pressure at height h = 0, ρ is
the density of water at 20 degrees Celsius 998.23 kg/m3, g = 9.81
ms−2.

As the temperature is constant, it holds for both heights h

p0 · V0 = (p0 + ρgh) · Ve

Now solving for h using the fact that

Ve/V0 = 0.75

yields
h = (0.75 ∗ p0 − p0)/(ρg)

Now, how far can the diver dive down before the membranes of his
ear brake.

Solution:

As the result is negative, h determines the way he can dive down. h
is given as roughly 2.6 m.

In 1809, the French chemist Joseph-Louis Gay-Lussac investigated the rela-
tionship between the Pressure of a gas and its temperature. Keeping a constant
volume, the pressure of a gas sample is directly proportional to the temperature.
Attention, the temperature is measured in Kelvin! The mathematical statement
is as follows:
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p1/T1 = p2/T2 = constant

That means, that pressure divided by temperature is a constant. On the
other hand, if we plot pressure versus temperature, the graph crosses 0 pressure
for T = 0 K = -273.15 ◦C as shown in the following figure. That point is called
the absolute Zero . That is where any motion of molecules, electrons or other
particles stops.

Figure 1.7: Pressure-temperature diagram for the ideal gas at constant volume.

Worked Example 5

Gay-Lussac

Suppose we have the following problem:
A gas cylinder containing explosive hydrogen gas has a pressure of 50
atm at a temperature of 300 K. The cylinder can withstand a pres-
sure of 500 atm before it bursts, causing a building-flattening explo-
sion. What is the maximum temperature the cylinder can withstand
before bursting?
Solution: Let’s rewrite this, identifying the variables:
A gas cylinder containing explosive hydrogen gas has a pressure of
50 atm (p1) at a temperature of 300 K (T1). The cylinder can
withstand a pressure of 500 atm (p2) before it bursts, causing a
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building-flattening explosion. What is the maximum temperature
the cylinder can withstand before bursting?
Plugging in the known variables into the expression for the Gay-
Lussac law yields

T2 = p2/p1 ∗ T1 = 500atm/50atm ∗ 300K = 3000K

we find the answer to be 3000 K.

The law of combining volumes was interpreted by the Italian chemist Amedeo
Avogadro in 1811, using what was then known as the Avogadro hypothesis. We
would now properly refer to it as Avogadro’s law:

Equal volumes of gases under the same conditions of temperature

and pressure contain equal numbers of molecules.

This can be understood in the following. As in an ideal gas, all molecules are
considered to be tiny particles with no spatial extension which collide elastically
with each other. So, the kind of gas is irrelevant. Avogadro found that at room
temperature, in atmospheric pressure the volume of a mol of a substance, i.e.
6.022·1023 molecules or atoms, occupies the volume of 22.4 l.

Figure 1.8: Two different gases occupying the same volume under the same
circumstances.

Combination of the three empirical gas laws, described in the preceding three
sections leads to the Ideal Gas Law which is usually written as:

p· V = n· R· T (1.2)

where p = pressure, V = volume, n = number of mols, T = kelvin temper-
ature and R the ideal gas constant.
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The ideal gas constant R in this equation is known as the universal gas
constant. It arises from a combination of the proportionality constants in the
three empirical gas laws. The universal gas constant has a value which depends
only upon the units in which the pressure and volume are measured. The best
available value of the universal gas constant is:

8.3143510 J
molK

or 8.3143510 kPadm3

molK

Another value which is sometimes convenient is 0.08206 dm3 atm/mol K. R
is related to the Boltzmann-constant as:

R = N0 · kB (1.3)

where N0 is the number of molecules in a mol of a substance, i.e. 6.022·1023

and kB is 1.308·10−23 J/K is valid for one single particle.
This ideal gas equation is one of the most used equations in daily life, which

we show in the following problem set:

Worked Example 6

ideal gas 1

A sample of 1.00 mol of oxygen at 50 ◦C and 98.6 kPa occupies what
volume?
Solution:

We solve the ideal gas equation for the volume

V =
nRT

p

and plug in the values n = 1, T = 273.15 + 50 K = 323.15 K and p
= 98.6·103 Pa, yielding for the volume V = 0.0272 m3 = 27.2 dm3.

This equation is often used to determine the molecular masses from gas data.

Worked Example 7

ideal gas 2

A liquid can be decomposed by electricity into two gases. In one
experiment, one of the gases was collected. The sample had a mass of
1.090 g, a volume of 850 ml, a pressure of 746 torr, and a temperature
of 25 ◦C. Calculate its molecular mass.
Solution:

To calculate the molecular mass we need the number of grams and
the number of mols. We can get the number of grams directly from
the information in the question. We can calculate the mols from the
rest of the information and the ideal gas equation.
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V = 850mL = 0.850L = 0.850dm3

P = 746torr/760torr = 0.982atm

T = 25.0◦C + 273.15 = 298.15K

pV = nRT

(0.982atm)(0.850L) = (n)(0.0821Latmmol− 1K − 1)(298.15K)

n = 0.0341mol

molecular mass = g/mol = 1.090 g/ 0.0341 mol = 31.96 g/mol. The
gas is oxygen.

Or the equation can be comfortably used to design a gas temperature con-
troller:

Worked Example 8

ideal gas 3

In a gas thermometer, the pressure needed to fix the volume of 0.20
g of Helium at 0.50 L is 113.3 kPa. What is the temperature?
Solution:

We transform first need to find the number of mols for Helium.
Helium consists of 2 protons and 2 neutrons in the core (see later)
and therefore has a molar volume of 4 g/mol. Therefore, we find

n = 0.20g/4g/mol = 0.05mol

plugging this into the ideal gas equation and solving for the temper-
ature T we find:

T =
pV

nR
=

113.3 · 103Pa · 0.5 · 10−3m3

0.05mol · 8.314J/molK
= 136.3K

The temperature is 136 Kelvin.
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1.4.2 Kinetic theory of gasses

Any scientific law is an empirical generalization which describes the results of
several experiments. A law, however, only describes results; it does not explain
why they have been obtained. A theory is a description which explains the
results of experiments. The kinetic-molecular theory of gases is a theory of
great explanatory power. We shall see how it explains the ideal gas law, which
includes the laws of Boyle and of Charles; Dalton’s law of partial pressures; and
the law of combining volumes.

The kinetic-molecular theory of gases can be stated as four postulates:

• A gas consists of particles (atoms or molecules) in continuous, random
motion.

• Gas molecules influence each other only by collision; they exert no other
forces on each other.

• All collisions between gas molecules are perfectly elastic; all kinetic energy
is conserved.

• The average energy of translational motion of a gas particle is directly
proportional to temperature.

In addition to the postulates above, it is assumed that the volumes of the
particles are negligible as compared to container volume.

These postulates, which correspond to a physical model of a gas much like a
group of billiard balls moving around on a billiard table, describe the behavior
of an ideal gas. At room temperatures and pressures at or below normal atmo-
spheric pressure, real gases seem to be accurately described by these postulates,
and the consequences of this model correspond to the empirical gas laws in a
quantitative way.

We define the average kinetic energy of translation Et of a particle in a gas
as

Et = 1/2 · mv2 (1.4)

where m is the mass of the particle with average velocity v. The forth postu-
late states that the average kinetic energy is a constant defining the temperature,
i.e. we can formulate

Et = 1/2 · mv2 = c · T (1.5)

where the temperature T is given in Kelvin and c is a constant, which has
the same value for all gases. As we have 3 different directions of motion and
each possible movement gives kBT , we find for the energy of a particle in a gas
as

Et = 1/2 · mv2 = 3/2kBT = 3/2
R

NA

T (1.6)

Hence, we can find an individual gas particle’s speed rms = root mean square,
which is the average square root of the speed of the individual particles (find u)
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vrms =

√

3RT

Mmol

(1.7)

where Mmol is the molar mass, i.e. the mass of the particle m times the
Avogadro number NA.

Worked Example 9

kinetic theory 1

Calculate the root-mean-square velocity of oxygen molecules at room
temperature, 25 ◦C.
Solution:

Using

vrms =
√

3RT/Mmol ,

the molar mass of molecular oxygen is 31.9998 g/mol; the molar
gas constant has the value 8.3143 J/mol K, and the temperature is
298.15 K. Since the joule is the kg·m2·s−2, the molar mass must be
expressed as 0.0319998 kg/mol. The root-mean-square velocity is
then given by:

vrms =
√

3(8.3143)(298.15)/(0.0319998) = 482.1m/s

A speed of 482.1 m/s is 1726 km/h, much faster than a jetliner can
fly and faster than most rifle bullets.

The very high speed of gas molecules under normal room conditions would
indicate that a gas molecule would travel across a room almost instantly. In
fact, gas molecules do not do so. If a small sample of the very odorous (and
poisonous!) gas hydrogen sulfide is released in one corner of a room, our noses
will not detect it in another corner of the room for several minutes unless the air
is vigorously stirred by a mechanical fan. The slow diffusion of gas molecules
which are moving very quickly occurs because the gas molecules travel only
short distances in straight lines before they are deflected in a new direction by
collision with other gas molecules.

The distance any single molecule travels between collisions will vary from
very short to very long distances, but the average distance that a molecule
travels between collisions in a gas can be calculated. This distance is called the
mean free path l of the gas molecules. If the root-mean-square velocity is divided
by the mean free path of the gas molecules, the result will be the number of
collisions one molecule undergoes per second. This number is called the collision

frequency Z1 of the gas molecules.
The postulates of the kinetic-molecular theory of gases permit the calculation

of the mean free path of gas molecules. The gas molecules are visualized as small
hard spheres. A sphere of diameter d sweeps through a cylinder of cross-sectional
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area π · (d/2)2 and length vrms each second, colliding with all molecules in the
cylinder.

The radius of the end of the cylinder is d because two molecules will collide
if their diameters overlap at all. This description of collisions with stationary
gas molecules is not quite accurate, however, because the gas molecules are all
moving relative to each other. Those relative velocities range between zero for
two molecules moving in the same direction and 2vrms for a head-on collision.
The average relative velocity is that of a collision at right angles, which is√

2vrms. The total number of collisions per second per unit volume, Z1, is

Z1 = πd2
√

2vrms (1.8)

This total number of collisions must now be divided by the number of
molecules which are present per unit volume. The number of gas molecules
present per unit volume is found by rearrangement of the ideal gas law to n/V
= p/RT and use of Avogadro’s number, n = N/NA; thus N/V = pNA/RT .
This gives the mean free path of the gas molecules, l, as

(urms/Z1)/(N/V ) = l = RT/πd2pNA

√
2 (1.9)

According to this expression, the mean free path of the molecules should get
longer as the temperature increases; as the pressure decreases; and as the size
of the molecules decreases.

Worked Example 10

mean free path

Calculate the length of the mean free path of oxygen molecules at
room temperature, 25 ◦C, taking the molecular diameter of an oxy-
gen molecule as 370 pm.
Solution:

Using the formula for mean free path given above and the value of
the root-mean-square velocity urms,

l =
(8.3143kgm2s−2/Kmol)(298.15K)

π(370 · 10−12m)2(101325kg/ms2)(6.0225 · 1023mol−1)
√

2
,

so l = 6.7·10−8 m = 67 nm.

The apparently slow diffusion of gas molecules takes place because the molecules
travel only a very short distance before colliding. At room temperature and at-
mospheric pressure, oxygen molecules travel only (6.7·10−8 m)/(370·10−12 m)
= 180 molecular diameters between collisions. The same thing can be pointed
out using the collision frequency for a single molecule Z1, which is the root-
mean-square velocity divided by the mean free path:
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Z1 =
πd2pNA

√
2

/RT
= vrms/l (1.10)

For oxygen at room temperature, each gas molecule collides with another
every 0.13 nanoseconds (one nanosecond is 1.0·10−9 s), since the collision fre-
quency is 7.2·10+9 collisions per second per molecule.

For an ideal gas, the number of molecules per unit volume is given using pV
= nRT and n = N/NA as

N/V = NAp/RT (1.11)

which for oxygen at 25 ◦C would be (6.022·1023 mol−1)(101325 kg/m s2) /
(8.3143 kg m2/s2 K mol)(298.15 K) or 2.46·1025 molecules/m3. The number of
collisions between two molecules in a volume, Z11, would then be the product
of the number of collisions each molecule makes times the number of molecules
there are, Z1N/V , except that this would count each collision twice (since two
molecules are involved in each one collision). The correct equation must be

Z11 =
πd2p2N2

A

√
2vrms

2R2T 2
(1.12)

If the molecules present in the gas had different masses they would also have
different speeds, so an average value of vrms would be using a weighted average
of the molar masses; the partial pressures of the different gases in the mixture
would also be required. Although such calculations involve no new principles,
they are beyond our scope.

1.4.3 Pressure of a gas

In the kinetic-molecular theory of gases, pressure is the force exerted against
the wall of a container by the continual collision of molecules against it. From
Newton’s second law of motion, the force exerted on a wall by a single gas
molecule of mass m and velocity v colliding with it is:

F = m · a = m
δv

δt
(1.13)

In the above equation, the change in a quantity is indicated by the symbol
δ, that means by changing the time t by a fraction, we change the velocity
v by some other minimal amount. It is assumed that the molecule rebounds
elastically and no kinetic energy is lost in a perpendicular collision, so δv = v
- (-v) = 2v (see figure below). If the molecule is moving perpendicular to the
wall it will strike the opposite parallel wall, rebound, and return to strike the
original wall again. If the length of the container or distance between the two
walls is the path length l, then the time between two successive collisions on
the same wall is δt = 2l/v. The continuous force which the molecule moving
perpendicular to the wall exerts is therefore

F = m
2v

2l/v
=

mv2

l
(1.14)

The molecules in a sample of gas are not, of course, all moving perpendicu-
larly to a wall, but the components of their actual movement can be considered
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Figure 1.9: Change in momentum as a particle hits a wall.

to be along the three mutually perpendicular x, y, and z axes. If the number of
molecules moving randomly, N, is large, then on the average one-third of them
can be considered as exerting their force along each of the three perpendicular
axes. The square of the average velocity along each axis, v2(x), v2(y), or v2(z),
will be one-third of the square of the average total velocity v2:

v2(x) = v2(y) = v2(z) = v2/3 (1.15)

The average or mean of the square of the total velocity can replace the square
of the perpendicular velocity, and so for a large number of molecules N ,

F = (N/3)
mv2

l
(1.16)

Since pressure is force per unit area, and the area of one side of a cubic
container must be l2, the pressure p will be given by F/l2 as:

p = (N/3)
mv2

l3
(1.17)

This equation rearranges to

pV = N · mv2/3 (1.18)

because volume V is the cube of the length l. The form of the ideal gas law
given above shows the pressure-volume product is directly proportional to the
mean-square velocity of the gas molecules. If the velocity of the molecules is a
function only of the temperature, and we shall see in the next section that this
is so, the kinetic-molecular theory gives a quantitative explanation of Boyle’s
law.

Worked Example 11

gas pressure

A square box contains He (Helium) at 25 ◦C. If the atoms are collid-
ing with the walls perpendicularly (at 90◦) at the rate of 4.0 · 1022
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times per second, calculate the force (in Newtons) and the pressure
exerted on the wall per mol of He given that the area of the wall is
100 cm2 and the speed of the atoms is 600 ms−1.
Solution:

We use the equation 1.16 to calculate the force.

F = (N/3)
mv2

l
= (N/3)mv

v

l

The fraction v/l is the collision frequency Z1 = 0.6679 s−1. The
product of N · Z1 is the number of molecules impinging on the wall
per second. This induces for the force:

F = (N/3)mvτ = 6.022 · 1023/3 · 0.004g/mol

6.022 · 1023
· 600m/s · 0.6679s−1

yielding for the force F = 0.534 N. The pressure is the force per
area:

p = F/A = 0.534N/0.01m2 = 53.4Pa.

The calculated force is 0.534 N and the resulting pressure is 53.4 Pa.

1.4.4 Kinetic energy of molecules

In the following, we will make the connection between the kinetic theory and
the ideal gas laws. We will find that the temperature is an important quantity
which is the only intrinsic parameter entering in the kinetic energy of a gas.

We will consider an ensemble of molecules in a gas, where the molecules
will be regarded as rigid large particles. We therefore neglect any vibrations
or rotations in the molecule. Hence, making this assumption, Physics for a
molecular gas is the same as for a single atom gas.

The square of the velocity is sometimes difficult to conceive, but an alterna-
tive statement can be given in terms of kinetic energy. The kinetic energy Ek of
a single particle of mass m moving at velocity v is mv2/2. For a large number
of molecules N , the total kinetic energy Ek will depend on the mean-square
velocity in the same way:

Ek = N · mv2/2 = n · Mv2/2 (1.19)

The second form is on a molar basis, since n = N/NA and the molar mass
M= mNA where NA is Avogadro’s number 6.022·1023. The ideal gas law then
appears in the form:

pV = 2Ek/3 (1.20)

Compare pV = nMv2/2. This statement that the pressure-volume product
of an ideal gas is directly proportional to the total kinetic energy of the gas is
also a statement of Boyle’s law, since the total kinetic energy of an ideal gas
depends only upon the temperature.
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Comparison of the ideal gas law, pV = nRT , with the kinetic-molecular
theory expression pV = 2Ek/3 derived in the previous section shows that the
total kinetic energy of a collection of gas molecules is directly proportional to
the absolute temperature of the gas. Equating the pV term of both equations
gives

Ek = 3/2nRT , (1.21)

which rearranges to an explicit expression for temperature,

T =
2

3R

Ek

n
=

Mv2

3R
(1.22)

We see that temperature is a function only of the mean kinetic energy Ek,
the mean molecular velocity v, and the mean molar mass M .

Worked Example 12

mean velocity 1

Calculate the kinetic energy of 1 mol of nitrogen molecules at 300
K?
Solution:

Assume nitrogen behaves as an ideal gas, then

Ek = 3/2·RT = (3/2)8.3145J/(molK)·300K = 3742J/mol(or3.74kJ/mol)

At 300 K, any gas that behaves like an ideal gas has the same energy
per mol.

As the absolute temperature decreases, the kinetic energy must decrease
and thus the mean velocity of the molecules must decrease also. At T = 0,
the absolute zero of temperature, all motion of gas molecules would cease and
the pressure would then also be zero. No molecules would be moving. Exper-
imentally, the absolute zero of temperature has never been attained, although
modern experiments have extended to temperatures as low as 1 µK.

However, at low temperatures, the interactions between the particles be-
comes important and we enter a new regime of Quantum Mechanics, which
considers molecules, single atoms or protons and electrons simultaneously as
waves and as rigid particles. However, this would go too far.

Worked Example 13

mean velocity 2
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If the translational rms. speed of the water vapor molecules (H2O)
in air is 648 m/s, what is the translational rms speed of the carbon
dioxide molecules (CO2) in the same air? Both gases are at the same
temperature. And what is the temperature we measure?
Solution:

The molar mass of H2O is

MH2O = 2 · 1g/mol + 1 · 16g/mol = 18g/mol

As the temperature is constant we can write

T =
Mv2

3R
=

0.018kg/mol · (648m/s)2

3 · 8.314J/mol · K = 303.0K = 29.9◦C

Now we calculate the molar mass of CO2

MCO2
= 2 · 16g/mol + 1 · 12g/mol = 44g/mol

The rms velocity is again calculated with eq. 1.22

vCO2
=

√

3
R · T
MCO2

=

√

3 · 8.314J/molK · 303.0K

0.044kg/mol
= 414.5m/s

The experiment was performed at 29.9 ◦C and the speed of the CO2-
molecules is 414.5 m/s, that is much slower than the water molecules
as they are much heavier.

1.5 Temperature

1.5.1 Thermal equilibrium

1.5.2 Temperature scales

1.5.3 Practical thermometers

1.6 Thermal Properties of Materials

1.6.1 Specific heat capacity

Conversion of macroscopic energy to microscopic kinetic energy thus tends to
raise the temperature, while the reverse conversion lowers it. It is easy to show
experimentally that the amount of heating needed to change the temperature
of a body by some amount is proportional to the amount of matter in the body.
Thus, it is natural to write

∆Q = MC∆T

(23.4)
where M is the mass of material, ∆Q is the amount of energy transferred to

the material, and ∆T is the change of the material’s temperature. The quantity
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C is called the specific heat of the material in question and is the amount of
energy needed to raise the temperature of a unit mass of material one degree in
temperature. C varies with the type of material. Values for common materials
are given in table 22.2.

Table 22.2: Specific heats of common materials. Material C (J kg−1 K−1)
brass 385 glass 669 ice 2092 steel 448 methyl alcohol 2510 glycerine 2427 water
4184

1.6.2 Specific latent heat

It can be seen that the specific heat as defined above will be infinitely large for
a phase change, where heat is transferred without any change in temperature.
Thus, it is much more useful to define a quantity called latent heat, which is the
amount of energy required to change the phase of a unit mass of a substance at
the phase change temperature.

1.6.3 Internal energy

In thermodynamics, the internal energy is the energy of a system due to its
temperature. The statement of first law refers to thermodynamic cycles. Using
the concept of internal energy it is possible to state the first law for a non-
cyclic process. Since the first law is another way of stating the conservation of
energy, the energy of the system is the sum of the heat and work input, i.e.,
E = Q + W. Here E represents the heat energy of the system along with the
kinetic energy and the potential energy (E = U + K.E. + P.E.) and is called
the total internal energy of the system. This is the statement of the first law
for non-cyclic processes.

For gases, the value of K.E. and P.E. is quite small, so the important internal
energy function is U. In particular, since for an ideal gas the state can be
specified using two variables, the state variable u is given by , where v is the
specific volume and t is the temperature. Thus, by definition, , where cv is the
specific heat at constant volume.

Internal energy of an Ideal gas

In the previous section, the internal energy of an ideal gas was shown to be a
function of both the volume and temperature. Joule performed an experiment
where a gas at high pressure inside a bath at the same temperature was allowed
to expand into a larger volume.

picture required
In the above image, two vessels, labeled A and B, are immersed in an insu-

lated tank containing water. A thermometer is used to measure the temperature
of the water in the tank. The two vessels A and B are connected by a tube,
the flow through which is controlled by a stop. Initially, A contains gas at high
pressure, while B is nearly empty. The stop is removed so that the vessels are
connected and the final temperature of the bath is noted.

The temperature of the bath was unchanged at the and of the process,
showing that the internal energy of an ideal gas was the function of temperature
alone. Thus Joule’s law is stated as = 0.
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1.6.4 First law of thermodynamics

We now address some questions of terminology. The use of the terms “heat”
and “quantity of heat” to indicate the amount of microscopic kinetic energy
inhabiting a body has long been out of favor due to their association with the
discredited “caloric” theory of heat. Instead, we use the term internal energy
to describe the amount of microscopic energy in a body. The word heat is most
correctly used only as a verb, e. g., “to heat the house”. Heat thus represents
the transfer of internal energy from one body to another or conversion of some
other form of energy to internal energy. Taking into account these definitions,
we can express the idea of energy conservation in some material body by the
equation

∆E = ∆Q − ∆W (first law of thermodynamics)

where ∆E is the change in internal energy resulting from the addition of
heat ∆Q to the body and the work ∆W done by the body on the outside world.
This equation expresses the first law of thermodynamics. Note that the sign
conventions are inconsistent as to the direction of energy flow. However, these
conventions result from thinking about heat engines, i. e., machines which take
in heat and put out macroscopic work. Examples of heat engines are steam
engines, coal and nuclear power plants, the engine in your automobile, and the
engines on jet aircraft.

1.7 Important Equations and Quantities

Units

Quantity Symbol Unit S.I. Units Direction
or

Table 1.1: Units used in Electricity and Magnetism
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