[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5921-g68169459
From: |
Arnold Robbins |
Subject: |
[SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5921-g68169459 |
Date: |
Sun, 26 Jan 2025 11:20:15 -0500 (EST) |
This is an automated email from the git hooks/post-receive script. It was
generated because a ref change was pushed to the repository containing
the project "gawk".
The branch, feature/minrx has been updated
via 681694594914e48d2ac2d5710d8c2744fc191697 (commit)
from 53cd4bcb838db7c7fb32020af07d63ef4c9d940b (commit)
Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.
- Log -----------------------------------------------------------------
http://git.sv.gnu.org/cgit/gawk.git/commit/?id=681694594914e48d2ac2d5710d8c2744fc191697
commit 681694594914e48d2ac2d5710d8c2744fc191697
Author: Arnold D. Robbins <arnold@skeeve.com>
Date: Sun Jan 26 18:19:51 2025 +0200
Update minrx.cpp, remove roaring.[ch].
diff --git a/support/ChangeLog b/support/ChangeLog
index 74eae253..08e21cd0 100644
--- a/support/ChangeLog
+++ b/support/ChangeLog
@@ -1,3 +1,8 @@
+2025-01-26 Arnold D. Robbins <arnold@skeeve.com>
+
+ * Makefile.am (EXTRA_DIST): Remove roaring.c and roaring.h:
+ * roaring.c, roaring.h: Removed.
+
2025-01-22 Arnold D. Robbins <arnold@skeeve.com>
* Makefile.am (CXXFLAGS): Get the value from Autoconf.
diff --git a/support/Makefile.am b/support/Makefile.am
index 8814bdf7..e670659a 100644
--- a/support/Makefile.am
+++ b/support/Makefile.am
@@ -70,8 +70,6 @@ libsupport_a_SOURCES = \
random.h \
regex.c \
regex.h \
- roaring.c \
- roaring.h \
verify.h \
xalloc.h \
malloc/dynarray.h \
diff --git a/support/Makefile.in b/support/Makefile.in
index ef5a1b69..647a0051 100644
--- a/support/Makefile.in
+++ b/support/Makefile.in
@@ -150,17 +150,17 @@ am__libsupport_a_SOURCES_DIST = attribute.h cdefs.h
charset.c \
charset.h dfa.c dfa.h dynarray.h flexmember.h getopt.c \
getopt.h getopt1.c getopt_int.h idx.h intprops.h \
intprops-internal.h libc-config.h localeinfo.c localeinfo.h \
- minrx.cpp minrx.h random.c random.h regex.c regex.h roaring.c \
- roaring.h verify.h xalloc.h malloc/dynarray.h \
- malloc/dynarray_at_failure.c malloc/dynarray_emplace_enlarge.c \
- malloc/dynarray_finalize.c malloc/dynarray_resize.c \
- malloc/dynarray_resize_clear.c pma.c pma.h
+ minrx.cpp minrx.h random.c random.h regex.c regex.h verify.h \
+ xalloc.h malloc/dynarray.h malloc/dynarray_at_failure.c \
+ malloc/dynarray_emplace_enlarge.c malloc/dynarray_finalize.c \
+ malloc/dynarray_resize.c malloc/dynarray_resize_clear.c pma.c \
+ pma.h
am__dirstamp = $(am__leading_dot)dirstamp
@USE_PERSISTENT_MALLOC_TRUE@am__objects_1 = pma.$(OBJEXT)
am_libsupport_a_OBJECTS = charset.$(OBJEXT) dfa.$(OBJEXT) \
getopt.$(OBJEXT) getopt1.$(OBJEXT) localeinfo.$(OBJEXT) \
minrx.$(OBJEXT) random.$(OBJEXT) regex.$(OBJEXT) \
- roaring.$(OBJEXT) malloc/dynarray_at_failure.$(OBJEXT) \
+ malloc/dynarray_at_failure.$(OBJEXT) \
malloc/dynarray_emplace_enlarge.$(OBJEXT) \
malloc/dynarray_finalize.$(OBJEXT) \
malloc/dynarray_resize.$(OBJEXT) \
@@ -185,7 +185,7 @@ am__depfiles_remade = ./$(DEPDIR)/charset.Po
./$(DEPDIR)/dfa.Po \
./$(DEPDIR)/getopt.Po ./$(DEPDIR)/getopt1.Po \
./$(DEPDIR)/localeinfo.Po ./$(DEPDIR)/minrx.Po \
./$(DEPDIR)/pma.Po ./$(DEPDIR)/random.Po ./$(DEPDIR)/regex.Po \
- ./$(DEPDIR)/roaring.Po malloc/$(DEPDIR)/dynarray_at_failure.Po \
+ malloc/$(DEPDIR)/dynarray_at_failure.Po \
malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po \
malloc/$(DEPDIR)/dynarray_finalize.Po \
malloc/$(DEPDIR)/dynarray_resize.Po \
@@ -402,8 +402,8 @@ libsupport_a_SOURCES = attribute.h cdefs.h charset.c
charset.h dfa.c \
dfa.h dynarray.h flexmember.h getopt.c getopt.h getopt1.c \
getopt_int.h idx.h intprops.h intprops-internal.h \
libc-config.h localeinfo.c localeinfo.h minrx.cpp minrx.h \
- random.c random.h regex.c regex.h roaring.c roaring.h verify.h \
- xalloc.h malloc/dynarray.h malloc/dynarray_at_failure.c \
+ random.c random.h regex.c regex.h verify.h xalloc.h \
+ malloc/dynarray.h malloc/dynarray_at_failure.c \
malloc/dynarray_emplace_enlarge.c malloc/dynarray_finalize.c \
malloc/dynarray_resize.c malloc/dynarray_resize_clear.c \
$(am__append_1)
@@ -487,7 +487,6 @@ distclean-compile:
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pma.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/random.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/regex.Po@am__quote@ #
am--include-marker
-@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/roaring.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@
@am__quote@malloc/$(DEPDIR)/dynarray_at_failure.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@
@am__quote@malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po@am__quote@ #
am--include-marker
@AMDEP_TRUE@@am__include@
@am__quote@malloc/$(DEPDIR)/dynarray_finalize.Po@am__quote@ # am--include-marker
@@ -666,7 +665,6 @@ distclean: distclean-am
-rm -f ./$(DEPDIR)/pma.Po
-rm -f ./$(DEPDIR)/random.Po
-rm -f ./$(DEPDIR)/regex.Po
- -rm -f ./$(DEPDIR)/roaring.Po
-rm -f malloc/$(DEPDIR)/dynarray_at_failure.Po
-rm -f malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po
-rm -f malloc/$(DEPDIR)/dynarray_finalize.Po
@@ -726,7 +724,6 @@ maintainer-clean: maintainer-clean-am
-rm -f ./$(DEPDIR)/pma.Po
-rm -f ./$(DEPDIR)/random.Po
-rm -f ./$(DEPDIR)/regex.Po
- -rm -f ./$(DEPDIR)/roaring.Po
-rm -f malloc/$(DEPDIR)/dynarray_at_failure.Po
-rm -f malloc/$(DEPDIR)/dynarray_emplace_enlarge.Po
-rm -f malloc/$(DEPDIR)/dynarray_finalize.Po
diff --git a/support/minrx.cpp b/support/minrx.cpp
index 40ff975c..0310a4db 100644
--- a/support/minrx.cpp
+++ b/support/minrx.cpp
@@ -45,12 +45,9 @@
#include <string>
#include <tuple>
#include <vector>
-#define ROARING 1
#ifdef CHARSET
#include <memory>
#include "charset.h"
-#elif defined(ROARING)
-#include "roaring.h"
#endif
#include "minrx.h"
@@ -184,62 +181,69 @@ struct COWVec {
template <typename UINT>
struct QSet {
std::uint64_t *bits[10];
- unsigned int depth = 0;
+ int depth = 0;
QSet(UINT limit) {
std::size_t s[10], t = 0;
do
t += (limit = s[depth++] = (limit + 63u) / 64u);
while (limit > 1);
- bits[0] = (std::uint64_t *) ::operator new(t * sizeof
(std::uint64_t));
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
- for (unsigned int i = 1; i < depth; ++i)
- bits[i] = bits[i - 1] + s[i - 1];
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif
- bits[depth - 1][0] = 0;
+ std::uint64_t *next = (std::uint64_t *) ::operator new(t *
sizeof (std::uint64_t));
+ for (int i = 0; i < depth; ++i)
+ bits[i] = next, next += s[depth - 1 - i];
+ bits[0][0] = 0;
}
~QSet() { ::operator delete(bits[0]); }
+ inline static std::uint64_t bit(UINT k) { return (std::uint64_t) 1 <<
(k & 0x3F); }
+ bool empty() const { return !bits[0][0]; }
bool contains(UINT k) const {
- for (auto d = depth; d > 0; ) {
- std::size_t idx = k >> 6 * d;
- unsigned int bit = (k >> 6 * --d) & 0x3f;
- if ((bits[d][idx] & ((std::uint64_t) 1 << bit)) == 0)
+ int i = 0, s = 6 * depth;
+ UINT j = 0;
+ while (i < depth) {
+ auto x = bits[i++][j];
+ s -= 6;
+ j = k >> s;
+ auto w = bit(j);
+ if (!(x & w))
return false;
}
return true;
}
- bool empty() const { return !bits[depth - 1][0]; }
- UINT remove() {
- UINT k = 0;
- auto d = depth;
- do {
- auto m = bits[--d][k];
- k = (k << 6) | ctz(m);
- } while (d != 0);
- UINT r = k;
- for (; d < depth && !(bits[d][k >> 6] &= ~((std::uint64_t) 1 <<
(k & 0x3f))); k >>= 6, ++d)
- ;
- return r;
- }
bool insert(UINT k) {
bool r = false;
- for (auto d = depth; d-- != 0; ) {
- auto bp = bits[d] + ((k >> 6 * d) >> 6);
- std::uint64_t m = (std::uint64_t) 1 << ((k >> 6 * d) &
0x3f);
- if ((*bp & m) == 0) {
- if (d)
- bits[d - 1][k >> (6 * d)] = 0;
+ int i = 0, s = 6 * depth;
+ UINT j = 0;
+ while (i < depth) {
+ auto bp = &bits[i++][j];
+ auto x = *bp;
+ s -= 6;
+ j = k >> s;
+ auto w = bit(j);
+ if ((x & w) == 0) {
+ if (i < depth)
+ bits[i][j] = 0;
else
r = true;
}
- *bp |= m;
+ *bp = x | w;
}
return r;
}
+ UINT remove() { // caller must ensure !empty()
+ UINT k = 0;
+ int i = 0, d = depth;
+ do
+ k = (k << 6) | ctz(bits[i++][k]);
+ while (i != d);
+ UINT r = k;
+ do {
+ --i;
+ auto w = bit(k);
+ k >>= 6;
+ if ((bits[i][k] &= ~w) != 0)
+ break;
+ } while (i != 0);
+ return r;
+ }
};
template <typename UINT, typename DATA>
@@ -394,22 +398,6 @@ struct CSet {
CSet(CSet &&cs): charset(cs.charset) { cs.charset = nullptr; }
CSet &operator=(CSet &&cs) { charset = cs.charset; cs.charset =
nullptr; return *this; }
~CSet() { if (charset) { charset_free(charset); charset = nullptr; } }
-#elif defined(ROARING)
- static std::map<std::string, CSet> cclmemo;
- static std::mutex cclmutex;
- roaring_bitmap_t *bitmap = nullptr;
- CSet() {
- bitmap = roaring_bitmap_create();
- }
- CSet &operator=(const CSet &) = delete;
- CSet(CSet &&cs): bitmap(cs.bitmap) { cs.bitmap = nullptr; }
- CSet(const CSet &cs): bitmap(roaring_bitmap_copy(cs.bitmap)) { } //
copy constructor
- CSet &operator=(CSet &&cs) { bitmap = cs.bitmap; cs.bitmap = nullptr;
return *this; }
- ~CSet() { if (bitmap) { roaring_bitmap_free(bitmap); bitmap = nullptr;
} }
- CSet &operator|=(const CSet &cs) {
- roaring_bitmap_or_inplace(bitmap, cs.bitmap);
- return *this;
- }
#else
static std::map<std::string, CSet> cclmemo;
static std::mutex cclmutex;
@@ -430,10 +418,6 @@ struct CSet {
CSet &invert() {
#ifdef CHARSET
charset_invert(charset); // FIXME: no error checking
-#elif defined(ROARING)
- roaring_bitmap_t *inverted = roaring_bitmap_flip_closed(bitmap,
0, WCharMax);
- roaring_bitmap_free(bitmap);
- bitmap = inverted;
#else
std::set<Range> nranges;
WChar lo = 0;
@@ -451,8 +435,6 @@ struct CSet {
CSet &set(WChar wclo, WChar wchi) {
#ifdef CHARSET
charset_add_range(charset, wclo, wchi); // FIXME: no error
checking
-#elif defined(ROARING)
- roaring_bitmap_add_range_closed(bitmap, wclo, wchi);
#else
auto e = Range(wclo - (wclo !=
std::numeric_limits<WChar>::min()), wchi + (wchi !=
std::numeric_limits<WChar>::max()));
auto [x, y] = ranges.equal_range(e);
@@ -475,9 +457,6 @@ struct CSet {
#ifdef CHARSET
charset_add_char(charset, wc); // FIXME: no error checking
return *this;
-#elif defined(ROARING)
- roaring_bitmap_add(bitmap, wc);
- return *this;
#else
return set(wc, wc);
#endif
@@ -485,8 +464,6 @@ struct CSet {
bool test(WChar wc) const {
#ifdef CHARSET
return charset_in_set(charset, wc);
-#elif defined(ROARING)
- return roaring_bitmap_contains(bitmap, wc);
#else
if (wc < 0)
return false;
@@ -504,7 +481,7 @@ struct CSet {
charset_add_cclass(charset, "lower"); //
FIXME: Add error checking
}
return result == CSET_SUCCESS;
-#else // both ROARING as well as original CSet
+#else
auto wct = std::wctype(name.c_str());
if (wct) {
std::string key = name + ":" + std::setlocale(LC_CTYPE,
NULL) + ":" + ((flags & MINRX_REG_ICASE) != 0 ? "1" : "0");
@@ -622,7 +599,7 @@ struct CSet {
else if (std::iswupper(wc))
charset_add_equiv(charset, std::towlower(wc)); // FIXME: no error checking
}
-#else // both ROARING as well as original CSet
+#else
add_equiv(wc);
if ((flags & MINRX_REG_ICASE) != 0) {
if (std::iswlower(wc))
diff --git a/support/roaring.c b/support/roaring.c
deleted file mode 100644
index 1a44f2eb..00000000
--- a/support/roaring.c
+++ /dev/null
@@ -1,26061 +0,0 @@
-// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!!
-// Created by amalgamation.sh on 2024-10-04T22:14:33Z
-
-/*
- * The CRoaring project is under a dual license (Apache/MIT).
- * Users of the library may choose one or the other license.
- */
-/*
- * Copyright 2016-2022 The CRoaring authors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * SPDX-License-Identifier: Apache-2.0
- */
-/*
- * MIT License
- *
- * Copyright 2016-2022 The CRoaring authors
- *
- * Permission is hereby granted, free of charge, to any
- * person obtaining a copy of this software and associated
- * documentation files (the "Software"), to deal in the
- * Software without restriction, including without
- * limitation the rights to use, copy, modify, merge,
- * publish, distribute, sublicense, and/or sell copies of
- * the Software, and to permit persons to whom the Software
- * is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice
- * shall be included in all copies or substantial portions
- * of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
- * ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
- * TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
- * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
- * SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
- * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- *
- * SPDX-License-Identifier: MIT
- */
-
-#include "roaring.h"
-
-/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */
-#ifdef DMALLOC
-#include "dmalloc.h"
-#endif
-
-#include "roaring.h" /* include public API definitions */
-/* begin file include/roaring/isadetection.h */
-#ifndef ROARING_ISADETECTION_H
-#define ROARING_ISADETECTION_H
-#if defined(__x86_64__) || defined(_M_AMD64) // x64
-
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#ifdef __has_include
-// We want to make sure that the AVX-512 functions are only built on compilers
-// fully supporting AVX-512.
-#if __has_include(<avx512vbmi2intrin.h>)
-#define CROARING_COMPILER_SUPPORTS_AVX512 1
-#endif // #if __has_include(<avx512vbmi2intrin.h>)
-#endif // #ifdef __has_include
-
-// Visual Studio 2019 and up support AVX-512
-#ifdef _MSC_VER
-#if _MSC_VER >= 1920
-#define CROARING_COMPILER_SUPPORTS_AVX512 1
-#endif // #if _MSC_VER >= 1920
-#endif // #ifdef _MSC_VER
-
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#define CROARING_COMPILER_SUPPORTS_AVX512 0
-#endif // #ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#endif // #ifndef CROARING_COMPILER_SUPPORTS_AVX512
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-enum {
- ROARING_SUPPORTS_AVX2 = 1,
- ROARING_SUPPORTS_AVX512 = 2,
-};
-int croaring_hardware_support(void);
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-#endif // x64
-#endif // ROARING_ISADETECTION_H
-/* end file include/roaring/isadetection.h */
-/* begin file include/roaring/containers/perfparameters.h */
-#ifndef PERFPARAMETERS_H_
-#define PERFPARAMETERS_H_
-
-#include <stdbool.h>
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/**
-During lazy computations, we can transform array containers into bitset
-containers as
-long as we can expect them to have ARRAY_LAZY_LOWERBOUND values.
-*/
-enum { ARRAY_LAZY_LOWERBOUND = 1024 };
-
-/* default initial size of a run container
- setting it to zero delays the malloc.*/
-enum { RUN_DEFAULT_INIT_SIZE = 0 };
-
-/* default initial size of an array container
- setting it to zero delays the malloc */
-enum { ARRAY_DEFAULT_INIT_SIZE = 0 };
-
-/* automatic bitset conversion during lazy or */
-#ifndef LAZY_OR_BITSET_CONVERSION
-#define LAZY_OR_BITSET_CONVERSION true
-#endif
-
-/* automatically attempt to convert a bitset to a full run during lazy
- * evaluation */
-#ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL
-#define LAZY_OR_BITSET_CONVERSION_TO_FULL true
-#endif
-
-/* automatically attempt to convert a bitset to a full run */
-#ifndef OR_BITSET_CONVERSION_TO_FULL
-#define OR_BITSET_CONVERSION_TO_FULL true
-#endif
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif
-/* end file include/roaring/containers/perfparameters.h */
-/* begin file include/roaring/containers/container_defs.h */
-/*
- * container_defs.h
- *
- * Unlike containers.h (which is a file aggregating all the container includes,
- * like array.h, bitset.h, and run.h) this is a file included BY those headers
- * to do things like define the container base class `container_t`.
- */
-
-#ifndef INCLUDE_CONTAINERS_CONTAINER_DEFS_H_
-#define INCLUDE_CONTAINERS_CONTAINER_DEFS_H_
-
-#ifdef __cplusplus
-#include <type_traits> // used by casting helper for compile-time check
-#endif
-
-// The preferences are a separate file to separate out tweakable parameters
-
-#ifdef __cplusplus
-namespace roaring {
-namespace internal { // No extern "C" (contains template)
-#endif
-
-/*
- * Since roaring_array_t's definition is not opaque, the container type is
- * part of the API. If it's not going to be `void*` then it needs a name, and
- * expectations are to prefix C library-exported names with `roaring_` etc.
- *
- * Rather than force the whole codebase to use the name `roaring_container_t`,
- * the few API appearances use the macro ROARING_CONTAINER_T. Those includes
- * are prior to containers.h, so make a short private alias of `container_t`.
- * Then undefine the awkward macro so it's not used any more than it has to be.
- */
-typedef ROARING_CONTAINER_T container_t;
-#undef ROARING_CONTAINER_T
-
-/*
- * See ROARING_CONTAINER_T for notes on using container_t as a base class.
- * This macro helps make the following pattern look nicer:
- *
- * #ifdef __cplusplus
- * struct roaring_array_s : public container_t {
- * #else
- * struct roaring_array_s {
- * #endif
- * int32_t cardinality;
- * int32_t capacity;
- * uint16_t *array;
- * }
- */
-#if defined(__cplusplus)
-#define STRUCT_CONTAINER(name) struct name : public container_t /* { ... } */
-#else
-#define STRUCT_CONTAINER(name) struct name /* { ... } */
-#endif
-
-/**
- * Since container_t* is not void* in C++, "dangerous" casts are not needed to
- * downcast; only a static_cast<> is needed. Define a macro for static casting
- * which helps make casts more visible, and catches problems at compile-time
- * when building the C sources in C++ mode:
- *
- * void some_func(container_t **c, ...) { // double pointer, not single
- * array_container_t *ac1 = (array_container_t *)(c); // uncaught!!
- *
- * array_container_t *ac2 = CAST(array_container_t *, c) // C++ errors
- * array_container_t *ac3 = CAST_array(c); // shorthand for #2, errors
- * }
- *
- * Trickier to do is a cast from `container**` to `array_container_t**`. This
- * needs a reinterpret_cast<>, which sacrifices safety...so a template is used
- * leveraging <type_traits> to make sure it's legal in the C++ build.
- */
-#ifdef __cplusplus
-#define CAST(type, value) static_cast<type>(value)
-#define movable_CAST(type, value) movable_CAST_HELPER<type>(value)
-
-template <typename PPDerived, typename Base>
-PPDerived movable_CAST_HELPER(Base **ptr_to_ptr) {
- typedef typename std::remove_pointer<PPDerived>::type PDerived;
- typedef typename std::remove_pointer<PDerived>::type Derived;
- static_assert(std::is_base_of<Base, Derived>::value,
- "use movable_CAST() for container_t** => xxx_container_t**");
- return reinterpret_cast<Derived **>(ptr_to_ptr);
-}
-#else
-#define CAST(type, value) ((type)value)
-#define movable_CAST(type, value) ((type)value)
-#endif
-
-// Use for converting e.g. an `array_container_t**` to a `container_t**`
-//
-#define movable_CAST_base(c) movable_CAST(container_t **, c)
-
-#ifdef __cplusplus
-}
-} // namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_CONTAINER_DEFS_H_ */
-/* end file include/roaring/containers/container_defs.h */
-/* begin file include/roaring/array_util.h */
-#ifndef CROARING_ARRAY_UTIL_H
-#define CROARING_ARRAY_UTIL_H
-
-#include <stddef.h> // for size_t
-#include <stdint.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/*
- * Good old binary search.
- * Assumes that array is sorted, has logarithmic complexity.
- * if the result is x, then:
- * if ( x>0 ) you have array[x] = ikey
- * if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that
- * array[-x-1]=ikey) keys the array sorted.
- */
-inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
- uint16_t ikey) {
- int32_t low = 0;
- int32_t high = lenarray - 1;
- while (low <= high) {
- int32_t middleIndex = (low + high) >> 1;
- uint16_t middleValue = array[middleIndex];
- if (middleValue < ikey) {
- low = middleIndex + 1;
- } else if (middleValue > ikey) {
- high = middleIndex - 1;
- } else {
- return middleIndex;
- }
- }
- return -(low + 1);
-}
-
-/**
- * Galloping search
- * Assumes that array is sorted, has logarithmic complexity.
- * if the result is x, then if x = length, you have that all values in array
- * between pos and length are smaller than min. otherwise returns the first
- * index x such that array[x] >= min.
- */
-static inline int32_t advanceUntil(const uint16_t *array, int32_t pos,
- int32_t length, uint16_t min) {
- int32_t lower = pos + 1;
-
- if ((lower >= length) || (array[lower] >= min)) {
- return lower;
- }
-
- int32_t spansize = 1;
-
- while ((lower + spansize < length) && (array[lower + spansize] < min)) {
- spansize <<= 1;
- }
- int32_t upper = (lower + spansize < length) ? lower + spansize : length -
1;
-
- if (array[upper] == min) {
- return upper;
- }
- if (array[upper] < min) {
- // means
- // array
- // has no
- // item
- // >= min
- // pos = array.length;
- return length;
- }
-
- // we know that the next-smallest span was too small
- lower += (spansize >> 1);
-
- int32_t mid = 0;
- while (lower + 1 != upper) {
- mid = (lower + upper) >> 1;
- if (array[mid] == min) {
- return mid;
- } else if (array[mid] < min) {
- lower = mid;
- } else {
- upper = mid;
- }
- }
- return upper;
-}
-
-/**
- * Returns number of elements which are less than ikey.
- * Array elements must be unique and sorted.
- */
-static inline int32_t count_less(const uint16_t *array, int32_t lenarray,
- uint16_t ikey) {
- if (lenarray == 0) return 0;
- int32_t pos = binarySearch(array, lenarray, ikey);
- return pos >= 0 ? pos : -(pos + 1);
-}
-
-/**
- * Returns number of elements which are greater than ikey.
- * Array elements must be unique and sorted.
- */
-static inline int32_t count_greater(const uint16_t *array, int32_t lenarray,
- uint16_t ikey) {
- if (lenarray == 0) return 0;
- int32_t pos = binarySearch(array, lenarray, ikey);
- if (pos >= 0) {
- return lenarray - (pos + 1);
- } else {
- return lenarray - (-pos - 1);
- }
-}
-
-/**
- * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
- * Optimized by D. Lemire on May 3rd 2013
- *
- * C should have capacity greater than the minimum of s_1 and s_b + 8
- * where 8 is sizeof(__m128i)/sizeof(uint16_t).
- */
-int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
- const uint16_t *__restrict__ B, size_t s_b,
- uint16_t *C);
-
-int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a,
- const uint16_t *__restrict__ B, size_t s_b);
-
-/**
- * Take an array container and write it out to a 32-bit array, using base
- * as the offset.
- */
-int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array,
- size_t cardinality, uint32_t
base);
-#if CROARING_COMPILER_SUPPORTS_AVX512
-int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array,
- size_t cardinality, uint32_t base);
-#endif
-/**
- * Compute the cardinality of the intersection using SSE4 instructions
- */
-int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
- size_t s_a,
- const uint16_t *__restrict__ B,
- size_t s_b);
-
-/* Computes the intersection between one small and one large set of uint16_t.
- * Stores the result into buffer and return the number of elements. */
-int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s,
- const uint16_t *largearray, size_t size_l,
- uint16_t *buffer);
-
-/* Computes the size of the intersection between one small and one large set of
- * uint16_t. */
-int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray,
- size_t size_s,
- const uint16_t *largearray,
- size_t size_l);
-
-/* Check whether the size of the intersection between one small and one large
- * set of uint16_t is non-zero. */
-bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t
size_s,
- const uint16_t *largearray,
- size_t size_l);
-/**
- * Generic intersection function.
- */
-int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
- const uint16_t *B, const size_t lenB, uint16_t *out);
-/**
- * Compute the size of the intersection (generic).
- */
-int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
- const uint16_t *B, const size_t lenB);
-
-/**
- * Checking whether the size of the intersection is non-zero.
- */
-bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
- const uint16_t *B, const size_t lenB);
-/**
- * Generic union function.
- */
-size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t
*set_2,
- size_t size_2, uint16_t *buffer);
-
-/**
- * Generic XOR function.
- */
-int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
- const uint16_t *array_2, int32_t card_2, uint16_t *out);
-
-/**
- * Generic difference function (ANDNOT).
- */
-int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
- int length2, uint16_t *a_out);
-
-/**
- * Generic intersection function.
- */
-size_t intersection_uint32(const uint32_t *A, const size_t lenA,
- const uint32_t *B, const size_t lenB, uint32_t
*out);
-
-/**
- * Generic intersection function, returns just the cardinality.
- */
-size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
- const uint32_t *B, const size_t lenB);
-
-/**
- * Generic union function.
- */
-size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t
*set_2,
- size_t size_2, uint32_t *buffer);
-
-/**
- * A fast SSE-based union function.
- */
-uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1,
- const uint16_t *__restrict__ set_2, uint32_t size_2,
- uint16_t *__restrict__ buffer);
-/**
- * A fast SSE-based XOR function.
- */
-uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
- const uint16_t *__restrict__ array2, uint32_t length2,
- uint16_t *__restrict__ output);
-
-/**
- * A fast SSE-based difference function.
- */
-int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
- const uint16_t *__restrict__ B, size_t s_b,
- uint16_t *C);
-
-/**
- * Generic union function, returns just the cardinality.
- */
-size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
- const uint32_t *set_2, size_t size_2);
-
-/**
- * combines union_uint16 and union_vector16 optimally
- */
-size_t fast_union_uint16(const uint16_t *set_1, size_t size_1,
- const uint16_t *set_2, size_t size_2,
- uint16_t *buffer);
-
-bool memequals(const void *s1, const void *s2, size_t n);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif
-#endif
-/* end file include/roaring/array_util.h */
-/* begin file include/roaring/utilasm.h */
-/*
- * utilasm.h
- *
- */
-
-#ifndef INCLUDE_UTILASM_H_
-#define INCLUDE_UTILASM_H_
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-#endif
-
-#if defined(CROARING_INLINE_ASM)
-#define CROARING_ASMBITMANIPOPTIMIZATION // optimization flag
-
-#define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \
- __asm volatile("shrx %1, %2, %0" \
- : "=r"(destReg) \
- : /* write */ \
- "r"(bitsReg), /* read only */ \
- "r"(srcReg) /* read only */ \
- )
-
-#define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg) \
- __asm volatile("shrx %1, %0, %0" \
- : "+r"(srcReg) \
- : /* read/write */ \
- "r"(bitsReg) /* read only */ \
- )
-
-#define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \
- __asm volatile("shlx %1, %2, %0" \
- : "=r"(destReg) \
- : /* write */ \
- "r"(bitsReg), /* read only */ \
- "r"(srcReg) /* read only */ \
- )
-// set bit at position testBit within testByte to 1 and
-// copy cmovDst to cmovSrc if that bit was previously clear
-#define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \
- __asm volatile( \
- "bts %2, %0\n" \
- "sbb $-1, %1\n" \
- : "+r"(testByte), /* read/write */ \
- "+r"(count) \
- : /* read/write */ \
- "r"(testBit) /* read only */ \
- )
-
-#define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \
- __asm volatile( \
- "btr %2, %0\n" \
- "sbb $0, %1\n" \
- : "+r"(testByte), /* read/write */ \
- "+r"(count) \
- : /* read/write */ \
- "r"(testBit) /* read only */ \
- )
-
-#define ASM_BT64(testByte, testBit, count) \
- __asm volatile( \
- "bt %2,%1\n" \
- "sbb %0,%0" /*could use setb */ \
- : "=r"(count) \
- : /* write */ \
- "r"(testByte), /* read only */ \
- "r"(testBit) /* read only */ \
- )
-
-#endif
-
-#ifdef __cplusplus
-}
-} // extern "C" { namespace roaring {
-#endif
-
-#endif /* INCLUDE_UTILASM_H_ */
-/* end file include/roaring/utilasm.h */
-/* begin file include/roaring/bitset_util.h */
-#ifndef CROARING_BITSET_UTIL_H
-#define CROARING_BITSET_UTIL_H
-
-#include <stdint.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/*
- * Set all bits in indexes [begin,end) to true.
- */
-static inline void bitset_set_range(uint64_t *words, uint32_t start,
- uint32_t end) {
- if (start == end) return;
- uint32_t firstword = start / 64;
- uint32_t endword = (end - 1) / 64;
- if (firstword == endword) {
- words[firstword] |= ((~UINT64_C(0)) << (start % 64)) &
- ((~UINT64_C(0)) >> ((~end + 1) % 64));
- return;
- }
- words[firstword] |= (~UINT64_C(0)) << (start % 64);
- for (uint32_t i = firstword + 1; i < endword; i++) {
- words[i] = ~UINT64_C(0);
- }
- words[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64);
-}
-
-/*
- * Find the cardinality of the bitset in [begin,begin+lenminusone]
- */
-static inline int bitset_lenrange_cardinality(const uint64_t *words,
- uint32_t start,
- uint32_t lenminusone) {
- uint32_t firstword = start / 64;
- uint32_t endword = (start + lenminusone) / 64;
- if (firstword == endword) {
- return roaring_hamming(words[firstword] &
- ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
- << (start % 64));
- }
- int answer =
- roaring_hamming(words[firstword] & ((~UINT64_C(0)) << (start % 64)));
- for (uint32_t i = firstword + 1; i < endword; i++) {
- answer += roaring_hamming(words[i]);
- }
- answer += roaring_hamming(words[endword] &
- (~UINT64_C(0)) >>
- (((~start + 1) - lenminusone - 1) % 64));
- return answer;
-}
-
-/*
- * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0
- */
-static inline bool bitset_lenrange_empty(const uint64_t *words, uint32_t start,
- uint32_t lenminusone) {
- uint32_t firstword = start / 64;
- uint32_t endword = (start + lenminusone) / 64;
- if (firstword == endword) {
- return (words[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) %
64))
- << (start % 64)) == 0;
- }
- if (((words[firstword] & ((~UINT64_C(0)) << (start % 64)))) != 0) {
- return false;
- }
- for (uint32_t i = firstword + 1; i < endword; i++) {
- if (words[i] != 0) {
- return false;
- }
- }
- if ((words[endword] &
- (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) {
- return false;
- }
- return true;
-}
-
-/*
- * Set all bits in indexes [begin,begin+lenminusone] to true.
- */
-static inline void bitset_set_lenrange(uint64_t *words, uint32_t start,
- uint32_t lenminusone) {
- uint32_t firstword = start / 64;
- uint32_t endword = (start + lenminusone) / 64;
- if (firstword == endword) {
- words[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
- << (start % 64);
- return;
- }
- uint64_t temp = words[endword];
- words[firstword] |= (~UINT64_C(0)) << (start % 64);
- for (uint32_t i = firstword + 1; i < endword; i += 2)
- words[i] = words[i + 1] = ~UINT64_C(0);
- words[endword] =
- temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64);
-}
-
-/*
- * Flip all the bits in indexes [begin,end).
- */
-static inline void bitset_flip_range(uint64_t *words, uint32_t start,
- uint32_t end) {
- if (start == end) return;
- uint32_t firstword = start / 64;
- uint32_t endword = (end - 1) / 64;
- words[firstword] ^= ~((~UINT64_C(0)) << (start % 64));
- for (uint32_t i = firstword; i < endword; i++) {
- words[i] = ~words[i];
- }
- words[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64));
-}
-
-/*
- * Set all bits in indexes [begin,end) to false.
- */
-static inline void bitset_reset_range(uint64_t *words, uint32_t start,
- uint32_t end) {
- if (start == end) return;
- uint32_t firstword = start / 64;
- uint32_t endword = (end - 1) / 64;
- if (firstword == endword) {
- words[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) &
- ((~UINT64_C(0)) >> ((~end + 1) % 64)));
- return;
- }
- words[firstword] &= ~((~UINT64_C(0)) << (start % 64));
- for (uint32_t i = firstword + 1; i < endword; i++) {
- words[i] = UINT64_C(0);
- }
- words[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64));
-}
-
-/*
- * Given a bitset containing "length" 64-bit words, write out the position
- * of all the set bits to "out", values start at "base".
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- * set.
- *
- * Returns how many values were actually decoded.
- *
- * This function should only be expected to be faster than
- * bitset_extract_setbits
- * when the density of the bitset is high.
- *
- * This function uses AVX2 decoding.
- */
-size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length,
- uint32_t *out, size_t outcapacity,
- uint32_t base);
-
-size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length,
- uint32_t *out, size_t outcapacity,
- uint32_t base);
-/*
- * Given a bitset containing "length" 64-bit words, write out the position
- * of all the set bits to "out", values start at "base".
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- *set.
- *
- * Returns how many values were actually decoded.
- */
-size_t bitset_extract_setbits(const uint64_t *words, size_t length,
- uint32_t *out, uint32_t base);
-
-/*
- * Given a bitset containing "length" 64-bit words, write out the position
- * of all the set bits to "out" as 16-bit integers, values start at "base" (can
- *be set to zero)
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- *set.
- *
- * Returns how many values were actually decoded.
- *
- * This function should only be expected to be faster than
- *bitset_extract_setbits_uint16
- * when the density of the bitset is high.
- *
- * This function uses SSE decoding.
- */
-size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length,
- uint16_t *out, size_t outcapacity,
- uint16_t base);
-
-size_t bitset_extract_setbits_avx512_uint16(const uint64_t *words,
- size_t length, uint16_t *out,
- size_t outcapacity, uint16_t base);
-
-/*
- * Given a bitset containing "length" 64-bit words, write out the position
- * of all the set bits to "out", values start at "base"
- * (can be set to zero)
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- *set.
- *
- * Returns how many values were actually decoded.
- */
-size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length,
- uint16_t *out, uint16_t base);
-
-/*
- * Given two bitsets containing "length" 64-bit words, write out the position
- * of all the common set bits to "out", values start at "base"
- * (can be set to zero)
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- * set.
- *
- * Returns how many values were actually decoded.
- */
-size_t bitset_extract_intersection_setbits_uint16(
- const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2,
- size_t length, uint16_t *out, uint16_t base);
-
-/*
- * Given a bitset having cardinality card, set all bit values in the list
(there
- * are length of them)
- * and return the updated cardinality. This evidently assumes that the bitset
- * already contained data.
- */
-uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
- const uint16_t *list, uint64_t length);
-/*
- * Given a bitset, set all bit values in the list (there
- * are length of them).
- */
-void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length);
-
-/*
- * Given a bitset having cardinality card, unset all bit values in the list
- * (there are length of them)
- * and return the updated cardinality. This evidently assumes that the bitset
- * already contained data.
- */
-uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t
*list,
- uint64_t length);
-
-/*
- * Given a bitset having cardinality card, toggle all bit values in the list
- * (there are length of them)
- * and return the updated cardinality. This evidently assumes that the bitset
- * already contained data.
- */
-
-uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card,
- const uint16_t *list, uint64_t length);
-
-void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length);
-
-#if CROARING_IS_X64
-/***
- * BEGIN Harley-Seal popcount functions.
- */
-CROARING_TARGET_AVX2
-/**
- * Compute the population count of a 256-bit word
- * This is not especially fast, but it is convenient as part of other
functions.
- */
-static inline __m256i popcount256(__m256i v) {
- const __m256i lookuppos = _mm256_setr_epi8(
- /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
- /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
- /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
- /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4,
-
- /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
- /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
- /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
- /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4);
- const __m256i lookupneg = _mm256_setr_epi8(
- /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
- /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
- /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
- /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4,
-
- /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
- /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
- /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
- /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4);
- const __m256i low_mask = _mm256_set1_epi8(0x0f);
-
- const __m256i lo = _mm256_and_si256(v, low_mask);
- const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
- const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo);
- const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi);
- return _mm256_sad_epu8(popcnt1, popcnt2);
-}
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-/**
- * Simple CSA over 256 bits
- */
-static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b,
- __m256i c) {
- const __m256i u = _mm256_xor_si256(a, b);
- *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
- *l = _mm256_xor_si256(u, c);
-}
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-/**
- * Fast Harley-Seal AVX population count function
- */
-inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data,
- const uint64_t size) {
- __m256i total = _mm256_setzero_si256();
- __m256i ones = _mm256_setzero_si256();
- __m256i twos = _mm256_setzero_si256();
- __m256i fours = _mm256_setzero_si256();
- __m256i eights = _mm256_setzero_si256();
- __m256i sixteens = _mm256_setzero_si256();
- __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
-
- const uint64_t limit = size - size % 16;
- uint64_t i = 0;
-
- for (; i < limit; i += 16) {
- CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i),
- _mm256_lddqu_si256(data + i + 1));
- CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2),
- _mm256_lddqu_si256(data + i + 3));
- CSA(&foursA, &twos, twos, twosA, twosB);
- CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4),
- _mm256_lddqu_si256(data + i + 5));
- CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6),
- _mm256_lddqu_si256(data + i + 7));
- CSA(&foursB, &twos, twos, twosA, twosB);
- CSA(&eightsA, &fours, fours, foursA, foursB);
- CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8),
- _mm256_lddqu_si256(data + i + 9));
- CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10),
- _mm256_lddqu_si256(data + i + 11));
- CSA(&foursA, &twos, twos, twosA, twosB);
- CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12),
- _mm256_lddqu_si256(data + i + 13));
- CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14),
- _mm256_lddqu_si256(data + i + 15));
- CSA(&foursB, &twos, twos, twosA, twosB);
- CSA(&eightsB, &fours, fours, foursA, foursB);
- CSA(&sixteens, &eights, eights, eightsA, eightsB);
-
- total = _mm256_add_epi64(total, popcount256(sixteens));
- }
-
- total = _mm256_slli_epi64(total, 4); // * 16
- total = _mm256_add_epi64(
- total, _mm256_slli_epi64(popcount256(eights), 3)); // += 8 * ...
- total = _mm256_add_epi64(
- total, _mm256_slli_epi64(popcount256(fours), 2)); // += 4 * ...
- total = _mm256_add_epi64(
- total, _mm256_slli_epi64(popcount256(twos), 1)); // += 2 * ...
- total = _mm256_add_epi64(total, popcount256(ones));
- for (; i < size; i++)
- total =
- _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i)));
-
- return (uint64_t)(_mm256_extract_epi64(total, 0)) +
- (uint64_t)(_mm256_extract_epi64(total, 1)) +
- (uint64_t)(_mm256_extract_epi64(total, 2)) +
- (uint64_t)(_mm256_extract_epi64(total, 3));
-}
-CROARING_UNTARGET_AVX2
-
-#define CROARING_AVXPOPCNTFNC(opname, avx_intrinsic)
\
- static inline uint64_t avx2_harley_seal_popcount256_##opname(
\
- const __m256i *data1, const __m256i *data2, const uint64_t size) {
\
- __m256i total = _mm256_setzero_si256();
\
- __m256i ones = _mm256_setzero_si256();
\
- __m256i twos = _mm256_setzero_si256();
\
- __m256i fours = _mm256_setzero_si256();
\
- __m256i eights = _mm256_setzero_si256();
\
- __m256i sixteens = _mm256_setzero_si256();
\
- __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
\
- __m256i A1, A2;
\
- const uint64_t limit = size - size % 16;
\
- uint64_t i = 0;
\
- for (; i < limit; i += 16) {
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
- _mm256_lddqu_si256(data2 + i));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),
\
- _mm256_lddqu_si256(data2 + i + 1));
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),
\
- _mm256_lddqu_si256(data2 + i + 2));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),
\
- _mm256_lddqu_si256(data2 + i + 3));
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursA, &twos, twos, twosA, twosB);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),
\
- _mm256_lddqu_si256(data2 + i + 4));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),
\
- _mm256_lddqu_si256(data2 + i + 5));
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),
\
- _mm256_lddqu_si256(data2 + i + 6));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),
\
- _mm256_lddqu_si256(data2 + i + 7));
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursB, &twos, twos, twosA, twosB);
\
- CSA(&eightsA, &fours, fours, foursA, foursB);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),
\
- _mm256_lddqu_si256(data2 + i + 8));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),
\
- _mm256_lddqu_si256(data2 + i + 9));
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),
\
- _mm256_lddqu_si256(data2 + i + 10));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),
\
- _mm256_lddqu_si256(data2 + i + 11));
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursA, &twos, twos, twosA, twosB);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),
\
- _mm256_lddqu_si256(data2 + i + 12));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),
\
- _mm256_lddqu_si256(data2 + i + 13));
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),
\
- _mm256_lddqu_si256(data2 + i + 14));
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),
\
- _mm256_lddqu_si256(data2 + i + 15));
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursB, &twos, twos, twosA, twosB);
\
- CSA(&eightsB, &fours, fours, foursA, foursB);
\
- CSA(&sixteens, &eights, eights, eightsA, eightsB);
\
- total = _mm256_add_epi64(total, popcount256(sixteens));
\
- }
\
- total = _mm256_slli_epi64(total, 4);
\
- total = _mm256_add_epi64(total,
\
- _mm256_slli_epi64(popcount256(eights), 3));
\
- total =
\
- _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2));
\
- total =
\
- _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));
\
- total = _mm256_add_epi64(total, popcount256(ones));
\
- for (; i < size; i++) {
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
- _mm256_lddqu_si256(data2 + i));
\
- total = _mm256_add_epi64(total, popcount256(A1));
\
- }
\
- return (uint64_t)(_mm256_extract_epi64(total, 0)) +
\
- (uint64_t)(_mm256_extract_epi64(total, 1)) +
\
- (uint64_t)(_mm256_extract_epi64(total, 2)) +
\
- (uint64_t)(_mm256_extract_epi64(total, 3));
\
- }
\
- static inline uint64_t avx2_harley_seal_popcount256andstore_##opname(
\
- const __m256i *__restrict__ data1, const __m256i *__restrict__ data2,
\
- __m256i *__restrict__ out, const uint64_t size) {
\
- __m256i total = _mm256_setzero_si256();
\
- __m256i ones = _mm256_setzero_si256();
\
- __m256i twos = _mm256_setzero_si256();
\
- __m256i fours = _mm256_setzero_si256();
\
- __m256i eights = _mm256_setzero_si256();
\
- __m256i sixteens = _mm256_setzero_si256();
\
- __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
\
- __m256i A1, A2;
\
- const uint64_t limit = size - size % 16;
\
- uint64_t i = 0;
\
- for (; i < limit; i += 16) {
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
- _mm256_lddqu_si256(data2 + i));
\
- _mm256_storeu_si256(out + i, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),
\
- _mm256_lddqu_si256(data2 + i + 1));
\
- _mm256_storeu_si256(out + i + 1, A2);
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),
\
- _mm256_lddqu_si256(data2 + i + 2));
\
- _mm256_storeu_si256(out + i + 2, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),
\
- _mm256_lddqu_si256(data2 + i + 3));
\
- _mm256_storeu_si256(out + i + 3, A2);
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursA, &twos, twos, twosA, twosB);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),
\
- _mm256_lddqu_si256(data2 + i + 4));
\
- _mm256_storeu_si256(out + i + 4, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),
\
- _mm256_lddqu_si256(data2 + i + 5));
\
- _mm256_storeu_si256(out + i + 5, A2);
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),
\
- _mm256_lddqu_si256(data2 + i + 6));
\
- _mm256_storeu_si256(out + i + 6, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),
\
- _mm256_lddqu_si256(data2 + i + 7));
\
- _mm256_storeu_si256(out + i + 7, A2);
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursB, &twos, twos, twosA, twosB);
\
- CSA(&eightsA, &fours, fours, foursA, foursB);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),
\
- _mm256_lddqu_si256(data2 + i + 8));
\
- _mm256_storeu_si256(out + i + 8, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),
\
- _mm256_lddqu_si256(data2 + i + 9));
\
- _mm256_storeu_si256(out + i + 9, A2);
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),
\
- _mm256_lddqu_si256(data2 + i + 10));
\
- _mm256_storeu_si256(out + i + 10, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),
\
- _mm256_lddqu_si256(data2 + i + 11));
\
- _mm256_storeu_si256(out + i + 11, A2);
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursA, &twos, twos, twosA, twosB);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),
\
- _mm256_lddqu_si256(data2 + i + 12));
\
- _mm256_storeu_si256(out + i + 12, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),
\
- _mm256_lddqu_si256(data2 + i + 13));
\
- _mm256_storeu_si256(out + i + 13, A2);
\
- CSA(&twosA, &ones, ones, A1, A2);
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),
\
- _mm256_lddqu_si256(data2 + i + 14));
\
- _mm256_storeu_si256(out + i + 14, A1);
\
- A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),
\
- _mm256_lddqu_si256(data2 + i + 15));
\
- _mm256_storeu_si256(out + i + 15, A2);
\
- CSA(&twosB, &ones, ones, A1, A2);
\
- CSA(&foursB, &twos, twos, twosA, twosB);
\
- CSA(&eightsB, &fours, fours, foursA, foursB);
\
- CSA(&sixteens, &eights, eights, eightsA, eightsB);
\
- total = _mm256_add_epi64(total, popcount256(sixteens));
\
- }
\
- total = _mm256_slli_epi64(total, 4);
\
- total = _mm256_add_epi64(total,
\
- _mm256_slli_epi64(popcount256(eights), 3));
\
- total =
\
- _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2));
\
- total =
\
- _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));
\
- total = _mm256_add_epi64(total, popcount256(ones));
\
- for (; i < size; i++) {
\
- A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),
\
- _mm256_lddqu_si256(data2 + i));
\
- _mm256_storeu_si256(out + i, A1);
\
- total = _mm256_add_epi64(total, popcount256(A1));
\
- }
\
- return (uint64_t)(_mm256_extract_epi64(total, 0)) +
\
- (uint64_t)(_mm256_extract_epi64(total, 1)) +
\
- (uint64_t)(_mm256_extract_epi64(total, 2)) +
\
- (uint64_t)(_mm256_extract_epi64(total, 3));
\
- }
-
-CROARING_TARGET_AVX2
-CROARING_AVXPOPCNTFNC(or, _mm256_or_si256)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVXPOPCNTFNC(union, _mm256_or_si256)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVXPOPCNTFNC(and, _mm256_and_si256)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVXPOPCNTFNC(intersection, _mm256_and_si256)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVXPOPCNTFNC(xor, _mm256_xor_si256)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVXPOPCNTFNC(andnot, _mm256_andnot_si256)
-CROARING_UNTARGET_AVX2
-
-#define VPOPCNT_AND_ADD(ptr, i, accu) \
- const __m512i v##i = _mm512_loadu_si512((const __m512i *)ptr + i); \
- const __m512i p##i = _mm512_popcnt_epi64(v##i); \
- accu = _mm512_add_epi64(accu, p##i);
-
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-static inline uint64_t sum_epu64_256(const __m256i v) {
- return (uint64_t)(_mm256_extract_epi64(v, 0)) +
- (uint64_t)(_mm256_extract_epi64(v, 1)) +
- (uint64_t)(_mm256_extract_epi64(v, 2)) +
- (uint64_t)(_mm256_extract_epi64(v, 3));
-}
-
-static inline uint64_t simd_sum_epu64(const __m512i v) {
- __m256i lo = _mm512_extracti64x4_epi64(v, 0);
- __m256i hi = _mm512_extracti64x4_epi64(v, 1);
-
- return sum_epu64_256(lo) + sum_epu64_256(hi);
-}
-
-static inline uint64_t avx512_vpopcount(const __m512i *data,
- const uint64_t size) {
- const uint64_t limit = size - size % 4;
- __m512i total = _mm512_setzero_si512();
- uint64_t i = 0;
-
- for (; i < limit; i += 4) {
- VPOPCNT_AND_ADD(data + i, 0, total);
- VPOPCNT_AND_ADD(data + i, 1, total);
- VPOPCNT_AND_ADD(data + i, 2, total);
- VPOPCNT_AND_ADD(data + i, 3, total);
- }
-
- for (; i < size; i++) {
- total = _mm512_add_epi64(
- total, _mm512_popcnt_epi64(_mm512_loadu_si512(data + i)));
- }
-
- return simd_sum_epu64(total);
-}
-CROARING_UNTARGET_AVX512
-#endif
-
-#define CROARING_AVXPOPCNTFNC512(opname, avx_intrinsic) \
- static inline uint64_t avx512_harley_seal_popcount512_##opname( \
- const __m512i *data1, const __m512i *data2, const uint64_t size) { \
- __m512i total = _mm512_setzero_si512(); \
- const uint64_t limit = size - size % 4; \
- uint64_t i = 0; \
- for (; i < limit; i += 4) { \
- __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
- _mm512_loadu_si512(data2 + i)); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1)); \
- __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1), \
- _mm512_loadu_si512(data2 + i + 1)); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2)); \
- __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2), \
- _mm512_loadu_si512(data2 + i + 2)); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3)); \
- __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3), \
- _mm512_loadu_si512(data2 + i + 3)); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4)); \
- } \
- for (; i < size; i++) { \
- __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
- _mm512_loadu_si512(data2 + i)); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a)); \
- } \
- return simd_sum_epu64(total); \
- } \
- static inline uint64_t avx512_harley_seal_popcount512andstore_##opname( \
- const __m512i *__restrict__ data1, const __m512i *__restrict__ data2, \
- __m512i *__restrict__ out, const uint64_t size) { \
- __m512i total = _mm512_setzero_si512(); \
- const uint64_t limit = size - size % 4; \
- uint64_t i = 0; \
- for (; i < limit; i += 4) { \
- __m512i a1 = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
- _mm512_loadu_si512(data2 + i)); \
- _mm512_storeu_si512(out + i, a1); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a1)); \
- __m512i a2 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 1), \
- _mm512_loadu_si512(data2 + i + 1)); \
- _mm512_storeu_si512(out + i + 1, a2); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a2)); \
- __m512i a3 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 2), \
- _mm512_loadu_si512(data2 + i + 2)); \
- _mm512_storeu_si512(out + i + 2, a3); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a3)); \
- __m512i a4 = avx_intrinsic(_mm512_loadu_si512(data1 + i + 3), \
- _mm512_loadu_si512(data2 + i + 3)); \
- _mm512_storeu_si512(out + i + 3, a4); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a4)); \
- } \
- for (; i < size; i++) { \
- __m512i a = avx_intrinsic(_mm512_loadu_si512(data1 + i), \
- _mm512_loadu_si512(data2 + i)); \
- _mm512_storeu_si512(out + i, a); \
- total = _mm512_add_epi64(total, _mm512_popcnt_epi64(a)); \
- } \
- return simd_sum_epu64(total); \
- }
-
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVXPOPCNTFNC512(or, _mm512_or_si512)
-CROARING_AVXPOPCNTFNC512(union, _mm512_or_si512)
-CROARING_AVXPOPCNTFNC512(and, _mm512_and_si512)
-CROARING_AVXPOPCNTFNC512(intersection, _mm512_and_si512)
-CROARING_AVXPOPCNTFNC512(xor, _mm512_xor_si512)
-CROARING_AVXPOPCNTFNC512(andnot, _mm512_andnot_si512)
-CROARING_UNTARGET_AVX512
-#endif
-/***
- * END Harley-Seal popcount functions.
- */
-
-#endif // CROARING_IS_X64
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif
-#endif
-/* end file include/roaring/bitset_util.h */
-/* begin file include/roaring/containers/array.h */
-/*
- * array.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_ARRAY_H_
-#define INCLUDE_CONTAINERS_ARRAY_H_
-
-#include <string.h>
-
-
-// Include other headers after roaring_types.h
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-
-// Note: in pure C++ code, you should avoid putting `using` in header files
-using api::roaring_iterator;
-using api::roaring_iterator64;
-
-namespace internal {
-#endif
-
-/* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */
-enum { DEFAULT_MAX_SIZE = 4096 };
-
-/* struct array_container - sparse representation of a bitmap
- *
- * @cardinality: number of indices in `array` (and the bitmap)
- * @capacity: allocated size of `array`
- * @array: sorted list of integers
- */
-STRUCT_CONTAINER(array_container_s) {
- int32_t cardinality;
- int32_t capacity;
- uint16_t *array;
-};
-
-typedef struct array_container_s array_container_t;
-
-#define CAST_array(c) CAST(array_container_t *, c) // safer downcast
-#define const_CAST_array(c) CAST(const array_container_t *, c)
-#define movable_CAST_array(c) movable_CAST(array_container_t **, c)
-
-/* Create a new array with default. Return NULL in case of failure. See also
- * array_container_create_given_capacity. */
-array_container_t *array_container_create(void);
-
-/* Create a new array with a specified capacity size. Return NULL in case of
- * failure. */
-array_container_t *array_container_create_given_capacity(int32_t size);
-
-/* Create a new array containing all values in [min,max). */
-array_container_t *array_container_create_range(uint32_t min, uint32_t max);
-
-/*
- * Shrink the capacity to the actual size, return the number of bytes saved.
- */
-int array_container_shrink_to_fit(array_container_t *src);
-
-/* Free memory owned by `array'. */
-void array_container_free(array_container_t *array);
-
-/* Duplicate container */
-array_container_t *array_container_clone(const array_container_t *src);
-
-/* Get the cardinality of `array'. */
-ALLOW_UNALIGNED
-static inline int array_container_cardinality(const array_container_t *array) {
- return array->cardinality;
-}
-
-static inline bool array_container_nonzero_cardinality(
- const array_container_t *array) {
- return array->cardinality > 0;
-}
-
-/* Copy one container into another. We assume that they are distinct. */
-void array_container_copy(const array_container_t *src, array_container_t
*dst);
-
-/* Add all the values in [min,max) (included) at a distance k*step from min.
- The container must have a size less or equal to DEFAULT_MAX_SIZE after this
- addition. */
-void array_container_add_from_range(array_container_t *arr, uint32_t min,
- uint32_t max, uint16_t step);
-
-static inline bool array_container_empty(const array_container_t *array) {
- return array->cardinality == 0;
-}
-
-/* check whether the cardinality is equal to the capacity (this does not mean
- * that it contains 1<<16 elements) */
-static inline bool array_container_full(const array_container_t *array) {
- return array->cardinality == array->capacity;
-}
-
-/* Compute the union of `src_1' and `src_2' and write the result to `dst'
- * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
-void array_container_union(const array_container_t *src_1,
- const array_container_t *src_2,
- array_container_t *dst);
-
-/* symmetric difference, see array_container_union */
-void array_container_xor(const array_container_t *array_1,
- const array_container_t *array_2,
- array_container_t *out);
-
-/* Computes the intersection of src_1 and src_2 and write the result to
- * dst. It is assumed that dst is distinct from both src_1 and src_2. */
-void array_container_intersection(const array_container_t *src_1,
- const array_container_t *src_2,
- array_container_t *dst);
-
-/* Check whether src_1 and src_2 intersect. */
-bool array_container_intersect(const array_container_t *src_1,
- const array_container_t *src_2);
-
-/* computers the size of the intersection between two arrays.
- */
-int array_container_intersection_cardinality(const array_container_t *src_1,
- const array_container_t *src_2);
-
-/* computes the intersection of array1 and array2 and write the result to
- * array1.
- * */
-void array_container_intersection_inplace(array_container_t *src_1,
- const array_container_t *src_2);
-
-/*
- * Write out the 16-bit integers contained in this container as a list of
32-bit
- * integers using base
- * as the starting value (it might be expected that base has zeros in its 16
- * least significant bits).
- * The function returns the number of values written.
- * The caller is responsible for allocating enough memory in out.
- */
-int array_container_to_uint32_array(void *vout, const array_container_t *cont,
- uint32_t base);
-
-/* Compute the number of runs */
-int32_t array_container_number_of_runs(const array_container_t *ac);
-
-/*
- * Print this container using printf (useful for debugging).
- */
-void array_container_printf(const array_container_t *v);
-
-/*
- * Print this container using printf as a comma-separated list of 32-bit
- * integers starting at base.
- */
-void array_container_printf_as_uint32_array(const array_container_t *v,
- uint32_t base);
-
-bool array_container_validate(const array_container_t *v, const char **reason);
-
-/**
- * Return the serialized size in bytes of a container having cardinality
"card".
- */
-static inline int32_t array_container_serialized_size_in_bytes(int32_t card) {
- return card * 2 + 2;
-}
-
-/**
- * Increase capacity to at least min.
- * Whether the existing data needs to be copied over depends on the "preserve"
- * parameter. If preserve is false, then the new content will be uninitialized,
- * otherwise the old content is copied.
- */
-void array_container_grow(array_container_t *container, int32_t min,
- bool preserve);
-
-bool array_container_iterate(const array_container_t *cont, uint32_t base,
- roaring_iterator iterator, void *ptr);
-bool array_container_iterate64(const array_container_t *cont, uint32_t base,
- roaring_iterator64 iterator, uint64_t high_bits,
- void *ptr);
-
-/**
- * Writes the underlying array to buf, outputs how many bytes were written.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes written should be
- * array_container_size_in_bytes(container).
- *
- */
-int32_t array_container_write(const array_container_t *container, char *buf);
-/**
- * Reads the instance from buf, outputs how many bytes were read.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes read should be array_container_size_in_bytes(container).
- * You need to provide the (known) cardinality.
- */
-int32_t array_container_read(int32_t cardinality, array_container_t *container,
- const char *buf);
-
-/**
- * Return the serialized size in bytes of a container (see
- * bitset_container_write)
- * This is meant to be compatible with the Java and Go versions of Roaring and
- * assumes
- * that the cardinality of the container is already known.
- *
- */
-ALLOW_UNALIGNED
-static inline int32_t array_container_size_in_bytes(
- const array_container_t *container) {
- return container->cardinality * sizeof(uint16_t);
-}
-
-/**
- * Return true if the two arrays have the same content.
- */
-ALLOW_UNALIGNED
-static inline bool array_container_equals(const array_container_t *container1,
- const array_container_t *container2)
{
- if (container1->cardinality != container2->cardinality) {
- return false;
- }
- return memequals(container1->array, container2->array,
- container1->cardinality * 2);
-}
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool array_container_is_subset(const array_container_t *container1,
- const array_container_t *container2);
-
-/**
- * If the element of given rank is in this container, supposing that the first
- * element has rank start_rank, then the function returns true and sets element
- * accordingly.
- * Otherwise, it returns false and update start_rank.
- */
-static inline bool array_container_select(const array_container_t *container,
- uint32_t *start_rank, uint32_t rank,
- uint32_t *element) {
- int card = array_container_cardinality(container);
- if (*start_rank + card <= rank) {
- *start_rank += card;
- return false;
- } else {
- *element = container->array[rank - *start_rank];
- return true;
- }
-}
-
-/* Computes the difference of array1 and array2 and write the result
- * to array out.
- * Array out does not need to be distinct from array_1
- */
-void array_container_andnot(const array_container_t *array_1,
- const array_container_t *array_2,
- array_container_t *out);
-
-/* Append x to the set. Assumes that the value is larger than any preceding
- * values. */
-static inline void array_container_append(array_container_t *arr,
- uint16_t pos) {
- const int32_t capacity = arr->capacity;
-
- if (array_container_full(arr)) {
- array_container_grow(arr, capacity + 1, true);
- }
-
- arr->array[arr->cardinality++] = pos;
-}
-
-/**
- * Add value to the set if final cardinality doesn't exceed max_cardinality.
- * Return code:
- * 1 -- value was added
- * 0 -- value was already present
- * -1 -- value was not added because cardinality would exceed max_cardinality
- */
-static inline int array_container_try_add(array_container_t *arr,
- uint16_t value,
- int32_t max_cardinality) {
- const int32_t cardinality = arr->cardinality;
-
- // best case, we can append.
- if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) &&
- cardinality < max_cardinality) {
- array_container_append(arr, value);
- return 1;
- }
-
- const int32_t loc = binarySearch(arr->array, cardinality, value);
-
- if (loc >= 0) {
- return 0;
- } else if (cardinality < max_cardinality) {
- if (array_container_full(arr)) {
- array_container_grow(arr, arr->capacity + 1, true);
- }
- const int32_t insert_idx = -loc - 1;
- memmove(arr->array + insert_idx + 1, arr->array + insert_idx,
- (cardinality - insert_idx) * sizeof(uint16_t));
- arr->array[insert_idx] = value;
- arr->cardinality++;
- return 1;
- } else {
- return -1;
- }
-}
-
-/* Add value to the set. Returns true if x was not already present. */
-static inline bool array_container_add(array_container_t *arr, uint16_t value)
{
- return array_container_try_add(arr, value, INT32_MAX) == 1;
-}
-
-/* Remove x from the set. Returns true if x was present. */
-static inline bool array_container_remove(array_container_t *arr,
- uint16_t pos) {
- const int32_t idx = binarySearch(arr->array, arr->cardinality, pos);
- const bool is_present = idx >= 0;
- if (is_present) {
- memmove(arr->array + idx, arr->array + idx + 1,
- (arr->cardinality - idx - 1) * sizeof(uint16_t));
- arr->cardinality--;
- }
-
- return is_present;
-}
-
-/* Check whether x is present. */
-inline bool array_container_contains(const array_container_t *arr,
- uint16_t pos) {
- // return binarySearch(arr->array, arr->cardinality, pos) >= 0;
- // binary search with fallback to linear search for short ranges
- int32_t low = 0;
- const uint16_t *carr = (const uint16_t *)arr->array;
- int32_t high = arr->cardinality - 1;
- // while (high - low >= 0) {
- while (high >= low + 16) {
- int32_t middleIndex = (low + high) >> 1;
- uint16_t middleValue = carr[middleIndex];
- if (middleValue < pos) {
- low = middleIndex + 1;
- } else if (middleValue > pos) {
- high = middleIndex - 1;
- } else {
- return true;
- }
- }
-
- for (int i = low; i <= high; i++) {
- uint16_t v = carr[i];
- if (v == pos) {
- return true;
- }
- if (v > pos) return false;
- }
- return false;
-}
-
-void array_container_offset(const array_container_t *c, container_t **loc,
- container_t **hic, uint16_t offset);
-
-//* Check whether a range of values from range_start (included) to range_end
-//(excluded) is present. */
-static inline bool array_container_contains_range(const array_container_t *arr,
- uint32_t range_start,
- uint32_t range_end) {
- const int32_t range_count = range_end - range_start;
- const uint16_t rs_included = (uint16_t)range_start;
- const uint16_t re_included = (uint16_t)(range_end - 1);
-
- // Empty range is always included
- if (range_count <= 0) {
- return true;
- }
- if (range_count > arr->cardinality) {
- return false;
- }
-
- const int32_t start =
- binarySearch(arr->array, arr->cardinality, rs_included);
- // If this sorted array contains all items in the range:
- // * the start item must be found
- // * the last item in range range_count must exist, and be the expected end
- // value
- return (start >= 0) && (arr->cardinality >= start + range_count) &&
- (arr->array[start + range_count - 1] == re_included);
-}
-
-/* Returns the smallest value (assumes not empty) */
-inline uint16_t array_container_minimum(const array_container_t *arr) {
- if (arr->cardinality == 0) return 0;
- return arr->array[0];
-}
-
-/* Returns the largest value (assumes not empty) */
-inline uint16_t array_container_maximum(const array_container_t *arr) {
- if (arr->cardinality == 0) return 0;
- return arr->array[arr->cardinality - 1];
-}
-
-/* Returns the number of values equal or smaller than x */
-inline int array_container_rank(const array_container_t *arr, uint16_t x) {
- const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
- const bool is_present = idx >= 0;
- if (is_present) {
- return idx + 1;
- } else {
- return -idx - 1;
- }
-}
-
-/* bulk version of array_container_rank(); return number of consumed elements
- */
-inline uint32_t array_container_rank_many(const array_container_t *arr,
- uint64_t start_rank,
- const uint32_t *begin,
- const uint32_t *end, uint64_t *ans) {
- const uint16_t high = (uint16_t)((*begin) >> 16);
- uint32_t pos = 0;
- const uint32_t *iter = begin;
- for (; iter != end; iter++) {
- uint32_t x = *iter;
- uint16_t xhigh = (uint16_t)(x >> 16);
- if (xhigh != high) return iter - begin; // stop at next container
-
- const int32_t idx =
- binarySearch(arr->array + pos, arr->cardinality - pos,
(uint16_t)x);
- const bool is_present = idx >= 0;
- if (is_present) {
- *(ans++) = start_rank + pos + (idx + 1);
- pos = idx + 1;
- } else {
- *(ans++) = start_rank + pos + (-idx - 1);
- }
- }
- return iter - begin;
-}
-
-/* Returns the index of x , if not exsist return -1 */
-inline int array_container_get_index(const array_container_t *arr, uint16_t x)
{
- const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
- const bool is_present = idx >= 0;
- if (is_present) {
- return idx;
- } else {
- return -1;
- }
-}
-
-/* Returns the index of the first value equal or larger than x, or -1 */
-inline int array_container_index_equalorlarger(const array_container_t *arr,
- uint16_t x) {
- const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
- const bool is_present = idx >= 0;
- if (is_present) {
- return idx;
- } else {
- int32_t candidate = -idx - 1;
- if (candidate < arr->cardinality) return candidate;
- return -1;
- }
-}
-
-/*
- * Adds all values in range [min,max] using hint:
- * nvals_less is the number of array values less than $min
- * nvals_greater is the number of array values greater than $max
- */
-static inline void array_container_add_range_nvals(array_container_t *array,
- uint32_t min, uint32_t max,
- int32_t nvals_less,
- int32_t nvals_greater) {
- int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater;
- if (union_cardinality > array->capacity) {
- array_container_grow(array, union_cardinality, true);
- }
- memmove(&(array->array[union_cardinality - nvals_greater]),
- &(array->array[array->cardinality - nvals_greater]),
- nvals_greater * sizeof(uint16_t));
- for (uint32_t i = 0; i <= max - min; i++) {
- array->array[nvals_less + i] = (uint16_t)(min + i);
- }
- array->cardinality = union_cardinality;
-}
-
-/**
- * Adds all values in range [min,max]. This function is currently unused
- * and left as a documentation.
- */
-/*static inline void array_container_add_range(array_container_t *array,
- uint32_t min, uint32_t max) {
- int32_t nvals_greater = count_greater(array->array, array->cardinality,
-max); int32_t nvals_less = count_less(array->array, array->cardinality -
-nvals_greater, min); array_container_add_range_nvals(array, min, max,
-nvals_less, nvals_greater);
-}*/
-
-/*
- * Removes all elements array[pos] .. array[pos+count-1]
- */
-static inline void array_container_remove_range(array_container_t *array,
- uint32_t pos, uint32_t count) {
- if (count != 0) {
- memmove(&(array->array[pos]), &(array->array[pos + count]),
- (array->cardinality - pos - count) * sizeof(uint16_t));
- array->cardinality -= count;
- }
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_ARRAY_H_ */
-/* end file include/roaring/containers/array.h */
-/* begin file include/roaring/containers/bitset.h */
-/*
- * bitset.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_BITSET_H_
-#define INCLUDE_CONTAINERS_BITSET_H_
-
-#include <stdbool.h>
-#include <stdint.h>
-
-
-// Include other headers after roaring_types.h
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-
-// Note: in pure C++ code, you should avoid putting `using` in header files
-using api::roaring_iterator;
-using api::roaring_iterator64;
-
-namespace internal {
-#endif
-
-enum {
- BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64,
- BITSET_UNKNOWN_CARDINALITY = -1
-};
-
-STRUCT_CONTAINER(bitset_container_s) {
- int32_t cardinality;
- uint64_t *words;
-};
-
-typedef struct bitset_container_s bitset_container_t;
-
-#define CAST_bitset(c) CAST(bitset_container_t *, c) // safer downcast
-#define const_CAST_bitset(c) CAST(const bitset_container_t *, c)
-#define movable_CAST_bitset(c) movable_CAST(bitset_container_t **, c)
-
-/* Create a new bitset. Return NULL in case of failure. */
-bitset_container_t *bitset_container_create(void);
-
-/* Free memory. */
-void bitset_container_free(bitset_container_t *bitset);
-
-/* Clear bitset (sets bits to 0). */
-void bitset_container_clear(bitset_container_t *bitset);
-
-/* Set all bits to 1. */
-void bitset_container_set_all(bitset_container_t *bitset);
-
-/* Duplicate bitset */
-bitset_container_t *bitset_container_clone(const bitset_container_t *src);
-
-/* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow
- * and
- * should not be used in performance-sensitive code. Ever. */
-void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
- uint32_t end);
-
-#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(__AVX2__)
-/* Set the ith bit. */
-static inline void bitset_container_set(bitset_container_t *bitset,
- uint16_t pos) {
- uint64_t shift = 6;
- uint64_t offset;
- uint64_t p = pos;
- ASM_SHIFT_RIGHT(p, shift, offset);
- uint64_t load = bitset->words[offset];
- ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
- bitset->words[offset] = load;
-}
-
-/* Unset the ith bit. Currently unused. Could be used for optimization. */
-/*static inline void bitset_container_unset(bitset_container_t *bitset,
- uint16_t pos) {
- uint64_t shift = 6;
- uint64_t offset;
- uint64_t p = pos;
- ASM_SHIFT_RIGHT(p, shift, offset);
- uint64_t load = bitset->words[offset];
- ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
- bitset->words[offset] = load;
-}*/
-
-/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be
slower
- * than bitset_container_set. */
-static inline bool bitset_container_add(bitset_container_t *bitset,
- uint16_t pos) {
- uint64_t shift = 6;
- uint64_t offset;
- uint64_t p = pos;
- ASM_SHIFT_RIGHT(p, shift, offset);
- uint64_t load = bitset->words[offset];
- // could be possibly slightly further optimized
- const int32_t oldcard = bitset->cardinality;
- ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
- bitset->words[offset] = load;
- return bitset->cardinality - oldcard;
-}
-
-/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be
- * slower than bitset_container_unset. */
-static inline bool bitset_container_remove(bitset_container_t *bitset,
- uint16_t pos) {
- uint64_t shift = 6;
- uint64_t offset;
- uint64_t p = pos;
- ASM_SHIFT_RIGHT(p, shift, offset);
- uint64_t load = bitset->words[offset];
- // could be possibly slightly further optimized
- const int32_t oldcard = bitset->cardinality;
- ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
- bitset->words[offset] = load;
- return oldcard - bitset->cardinality;
-}
-
-/* Get the value of the ith bit. */
-inline bool bitset_container_get(const bitset_container_t *bitset,
- uint16_t pos) {
- uint64_t word = bitset->words[pos >> 6];
- const uint64_t p = pos;
- ASM_INPLACESHIFT_RIGHT(word, p);
- return word & 1;
-}
-
-#else
-
-/* Set the ith bit. */
-static inline void bitset_container_set(bitset_container_t *bitset,
- uint16_t pos) {
- const uint64_t old_word = bitset->words[pos >> 6];
- const int index = pos & 63;
- const uint64_t new_word = old_word | (UINT64_C(1) << index);
- bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index);
- bitset->words[pos >> 6] = new_word;
-}
-
-/* Unset the ith bit. Currently unused. */
-/*static inline void bitset_container_unset(bitset_container_t *bitset,
- uint16_t pos) {
- const uint64_t old_word = bitset->words[pos >> 6];
- const int index = pos & 63;
- const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
- bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index);
- bitset->words[pos >> 6] = new_word;
-}*/
-
-/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be
slower
- * than bitset_container_set. */
-static inline bool bitset_container_add(bitset_container_t *bitset,
- uint16_t pos) {
- const uint64_t old_word = bitset->words[pos >> 6];
- const int index = pos & 63;
- const uint64_t new_word = old_word | (UINT64_C(1) << index);
- const uint64_t increment = (old_word ^ new_word) >> index;
- bitset->cardinality += (uint32_t)increment;
- bitset->words[pos >> 6] = new_word;
- return increment > 0;
-}
-
-/* Remove `pos' from `bitset'. Returns true if `pos' was present. Might be
- * slower than bitset_container_unset. */
-static inline bool bitset_container_remove(bitset_container_t *bitset,
- uint16_t pos) {
- const uint64_t old_word = bitset->words[pos >> 6];
- const int index = pos & 63;
- const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
- const uint64_t increment = (old_word ^ new_word) >> index;
- bitset->cardinality -= (uint32_t)increment;
- bitset->words[pos >> 6] = new_word;
- return increment > 0;
-}
-
-/* Get the value of the ith bit. */
-inline bool bitset_container_get(const bitset_container_t *bitset,
- uint16_t pos) {
- const uint64_t word = bitset->words[pos >> 6];
- return (word >> (pos & 63)) & 1;
-}
-
-#endif
-
-/*
- * Check if all bits are set in a range of positions from pos_start (included)
- * to pos_end (excluded).
- */
-static inline bool bitset_container_get_range(const bitset_container_t *bitset,
- uint32_t pos_start,
- uint32_t pos_end) {
- const uint32_t start = pos_start >> 6;
- const uint32_t end = pos_end >> 6;
-
- const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1);
- const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1;
-
- if (start == end)
- return ((bitset->words[end] & first & last) == (first & last));
- if ((bitset->words[start] & first) != first) return false;
-
- if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) &&
- ((bitset->words[end] & last) != last)) {
- return false;
- }
-
- for (uint32_t i = start + 1;
- (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i) {
- if (bitset->words[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false;
- }
-
- return true;
-}
-
-/* Check whether `bitset' is present in `array'. Calls bitset_container_get.
*/
-inline bool bitset_container_contains(const bitset_container_t *bitset,
- uint16_t pos) {
- return bitset_container_get(bitset, pos);
-}
-
-/*
- * Check whether a range of bits from position `pos_start' (included) to
- * `pos_end' (excluded) is present in `bitset'. Calls
bitset_container_get_all.
- */
-static inline bool bitset_container_contains_range(
- const bitset_container_t *bitset, uint32_t pos_start, uint32_t pos_end) {
- return bitset_container_get_range(bitset, pos_start, pos_end);
-}
-
-/* Get the number of bits set */
-ALLOW_UNALIGNED
-static inline int bitset_container_cardinality(
- const bitset_container_t *bitset) {
- return bitset->cardinality;
-}
-
-/* Copy one container into another. We assume that they are distinct. */
-void bitset_container_copy(const bitset_container_t *source,
- bitset_container_t *dest);
-
-/* Add all the values [min,max) at a distance k*step from min: min,
- * min+step,.... */
-void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
- uint32_t max, uint16_t step);
-
-/* Get the number of bits set (force computation). This does not modify bitset.
- * To update the cardinality, you should do
- * bitset->cardinality = bitset_container_compute_cardinality(bitset).*/
-int bitset_container_compute_cardinality(const bitset_container_t *bitset);
-
-/* Check whether this bitset is empty,
- * it never modifies the bitset struct. */
-static inline bool bitset_container_empty(const bitset_container_t *bitset) {
- if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) {
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
- if ((bitset->words[i]) != 0) return false;
- }
- return true;
- }
- return bitset->cardinality == 0;
-}
-
-/* Get whether there is at least one bit set (see bitset_container_empty for
- the reverse), the bitset is never modified */
-static inline bool bitset_container_const_nonzero_cardinality(
- const bitset_container_t *bitset) {
- return !bitset_container_empty(bitset);
-}
-
-/*
- * Check whether the two bitsets intersect
- */
-bool bitset_container_intersect(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the
- * cardinality. */
-int bitset_container_or(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the union of bitsets `src_1' and `src_2' and return the
cardinality.
- */
-int bitset_container_or_justcard(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the
- * cardinality. Same as bitset_container_or. */
-int bitset_container_union(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the union of bitsets `src_1' and `src_2' and return the
- * cardinality. Same as bitset_container_or_justcard. */
-int bitset_container_union_justcard(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does
- * not update the cardinality. Provided to optimize chained operations. */
-int bitset_container_union_nocard(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not
- * update the cardinality. Provided to optimize chained operations. */
-int bitset_container_or_nocard(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
- * return the cardinality. */
-int bitset_container_and(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the intersection of bitsets `src_1' and `src_2' and return the
- * cardinality. */
-int bitset_container_and_justcard(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
- * return the cardinality. Same as bitset_container_and. */
-int bitset_container_intersection(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the intersection of bitsets `src_1' and `src_2' and return the
- * cardinality. Same as bitset_container_and_justcard. */
-int bitset_container_intersection_justcard(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but
does
- * not update the cardinality. Provided to optimize chained operations. */
-int bitset_container_intersection_nocard(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but
does
- * not update the cardinality. Provided to optimize chained operations. */
-int bitset_container_and_nocard(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and
- * return the cardinality. */
-int bitset_container_xor(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the exclusive or of bitsets `src_1' and `src_2' and return the
- * cardinality. */
-int bitset_container_xor_justcard(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but
does
- * not update the cardinality. Provided to optimize chained operations. */
-int bitset_container_xor_nocard(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return
the
- * cardinality. */
-int bitset_container_andnot(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Computes the and not of bitsets `src_1' and `src_2' and return the
- * cardinality. */
-int bitset_container_andnot_justcard(const bitset_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does
- * not update the cardinality. Provided to optimize chained operations. */
-int bitset_container_andnot_nocard(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-void bitset_container_offset(const bitset_container_t *c, container_t **loc,
- container_t **hic, uint16_t offset);
-/*
- * Write out the 16-bit integers contained in this container as a list of
32-bit
- * integers using base
- * as the starting value (it might be expected that base has zeros in its 16
- * least significant bits).
- * The function returns the number of values written.
- * The caller is responsible for allocating enough memory in out.
- * The out pointer should point to enough memory (the cardinality times 32
- * bits).
- */
-int bitset_container_to_uint32_array(uint32_t *out,
- const bitset_container_t *bc,
- uint32_t base);
-
-/*
- * Print this container using printf (useful for debugging).
- */
-void bitset_container_printf(const bitset_container_t *v);
-
-/*
- * Print this container using printf as a comma-separated list of 32-bit
- * integers starting at base.
- */
-void bitset_container_printf_as_uint32_array(const bitset_container_t *v,
- uint32_t base);
-
-bool bitset_container_validate(const bitset_container_t *v,
- const char **reason);
-
-/**
- * Return the serialized size in bytes of a container.
- */
-static inline int32_t bitset_container_serialized_size_in_bytes(void) {
- return BITSET_CONTAINER_SIZE_IN_WORDS * 8;
-}
-
-/**
- * Return the the number of runs.
- */
-int bitset_container_number_of_runs(bitset_container_t *bc);
-
-bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base,
- roaring_iterator iterator, void *ptr);
-bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base,
- roaring_iterator64 iterator, uint64_t
high_bits,
- void *ptr);
-
-/**
- * Writes the underlying array to buf, outputs how many bytes were written.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes written should be
- * bitset_container_size_in_bytes(container).
- */
-int32_t bitset_container_write(const bitset_container_t *container, char *buf);
-
-/**
- * Reads the instance from buf, outputs how many bytes were read.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes read should be
bitset_container_size_in_bytes(container).
- * You need to provide the (known) cardinality.
- */
-int32_t bitset_container_read(int32_t cardinality,
- bitset_container_t *container, const char *buf);
-/**
- * Return the serialized size in bytes of a container (see
- * bitset_container_write).
- * This is meant to be compatible with the Java and Go versions of Roaring and
- * assumes
- * that the cardinality of the container is already known or can be computed.
- */
-static inline int32_t bitset_container_size_in_bytes(
- const bitset_container_t *container) {
- (void)container;
- return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
-}
-
-/**
- * Return true if the two containers have the same content.
- */
-bool bitset_container_equals(const bitset_container_t *container1,
- const bitset_container_t *container2);
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool bitset_container_is_subset(const bitset_container_t *container1,
- const bitset_container_t *container2);
-
-/**
- * If the element of given rank is in this container, supposing that the first
- * element has rank start_rank, then the function returns true and sets element
- * accordingly.
- * Otherwise, it returns false and update start_rank.
- */
-bool bitset_container_select(const bitset_container_t *container,
- uint32_t *start_rank, uint32_t rank,
- uint32_t *element);
-
-/* Returns the smallest value (assumes not empty) */
-uint16_t bitset_container_minimum(const bitset_container_t *container);
-
-/* Returns the largest value (assumes not empty) */
-uint16_t bitset_container_maximum(const bitset_container_t *container);
-
-/* Returns the number of values equal or smaller than x */
-int bitset_container_rank(const bitset_container_t *container, uint16_t x);
-
-/* bulk version of bitset_container_rank(); return number of consumed elements
- */
-uint32_t bitset_container_rank_many(const bitset_container_t *container,
- uint64_t start_rank, const uint32_t *begin,
- const uint32_t *end, uint64_t *ans);
-
-/* Returns the index of x , if not exsist return -1 */
-int bitset_container_get_index(const bitset_container_t *container, uint16_t
x);
-
-/* Returns the index of the first value equal or larger than x, or -1 */
-int bitset_container_index_equalorlarger(const bitset_container_t *container,
- uint16_t x);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_BITSET_H_ */
-/* end file include/roaring/containers/bitset.h */
-/* begin file include/roaring/containers/run.h */
-/*
- * run.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_RUN_H_
-#define INCLUDE_CONTAINERS_RUN_H_
-
-
-// Include other headers after roaring_types.h
-#include <assert.h>
-#include <stdbool.h>
-#include <stdint.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-
-// Note: in pure C++ code, you should avoid putting `using` in header files
-using api::roaring_iterator;
-using api::roaring_iterator64;
-
-namespace internal {
-#endif
-
-/* struct rle16_s - run length pair
- *
- * @value: start position of the run
- * @length: length of the run is `length + 1`
- *
- * An RLE pair {v, l} would represent the integers between the interval
- * [v, v+l+1], e.g. {3, 2} = [3, 4, 5].
- */
-struct rle16_s {
- uint16_t value;
- uint16_t length;
-};
-
-typedef struct rle16_s rle16_t;
-
-#ifdef __cplusplus
-#define CROARING_MAKE_RLE16(val, len) \
- { (uint16_t)(val), (uint16_t)(len) } // no tagged structs until c++20
-#else
-#define CROARING_MAKE_RLE16(val, len) \
- (rle16_t) { .value = (uint16_t)(val), .length = (uint16_t)(len) }
-#endif
-
-/* struct run_container_s - run container bitmap
- *
- * @n_runs: number of rle_t pairs in `runs`.
- * @capacity: capacity in rle_t pairs `runs` can hold.
- * @runs: pairs of rle_t.
- */
-STRUCT_CONTAINER(run_container_s) {
- int32_t n_runs;
- int32_t capacity;
- rle16_t *runs;
-};
-
-typedef struct run_container_s run_container_t;
-
-#define CAST_run(c) CAST(run_container_t *, c) // safer downcast
-#define const_CAST_run(c) CAST(const run_container_t *, c)
-#define movable_CAST_run(c) movable_CAST(run_container_t **, c)
-
-/* Create a new run container. Return NULL in case of failure. */
-run_container_t *run_container_create(void);
-
-/* Create a new run container with given capacity. Return NULL in case of
- * failure. */
-run_container_t *run_container_create_given_capacity(int32_t size);
-
-/*
- * Shrink the capacity to the actual size, return the number of bytes saved.
- */
-int run_container_shrink_to_fit(run_container_t *src);
-
-/* Free memory owned by `run'. */
-void run_container_free(run_container_t *run);
-
-/* Duplicate container */
-run_container_t *run_container_clone(const run_container_t *src);
-
-/*
- * Effectively deletes the value at index index, repacking data.
- */
-static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) {
- memmove(run->runs + index, run->runs + (1 + index),
- (run->n_runs - index - 1) * sizeof(rle16_t));
- run->n_runs--;
-}
-
-/**
- * Good old binary search through rle data
- */
-inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray,
- uint16_t ikey) {
- int32_t low = 0;
- int32_t high = lenarray - 1;
- while (low <= high) {
- int32_t middleIndex = (low + high) >> 1;
- uint16_t middleValue = array[middleIndex].value;
- if (middleValue < ikey) {
- low = middleIndex + 1;
- } else if (middleValue > ikey) {
- high = middleIndex - 1;
- } else {
- return middleIndex;
- }
- }
- return -(low + 1);
-}
-
-/*
- * Returns index of the run which contains $ikey
- */
-static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray,
- uint16_t ikey) {
- int32_t low = 0;
- int32_t high = lenarray - 1;
- while (low <= high) {
- int32_t middleIndex = (low + high) >> 1;
- uint16_t min = array[middleIndex].value;
- uint16_t max = array[middleIndex].value + array[middleIndex].length;
- if (ikey > max) {
- low = middleIndex + 1;
- } else if (ikey < min) {
- high = middleIndex - 1;
- } else {
- return middleIndex;
- }
- }
- return -(low + 1);
-}
-
-/**
- * Returns number of runs which can'be be merged with the key because they
- * are less than the key.
- * Note that [5,6,7,8] can be merged with the key 9 and won't be counted.
- */
-static inline int32_t rle16_count_less(const rle16_t *array, int32_t lenarray,
- uint16_t key) {
- if (lenarray == 0) return 0;
- int32_t low = 0;
- int32_t high = lenarray - 1;
- while (low <= high) {
- int32_t middleIndex = (low + high) >> 1;
- uint16_t min_value = array[middleIndex].value;
- uint16_t max_value =
- array[middleIndex].value + array[middleIndex].length;
- if (max_value + UINT32_C(1) < key) { // uint32 arithmetic
- low = middleIndex + 1;
- } else if (key < min_value) {
- high = middleIndex - 1;
- } else {
- return middleIndex;
- }
- }
- return low;
-}
-
-static inline int32_t rle16_count_greater(const rle16_t *array,
- int32_t lenarray, uint16_t key) {
- if (lenarray == 0) return 0;
- int32_t low = 0;
- int32_t high = lenarray - 1;
- while (low <= high) {
- int32_t middleIndex = (low + high) >> 1;
- uint16_t min_value = array[middleIndex].value;
- uint16_t max_value =
- array[middleIndex].value + array[middleIndex].length;
- if (max_value < key) {
- low = middleIndex + 1;
- } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic
- high = middleIndex - 1;
- } else {
- return lenarray - (middleIndex + 1);
- }
- }
- return lenarray - low;
-}
-
-/**
- * increase capacity to at least min. Whether the
- * existing data needs to be copied over depends on copy. If "copy" is false,
- * then the new content will be uninitialized, otherwise a copy is made.
- */
-void run_container_grow(run_container_t *run, int32_t min, bool copy);
-
-/**
- * Moves the data so that we can write data at index
- */
-static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) {
- /* This function calls realloc + memmove sequentially to move by one index.
- * Potentially copying twice the array.
- */
- if (run->n_runs + 1 > run->capacity)
- run_container_grow(run, run->n_runs + 1, true);
- memmove(run->runs + 1 + index, run->runs + index,
- (run->n_runs - index) * sizeof(rle16_t));
- run->n_runs++;
-}
-
-/* Add `pos' to `run'. Returns true if `pos' was not present. */
-bool run_container_add(run_container_t *run, uint16_t pos);
-
-/* Remove `pos' from `run'. Returns true if `pos' was present. */
-static inline bool run_container_remove(run_container_t *run, uint16_t pos) {
- int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
- if (index >= 0) {
- int32_t le = run->runs[index].length;
- if (le == 0) {
- recoverRoomAtIndex(run, (uint16_t)index);
- } else {
- run->runs[index].value++;
- run->runs[index].length--;
- }
- return true;
- }
- index = -index - 2; // points to preceding value, possibly -1
- if (index >= 0) { // possible match
- int32_t offset = pos - run->runs[index].value;
- int32_t le = run->runs[index].length;
- if (offset < le) {
- // need to break in two
- run->runs[index].length = (uint16_t)(offset - 1);
- // need to insert
- uint16_t newvalue = pos + 1;
- int32_t newlength = le - offset - 1;
- makeRoomAtIndex(run, (uint16_t)(index + 1));
- run->runs[index + 1].value = newvalue;
- run->runs[index + 1].length = (uint16_t)newlength;
- return true;
-
- } else if (offset == le) {
- run->runs[index].length--;
- return true;
- }
- }
- // no match
- return false;
-}
-
-/* Check whether `pos' is present in `run'. */
-inline bool run_container_contains(const run_container_t *run, uint16_t pos) {
- int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
- if (index >= 0) return true;
- index = -index - 2; // points to preceding value, possibly -1
- if (index != -1) { // possible match
- int32_t offset = pos - run->runs[index].value;
- int32_t le = run->runs[index].length;
- if (offset <= le) return true;
- }
- return false;
-}
-
-/*
- * Check whether all positions in a range of positions from pos_start
(included)
- * to pos_end (excluded) is present in `run'.
- */
-static inline bool run_container_contains_range(const run_container_t *run,
- uint32_t pos_start,
- uint32_t pos_end) {
- uint32_t count = 0;
- int32_t index =
- interleavedBinarySearch(run->runs, run->n_runs, (uint16_t)pos_start);
- if (index < 0) {
- index = -index - 2;
- if ((index == -1) ||
- ((pos_start - run->runs[index].value) > run->runs[index].length)) {
- return false;
- }
- }
- for (int32_t i = index; i < run->n_runs; ++i) {
- const uint32_t stop = run->runs[i].value + run->runs[i].length;
- if (run->runs[i].value >= pos_end) break;
- if (stop >= pos_end) {
- count += (((pos_end - run->runs[i].value) > 0)
- ? (pos_end - run->runs[i].value)
- : 0);
- break;
- }
- const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0;
- count += (min < run->runs[i].length) ? min : run->runs[i].length;
- }
- return count >= (pos_end - pos_start - 1);
-}
-
-/* Get the cardinality of `run'. Requires an actual computation. */
-int run_container_cardinality(const run_container_t *run);
-
-/* Card > 0?, see run_container_empty for the reverse */
-static inline bool run_container_nonzero_cardinality(
- const run_container_t *run) {
- return run->n_runs > 0; // runs never empty
-}
-
-/* Card == 0?, see run_container_nonzero_cardinality for the reverse */
-static inline bool run_container_empty(const run_container_t *run) {
- return run->n_runs == 0; // runs never empty
-}
-
-/* Copy one container into another. We assume that they are distinct. */
-void run_container_copy(const run_container_t *src, run_container_t *dst);
-
-/**
- * Append run described by vl to the run container, possibly merging.
- * It is assumed that the run would be inserted at the end of the container, no
- * check is made.
- * It is assumed that the run container has the necessary capacity: caller is
- * responsible for checking memory capacity.
- *
- *
- * This is not a safe function, it is meant for performance: use with care.
- */
-static inline void run_container_append(run_container_t *run, rle16_t vl,
- rle16_t *previousrl) {
- const uint32_t previousend = previousrl->value + previousrl->length;
- if (vl.value > previousend + 1) { // we add a new one
- run->runs[run->n_runs] = vl;
- run->n_runs++;
- *previousrl = vl;
- } else {
- uint32_t newend = vl.value + vl.length + UINT32_C(1);
- if (newend > previousend) { // we merge
- previousrl->length = (uint16_t)(newend - 1 - previousrl->value);
- run->runs[run->n_runs - 1] = *previousrl;
- }
- }
-}
-
-/**
- * Like run_container_append but it is assumed that the content of run is
empty.
- */
-static inline rle16_t run_container_append_first(run_container_t *run,
- rle16_t vl) {
- run->runs[run->n_runs] = vl;
- run->n_runs++;
- return vl;
-}
-
-/**
- * append a single value given by val to the run container, possibly merging.
- * It is assumed that the value would be inserted at the end of the container,
- * no check is made.
- * It is assumed that the run container has the necessary capacity: caller is
- * responsible for checking memory capacity.
- *
- * This is not a safe function, it is meant for performance: use with care.
- */
-static inline void run_container_append_value(run_container_t *run,
- uint16_t val,
- rle16_t *previousrl) {
- const uint32_t previousend = previousrl->value + previousrl->length;
- if (val > previousend + 1) { // we add a new one
- *previousrl = CROARING_MAKE_RLE16(val, 0);
- run->runs[run->n_runs] = *previousrl;
- run->n_runs++;
- } else if (val == previousend + 1) { // we merge
- previousrl->length++;
- run->runs[run->n_runs - 1] = *previousrl;
- }
-}
-
-/**
- * Like run_container_append_value but it is assumed that the content of run is
- * empty.
- */
-static inline rle16_t run_container_append_value_first(run_container_t *run,
- uint16_t val) {
- rle16_t newrle = CROARING_MAKE_RLE16(val, 0);
- run->runs[run->n_runs] = newrle;
- run->n_runs++;
- return newrle;
-}
-
-/* Check whether the container spans the whole chunk (cardinality = 1<<16).
- * This check can be done in constant time (inexpensive). */
-static inline bool run_container_is_full(const run_container_t *run) {
- rle16_t vl = run->runs[0];
- return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF);
-}
-
-/* Compute the union of `src_1' and `src_2' and write the result to `dst'
- * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
-void run_container_union(const run_container_t *src_1,
- const run_container_t *src_2, run_container_t *dst);
-
-/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */
-void run_container_union_inplace(run_container_t *src_1,
- const run_container_t *src_2);
-
-/* Compute the intersection of src_1 and src_2 and write the result to
- * dst. It is assumed that dst is distinct from both src_1 and src_2. */
-void run_container_intersection(const run_container_t *src_1,
- const run_container_t *src_2,
- run_container_t *dst);
-
-/* Compute the size of the intersection of src_1 and src_2 . */
-int run_container_intersection_cardinality(const run_container_t *src_1,
- const run_container_t *src_2);
-
-/* Check whether src_1 and src_2 intersect. */
-bool run_container_intersect(const run_container_t *src_1,
- const run_container_t *src_2);
-
-/* Compute the symmetric difference of `src_1' and `src_2' and write the result
- * to `dst'
- * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
-void run_container_xor(const run_container_t *src_1,
- const run_container_t *src_2, run_container_t *dst);
-
-/*
- * Write out the 16-bit integers contained in this container as a list of
32-bit
- * integers using base
- * as the starting value (it might be expected that base has zeros in its 16
- * least significant bits).
- * The function returns the number of values written.
- * The caller is responsible for allocating enough memory in out.
- */
-int run_container_to_uint32_array(void *vout, const run_container_t *cont,
- uint32_t base);
-
-/*
- * Print this container using printf (useful for debugging).
- */
-void run_container_printf(const run_container_t *v);
-
-/*
- * Print this container using printf as a comma-separated list of 32-bit
- * integers starting at base.
- */
-void run_container_printf_as_uint32_array(const run_container_t *v,
- uint32_t base);
-
-bool run_container_validate(const run_container_t *run, const char **reason);
-
-/**
- * Return the serialized size in bytes of a container having "num_runs" runs.
- */
-static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs)
{
- return sizeof(uint16_t) +
- sizeof(rle16_t) * num_runs; // each run requires 2 2-byte entries.
-}
-
-bool run_container_iterate(const run_container_t *cont, uint32_t base,
- roaring_iterator iterator, void *ptr);
-bool run_container_iterate64(const run_container_t *cont, uint32_t base,
- roaring_iterator64 iterator, uint64_t high_bits,
- void *ptr);
-
-/**
- * Writes the underlying array to buf, outputs how many bytes were written.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes written should be
run_container_size_in_bytes(container).
- */
-int32_t run_container_write(const run_container_t *container, char *buf);
-
-/**
- * Reads the instance from buf, outputs how many bytes were read.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes read should be
bitset_container_size_in_bytes(container).
- * The cardinality parameter is provided for consistency with other containers,
- * but
- * it might be effectively ignored..
- */
-int32_t run_container_read(int32_t cardinality, run_container_t *container,
- const char *buf);
-
-/**
- * Return the serialized size in bytes of a container (see
run_container_write).
- * This is meant to be compatible with the Java and Go versions of Roaring.
- */
-ALLOW_UNALIGNED
-static inline int32_t run_container_size_in_bytes(
- const run_container_t *container) {
- return run_container_serialized_size_in_bytes(container->n_runs);
-}
-
-/**
- * Return true if the two containers have the same content.
- */
-ALLOW_UNALIGNED
-static inline bool run_container_equals(const run_container_t *container1,
- const run_container_t *container2) {
- if (container1->n_runs != container2->n_runs) {
- return false;
- }
- return memequals(container1->runs, container2->runs,
- container1->n_runs * sizeof(rle16_t));
-}
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool run_container_is_subset(const run_container_t *container1,
- const run_container_t *container2);
-
-/**
- * Used in a start-finish scan that appends segments, for XOR and NOT
- */
-
-void run_container_smart_append_exclusive(run_container_t *src,
- const uint16_t start,
- const uint16_t length);
-
-/**
- * The new container consists of a single run [start,stop).
- * It is required that stop>start, the caller is responsability for this check.
- * It is required that stop <= (1<<16), the caller is responsability for this
- * check. The cardinality of the created container is stop - start. Returns
NULL
- * on failure
- */
-static inline run_container_t *run_container_create_range(uint32_t start,
- uint32_t stop) {
- run_container_t *rc = run_container_create_given_capacity(1);
- if (rc) {
- rle16_t r;
- r.value = (uint16_t)start;
- r.length = (uint16_t)(stop - start - 1);
- run_container_append_first(rc, r);
- }
- return rc;
-}
-
-/**
- * If the element of given rank is in this container, supposing that the first
- * element has rank start_rank, then the function returns true and sets element
- * accordingly.
- * Otherwise, it returns false and update start_rank.
- */
-bool run_container_select(const run_container_t *container,
- uint32_t *start_rank, uint32_t rank,
- uint32_t *element);
-
-/* Compute the difference of src_1 and src_2 and write the result to
- * dst. It is assumed that dst is distinct from both src_1 and src_2. */
-
-void run_container_andnot(const run_container_t *src_1,
- const run_container_t *src_2, run_container_t *dst);
-
-void run_container_offset(const run_container_t *c, container_t **loc,
- container_t **hic, uint16_t offset);
-
-/* Returns the smallest value (assumes not empty) */
-inline uint16_t run_container_minimum(const run_container_t *run) {
- if (run->n_runs == 0) return 0;
- return run->runs[0].value;
-}
-
-/* Returns the largest value (assumes not empty) */
-inline uint16_t run_container_maximum(const run_container_t *run) {
- if (run->n_runs == 0) return 0;
- return run->runs[run->n_runs - 1].value + run->runs[run->n_runs -
1].length;
-}
-
-/* Returns the number of values equal or smaller than x */
-int run_container_rank(const run_container_t *arr, uint16_t x);
-
-/* bulk version of run_container_rank(); return number of consumed elements */
-uint32_t run_container_rank_many(const run_container_t *arr,
- uint64_t start_rank, const uint32_t *begin,
- const uint32_t *end, uint64_t *ans);
-
-/* Returns the index of x, if not exsist return -1 */
-int run_container_get_index(const run_container_t *arr, uint16_t x);
-
-/* Returns the index of the first run containing a value at least as large as
x,
- * or -1 */
-inline int run_container_index_equalorlarger(const run_container_t *arr,
- uint16_t x) {
- int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x);
- if (index >= 0) return index;
- index = -index - 2; // points to preceding run, possibly -1
- if (index != -1) { // possible match
- int32_t offset = x - arr->runs[index].value;
- int32_t le = arr->runs[index].length;
- if (offset <= le) return index;
- }
- index += 1;
- if (index < arr->n_runs) {
- return index;
- }
- return -1;
-}
-
-/*
- * Add all values in range [min, max] using hint.
- */
-static inline void run_container_add_range_nruns(run_container_t *run,
- uint32_t min, uint32_t max,
- int32_t nruns_less,
- int32_t nruns_greater) {
- int32_t nruns_common = run->n_runs - nruns_less - nruns_greater;
- if (nruns_common == 0) {
- makeRoomAtIndex(run, (uint16_t)nruns_less);
- run->runs[nruns_less].value = (uint16_t)min;
- run->runs[nruns_less].length = (uint16_t)(max - min);
- } else {
- uint32_t common_min = run->runs[nruns_less].value;
- uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value +
- run->runs[nruns_less + nruns_common - 1].length;
- uint32_t result_min = (common_min < min) ? common_min : min;
- uint32_t result_max = (common_max > max) ? common_max : max;
-
- run->runs[nruns_less].value = (uint16_t)result_min;
- run->runs[nruns_less].length = (uint16_t)(result_max - result_min);
-
- memmove(&(run->runs[nruns_less + 1]),
- &(run->runs[run->n_runs - nruns_greater]),
- nruns_greater * sizeof(rle16_t));
- run->n_runs = nruns_less + 1 + nruns_greater;
- }
-}
-
-/**
- * Add all values in range [min, max]. This function is currently unused
- * and left as documentation.
- */
-/*static inline void run_container_add_range(run_container_t* run,
- uint32_t min, uint32_t max) {
- int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max);
- int32_t nruns_less = rle16_count_less(run->runs, run->n_runs -
-nruns_greater, min); run_container_add_range_nruns(run, min, max, nruns_less,
-nruns_greater);
-}*/
-
-/**
- * Shifts last $count elements either left (distance < 0) or right (distance >
- * 0)
- */
-static inline void run_container_shift_tail(run_container_t *run, int32_t
count,
- int32_t distance) {
- if (distance > 0) {
- if (run->capacity < count + distance) {
- run_container_grow(run, count + distance, true);
- }
- }
- int32_t srcpos = run->n_runs - count;
- int32_t dstpos = srcpos + distance;
- memmove(&(run->runs[dstpos]), &(run->runs[srcpos]),
- sizeof(rle16_t) * count);
- run->n_runs += distance;
-}
-
-/**
- * Remove all elements in range [min, max]
- */
-static inline void run_container_remove_range(run_container_t *run,
- uint32_t min, uint32_t max) {
- int32_t first = rle16_find_run(run->runs, run->n_runs, (uint16_t)min);
- int32_t last = rle16_find_run(run->runs, run->n_runs, (uint16_t)max);
-
- if (first >= 0 && min > run->runs[first].value &&
- max < ((uint32_t)run->runs[first].value +
- (uint32_t)run->runs[first].length)) {
- // split this run into two adjacent runs
-
- // right subinterval
- makeRoomAtIndex(run, (uint16_t)(first + 1));
- run->runs[first + 1].value = (uint16_t)(max + 1);
- run->runs[first + 1].length =
- (uint16_t)((run->runs[first].value + run->runs[first].length) -
- (max + 1));
-
- // left subinterval
- run->runs[first].length =
- (uint16_t)((min - 1) - run->runs[first].value);
-
- return;
- }
-
- // update left-most partial run
- if (first >= 0) {
- if (min > run->runs[first].value) {
- run->runs[first].length =
- (uint16_t)((min - 1) - run->runs[first].value);
- first++;
- }
- } else {
- first = -first - 1;
- }
-
- // update right-most run
- if (last >= 0) {
- uint16_t run_max = run->runs[last].value + run->runs[last].length;
- if (run_max > max) {
- run->runs[last].value = (uint16_t)(max + 1);
- run->runs[last].length = (uint16_t)(run_max - (max + 1));
- last--;
- }
- } else {
- last = (-last - 1) - 1;
- }
-
- // remove intermediate runs
- if (first <= last) {
- run_container_shift_tail(run, run->n_runs - (last + 1),
- -(last - first + 1));
- }
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_RUN_H_ */
-/* end file include/roaring/containers/run.h */
-/* begin file include/roaring/containers/convert.h */
-/*
- * convert.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_CONVERT_H_
-#define INCLUDE_CONTAINERS_CONVERT_H_
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Convert an array into a bitset. The input container is not freed or
modified.
- */
-bitset_container_t *bitset_container_from_array(const array_container_t *arr);
-
-/* Convert a run into a bitset. The input container is not freed or modified.
*/
-bitset_container_t *bitset_container_from_run(const run_container_t *arr);
-
-/* Convert a run into an array. The input container is not freed or modified.
*/
-array_container_t *array_container_from_run(const run_container_t *arr);
-
-/* Convert a bitset into an array. The input container is not freed or
modified.
- */
-array_container_t *array_container_from_bitset(const bitset_container_t *bits);
-
-/* Convert an array into a run. The input container is not freed or modified.
- */
-run_container_t *run_container_from_array(const array_container_t *c);
-
-/* convert a run into either an array or a bitset
- * might free the container. This does not free the input run container. */
-container_t *convert_to_bitset_or_array_container(run_container_t *rc,
- int32_t card,
- uint8_t *resulttype);
-
-/* convert containers to and from runcontainers, as is most space efficient.
- * The container might be freed. */
-container_t *convert_run_optimize(container_t *c, uint8_t typecode_original,
- uint8_t *typecode_after);
-
-/* converts a run container to either an array or a bitset, IF it saves space.
- */
-/* If a conversion occurs, the caller is responsible to free the original
- * container and
- * he becomes reponsible to free the new one. */
-container_t *convert_run_to_efficient_container(run_container_t *c,
- uint8_t *typecode_after);
-
-// like convert_run_to_efficient_container but frees the old result if needed
-container_t *convert_run_to_efficient_container_and_free(
- run_container_t *c, uint8_t *typecode_after);
-
-/**
- * Create new container which is a union of run container and
- * range [min, max]. Caller is responsible for freeing run container.
- */
-container_t *container_from_run_range(const run_container_t *run, uint32_t min,
- uint32_t max, uint8_t *typecode_after);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_CONVERT_H_ */
-/* end file include/roaring/containers/convert.h */
-/* begin file include/roaring/containers/mixed_equal.h */
-/*
- * mixed_equal.h
- *
- */
-
-#ifndef CONTAINERS_MIXED_EQUAL_H_
-#define CONTAINERS_MIXED_EQUAL_H_
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/**
- * Return true if the two containers have the same content.
- */
-bool array_container_equal_bitset(const array_container_t* container1,
- const bitset_container_t* container2);
-
-/**
- * Return true if the two containers have the same content.
- */
-bool run_container_equals_array(const run_container_t* container1,
- const array_container_t* container2);
-/**
- * Return true if the two containers have the same content.
- */
-bool run_container_equals_bitset(const run_container_t* container1,
- const bitset_container_t* container2);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* CONTAINERS_MIXED_EQUAL_H_ */
-/* end file include/roaring/containers/mixed_equal.h */
-/* begin file include/roaring/containers/mixed_subset.h */
-/*
- * mixed_subset.h
- *
- */
-
-#ifndef CONTAINERS_MIXED_SUBSET_H_
-#define CONTAINERS_MIXED_SUBSET_H_
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool array_container_is_subset_bitset(const array_container_t* container1,
- const bitset_container_t* container2);
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool run_container_is_subset_array(const run_container_t* container1,
- const array_container_t* container2);
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool array_container_is_subset_run(const array_container_t* container1,
- const run_container_t* container2);
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool run_container_is_subset_bitset(const run_container_t* container1,
- const bitset_container_t* container2);
-
-/**
- * Return true if container1 is a subset of container2.
- */
-bool bitset_container_is_subset_run(const bitset_container_t* container1,
- const run_container_t* container2);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* CONTAINERS_MIXED_SUBSET_H_ */
-/* end file include/roaring/containers/mixed_subset.h */
-/* begin file include/roaring/containers/mixed_andnot.h */
-/*
- * mixed_andnot.h
- */
-#ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
-#define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst, a valid array container that could be the same as dst.*/
-void array_bitset_container_andnot(const array_container_t *src_1,
- const bitset_container_t *src_2,
- array_container_t *dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * src_1 */
-
-void array_bitset_container_iandnot(array_container_t *src_1,
- const bitset_container_t *src_2);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst, which does not initially have a valid container.
- * Return true for a bitset result; false for array
- */
-
-bool bitset_array_container_andnot(const bitset_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_array_container_iandnot(bitset_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_andnot(const run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_iandnot(run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool bitset_run_container_andnot(const bitset_container_t *src_1,
- const run_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_run_container_iandnot(bitset_container_t *src_1,
- const run_container_t *src_2,
- container_t **dst);
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any type of container.
- */
-
-int run_array_container_andnot(const run_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-int run_array_container_iandnot(run_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* dst must be a valid array container, allowed to be src_1 */
-
-void array_run_container_andnot(const array_container_t *src_1,
- const run_container_t *src_2,
- array_container_t *dst);
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-void array_run_container_iandnot(array_container_t *src_1,
- const run_container_t *src_2);
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int run_run_container_andnot(const run_container_t *src_1,
- const run_container_t *src_2, container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-int run_run_container_iandnot(run_container_t *src_1,
- const run_container_t *src_2, container_t **dst);
-
-/*
- * dst is a valid array container and may be the same as src_1
- */
-
-void array_array_container_andnot(const array_container_t *src_1,
- const array_container_t *src_2,
- array_container_t *dst);
-
-/* inplace array-array andnot will always be able to reuse the space of
- * src_1 */
-void array_array_container_iandnot(array_container_t *src_1,
- const array_container_t *src_2);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). Return value is
- * "dst is a bitset"
- */
-
-bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif
-/* end file include/roaring/containers/mixed_andnot.h */
-/* begin file include/roaring/containers/mixed_intersection.h */
-/*
- * mixed_intersection.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
-#define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
-
-/* These functions appear to exclude cases where the
- * inputs have the same type and the output is guaranteed
- * to have the same type as the inputs. Eg, array intersection
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the intersection of src_1 and src_2 and write the result to
- * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
- * valid container. */
-void array_bitset_container_intersection(const array_container_t *src_1,
- const bitset_container_t *src_2,
- array_container_t *dst);
-
-/* Compute the size of the intersection of src_1 and src_2. */
-int array_bitset_container_intersection_cardinality(
- const array_container_t *src_1, const bitset_container_t *src_2);
-
-/* Checking whether src_1 and src_2 intersect. */
-bool array_bitset_container_intersect(const array_container_t *src_1,
- const bitset_container_t *src_2);
-
-/*
- * Compute the intersection between src_1 and src_2 and write the result
- * to *dst. If the return function is true, the result is a bitset_container_t
- * otherwise is a array_container_t. We assume that dst is not pre-allocated.
In
- * case of failure, *dst will be NULL.
- */
-bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the intersection between src_1 and src_2 and write the result to
- * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
- * valid container. */
-void array_run_container_intersection(const array_container_t *src_1,
- const run_container_t *src_2,
- array_container_t *dst);
-
-/* Compute the intersection between src_1 and src_2 and write the result to
- * *dst. If the result is true then the result is a bitset_container_t
- * otherwise is a array_container_t.
- * If *dst == src_2, then an in-place intersection is attempted
- **/
-bool run_bitset_container_intersection(const run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the size of the intersection between src_1 and src_2 . */
-int array_run_container_intersection_cardinality(const array_container_t
*src_1,
- const run_container_t *src_2);
-
-/* Compute the size of the intersection between src_1 and src_2
- **/
-int run_bitset_container_intersection_cardinality(
- const run_container_t *src_1, const bitset_container_t *src_2);
-
-/* Check that src_1 and src_2 intersect. */
-bool array_run_container_intersect(const array_container_t *src_1,
- const run_container_t *src_2);
-
-/* Check that src_1 and src_2 intersect.
- **/
-bool run_bitset_container_intersect(const run_container_t *src_1,
- const bitset_container_t *src_2);
-
-/*
- * Same as bitset_bitset_container_intersection except that if the output is to
- * be a
- * bitset_container_t, then src_1 is modified and no allocation is made.
- * If the output is to be an array_container_t, then caller is responsible
- * to free the container.
- * In all cases, the result is in *dst.
- */
-bool bitset_bitset_container_intersection_inplace(
- bitset_container_t *src_1, const bitset_container_t *src_2,
- container_t **dst);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */
-/* end file include/roaring/containers/mixed_intersection.h */
-/* begin file include/roaring/containers/mixed_negation.h */
-/*
- * mixed_negation.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_
-#define INCLUDE_CONTAINERS_MIXED_NEGATION_H_
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Negation across the entire range of the container.
- * Compute the negation of src and write the result
- * to *dst. The complement of a
- * sufficiently sparse set will always be dense and a hence a bitmap
- * We assume that dst is pre-allocated and a valid bitset container
- * There can be no in-place version.
- */
-void array_container_negation(const array_container_t *src,
- bitset_container_t *dst);
-
-/* Negation across the entire range of the container
- * Compute the negation of src and write the result
- * to *dst. A true return value indicates a bitset result,
- * otherwise the result is an array container.
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-bool bitset_container_negation(const bitset_container_t *src,
- container_t **dst);
-
-/* inplace version */
-/*
- * Same as bitset_container_negation except that if the output is to
- * be a
- * bitset_container_t, then src is modified and no allocation is made.
- * If the output is to be an array_container_t, then caller is responsible
- * to free the container.
- * In all cases, the result is in *dst.
- */
-bool bitset_container_negation_inplace(bitset_container_t *src,
- container_t **dst);
-
-/* Negation across the entire range of container
- * Compute the negation of src and write the result
- * to *dst.
- * Return values are the *_TYPECODES as defined * in containers.h
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-int run_container_negation(const run_container_t *src, container_t **dst);
-
-/*
- * Same as run_container_negation except that if the output is to
- * be a
- * run_container_t, and has the capacity to hold the result,
- * then src is modified and no allocation is made.
- * In all cases, the result is in *dst.
- */
-int run_container_negation_inplace(run_container_t *src, container_t **dst);
-
-/* Negation across a range of the container.
- * Compute the negation of src and write the result
- * to *dst. Returns true if the result is a bitset container
- * and false for an array container. *dst is not preallocated.
- */
-bool array_container_negation_range(const array_container_t *src,
- const int range_start, const int range_end,
- container_t **dst);
-
-/* Even when the result would fit, it is unclear how to make an
- * inplace version without inefficient copying. Thus this routine
- * may be a wrapper for the non-in-place version
- */
-bool array_container_negation_range_inplace(array_container_t *src,
- const int range_start,
- const int range_end,
- container_t **dst);
-
-/* Negation across a range of the container
- * Compute the negation of src and write the result
- * to *dst. A true return value indicates a bitset result,
- * otherwise the result is an array container.
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-bool bitset_container_negation_range(const bitset_container_t *src,
- const int range_start, const int
range_end,
- container_t **dst);
-
-/* inplace version */
-/*
- * Same as bitset_container_negation except that if the output is to
- * be a
- * bitset_container_t, then src is modified and no allocation is made.
- * If the output is to be an array_container_t, then caller is responsible
- * to free the container.
- * In all cases, the result is in *dst.
- */
-bool bitset_container_negation_range_inplace(bitset_container_t *src,
- const int range_start,
- const int range_end,
- container_t **dst);
-
-/* Negation across a range of container
- * Compute the negation of src and write the result
- * to *dst. Return values are the *_TYPECODES as defined * in containers.h
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-int run_container_negation_range(const run_container_t *src,
- const int range_start, const int range_end,
- container_t **dst);
-
-/*
- * Same as run_container_negation except that if the output is to
- * be a
- * run_container_t, and has the capacity to hold the result,
- * then src is modified and no allocation is made.
- * In all cases, the result is in *dst.
- */
-int run_container_negation_range_inplace(run_container_t *src,
- const int range_start,
- const int range_end,
- container_t **dst);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */
-/* end file include/roaring/containers/mixed_negation.h */
-/* begin file include/roaring/containers/mixed_union.h */
-/*
- * mixed_intersection.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_
-#define INCLUDE_CONTAINERS_MIXED_UNION_H_
-
-/* These functions appear to exclude cases where the
- * inputs have the same type and the output is guaranteed
- * to have the same type as the inputs. Eg, bitset unions
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. It is allowed for src_2 to be dst. */
-void array_bitset_container_union(const array_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. It is allowed for src_2 to be dst. This version does not
- * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
-void array_bitset_container_lazy_union(const array_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/*
- * Compute the union between src_1 and src_2 and write the result
- * to *dst. If the return function is true, the result is a bitset_container_t
- * otherwise is a array_container_t. We assume that dst is not pre-allocated.
In
- * case of failure, *dst will be NULL.
- */
-bool array_array_container_union(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/*
- * Compute the union between src_1 and src_2 and write the result
- * to *dst if it cannot be written to src_1. If the return function is true,
- * the result is a bitset_container_t
- * otherwise is a array_container_t. When the result is an array_container_t,
it
- * it either written to src_1 (if *dst is null) or to *dst.
- * If the result is a bitset_container_t and *dst is null, then there was a
- * failure.
- */
-bool array_array_container_inplace_union(array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/*
- * Same as array_array_container_union except that it will more eagerly produce
- * a bitset.
- */
-bool array_array_container_lazy_union(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/*
- * Same as array_array_container_inplace_union except that it will more eagerly
- * produce a bitset.
- */
-bool array_array_container_lazy_inplace_union(array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. We assume that dst is a
- * valid container. The result might need to be further converted to array or
- * bitset container,
- * the caller is responsible for the eventual conversion. */
-void array_run_container_union(const array_container_t *src_1,
- const run_container_t *src_2,
- run_container_t *dst);
-
-/* Compute the union of src_1 and src_2 and write the result to
- * src2. The result might need to be further converted to array or
- * bitset container,
- * the caller is responsible for the eventual conversion. */
-void array_run_container_inplace_union(const array_container_t *src_1,
- run_container_t *src_2);
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. It is allowed for dst to be src_2.
- * If run_container_is_full(src_1) is true, you must not be calling this
- *function.
- **/
-void run_bitset_container_union(const run_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. It is allowed for dst to be src_2. This version does not
- * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
- * If run_container_is_full(src_1) is true, you must not be calling this
- * function.
- * */
-void run_bitset_container_lazy_union(const run_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */
-/* end file include/roaring/containers/mixed_union.h */
-/* begin file include/roaring/containers/mixed_xor.h */
-/*
- * mixed_xor.h
- *
- */
-
-#ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_
-#define INCLUDE_CONTAINERS_MIXED_XOR_H_
-
-/* These functions appear to exclude cases where the
- * inputs have the same type and the output is guaranteed
- * to have the same type as the inputs. Eg, bitset unions
- */
-
-/*
- * Java implementation (as of May 2016) for array_run, run_run
- * and bitset_run don't do anything different for inplace.
- * (They are not truly in place.)
- */
-
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst (which has no container initially).
- * Result is true iff dst is a bitset */
-bool array_bitset_container_xor(const array_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst. It is allowed for src_2 to be dst. This version does not
- * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
- */
-
-void array_bitset_container_lazy_xor(const array_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst (which has no container initially). Return value is
- * "dst is a bitset"
- */
-
-bool bitset_bitset_container_xor(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_xor(const run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* lazy xor. Dst is initialized and may be equal to src_2.
- * Result is left as a bitset container, even if actual
- * cardinality would dictate an array container.
- */
-
-void run_bitset_container_lazy_xor(const run_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst);
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int array_run_container_xor(const array_container_t *src_1,
- const run_container_t *src_2, container_t **dst);
-
-/* dst does not initially have a valid container. Creates either
- * an array or a bitset container, indicated by return code
- */
-
-bool array_array_container_xor(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* dst does not initially have a valid container. Creates either
- * an array or a bitset container, indicated by return code.
- * A bitset container will not have a valid cardinality and the
- * container type might not be correct for the actual cardinality
- */
-
-bool array_array_container_lazy_xor(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-/* Dst is a valid run container. (Can it be src_2? Let's say not.)
- * Leaves result as run container, even if other options are
- * smaller.
- */
-
-void array_run_container_lazy_xor(const array_container_t *src_1,
- const run_container_t *src_2,
- run_container_t *dst);
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int run_run_container_xor(const run_container_t *src_1,
- const run_container_t *src_2, container_t **dst);
-
-/* INPLACE versions (initial implementation may not exploit all inplace
- * opportunities (if any...)
- */
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_array_container_ixor(bitset_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-bool bitset_bitset_container_ixor(bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-bool array_bitset_container_ixor(array_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_ixor(run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst);
-
-bool bitset_run_container_ixor(bitset_container_t *src_1,
- const run_container_t *src_2, container_t
**dst);
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int array_run_container_ixor(array_container_t *src_1,
- const run_container_t *src_2, container_t **dst);
-
-int run_array_container_ixor(run_container_t *src_1,
- const array_container_t *src_2, container_t
**dst);
-
-bool array_array_container_ixor(array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst);
-
-int run_run_container_ixor(run_container_t *src_1, const run_container_t
*src_2,
- container_t **dst);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif
-/* end file include/roaring/containers/mixed_xor.h */
-/* begin file include/roaring/containers/containers.h */
-#ifndef CONTAINERS_CONTAINERS_H
-#define CONTAINERS_CONTAINERS_H
-
-#include <assert.h>
-#include <stdbool.h>
-#include <stdio.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-// would enum be possible or better?
-
-/**
- * The switch case statements follow
- * BITSET_CONTAINER_TYPE -- ARRAY_CONTAINER_TYPE -- RUN_CONTAINER_TYPE
- * so it makes more sense to number them 1, 2, 3 (in the vague hope that the
- * compiler might exploit this ordering).
- */
-
-#define BITSET_CONTAINER_TYPE 1
-#define ARRAY_CONTAINER_TYPE 2
-#define RUN_CONTAINER_TYPE 3
-#define SHARED_CONTAINER_TYPE 4
-
-/**
- * Macros for pairing container type codes, suitable for switch statements.
- * Use PAIR_CONTAINER_TYPES() for the switch, CONTAINER_PAIR() for the cases:
- *
- * switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- * case CONTAINER_PAIR(BITSET,ARRAY):
- * ...
- * }
- */
-#define PAIR_CONTAINER_TYPES(type1, type2) (4 * (type1) + (type2))
-
-#define CONTAINER_PAIR(name1, name2) \
- (4 * (name1##_CONTAINER_TYPE) + (name2##_CONTAINER_TYPE))
-
-/**
- * A shared container is a wrapper around a container
- * with reference counting.
- */
-STRUCT_CONTAINER(shared_container_s) {
- container_t *container;
- uint8_t typecode;
- croaring_refcount_t counter; // to be managed atomically
-};
-
-typedef struct shared_container_s shared_container_t;
-
-#define CAST_shared(c) CAST(shared_container_t *, c) // safer downcast
-#define const_CAST_shared(c) CAST(const shared_container_t *, c)
-#define movable_CAST_shared(c) movable_CAST(shared_container_t **, c)
-
-/*
- * With copy_on_write = true
- * Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE,
- * otherwise, increase the count
- * If copy_on_write = false, then clone.
- * Return NULL in case of failure.
- **/
-container_t *get_copy_of_container(container_t *container, uint8_t *typecode,
- bool copy_on_write);
-
-/* Frees a shared container (actually decrement its counter and only frees when
- * the counter falls to zero). */
-void shared_container_free(shared_container_t *container);
-
-/* extract a copy from the shared container, freeing the shared container if
-there is just one instance left,
-clone instances when the counter is higher than one
-*/
-container_t *shared_container_extract_copy(shared_container_t *container,
- uint8_t *typecode);
-
-/* access to container underneath */
-static inline const container_t *container_unwrap_shared(
- const container_t *candidate_shared_container, uint8_t *type) {
- if (*type == SHARED_CONTAINER_TYPE) {
- *type = const_CAST_shared(candidate_shared_container)->typecode;
- assert(*type != SHARED_CONTAINER_TYPE);
- return const_CAST_shared(candidate_shared_container)->container;
- } else {
- return candidate_shared_container;
- }
-}
-
-/* access to container underneath */
-static inline container_t *container_mutable_unwrap_shared(container_t *c,
- uint8_t *type) {
- if (*type == SHARED_CONTAINER_TYPE) { // the passed in container is shared
- *type = CAST_shared(c)->typecode;
- assert(*type != SHARED_CONTAINER_TYPE);
- return CAST_shared(c)->container; // return the enclosed container
- } else {
- return c; // wasn't shared, so return as-is
- }
-}
-
-/* access to container underneath and queries its type */
-static inline uint8_t get_container_type(const container_t *c, uint8_t type) {
- if (type == SHARED_CONTAINER_TYPE) {
- return const_CAST_shared(c)->typecode;
- } else {
- return type;
- }
-}
-
-/**
- * Copies a container, requires a typecode. This allocates new memory, caller
- * is responsible for deallocation. If the container is not shared, then it is
- * physically cloned. Sharable containers are not cloneable.
- */
-container_t *container_clone(const container_t *container, uint8_t typecode);
-
-/* access to container underneath, cloning it if needed */
-static inline container_t *get_writable_copy_if_shared(container_t *c,
- uint8_t *type) {
- if (*type == SHARED_CONTAINER_TYPE) { // shared, return enclosed container
- return shared_container_extract_copy(CAST_shared(c), type);
- } else {
- return c; // not shared, so return as-is
- }
-}
-
-/**
- * End of shared container code
- */
-
-static const char *container_names[] = {"bitset", "array", "run", "shared"};
-static const char *shared_container_names[] = {
- "bitset (shared)", "array (shared)", "run (shared)"};
-
-// no matter what the initial container was, convert it to a bitset
-// if a new container is produced, caller responsible for freeing the previous
-// one
-// container should not be a shared container
-static inline bitset_container_t *container_to_bitset(container_t *c,
- uint8_t typecode) {
- bitset_container_t *result = NULL;
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return CAST_bitset(c); // nothing to do
- case ARRAY_CONTAINER_TYPE:
- result = bitset_container_from_array(CAST_array(c));
- return result;
- case RUN_CONTAINER_TYPE:
- result = bitset_container_from_run(CAST_run(c));
- return result;
- case SHARED_CONTAINER_TYPE:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * Get the container name from the typecode
- * (unused at time of writing)
- */
-/*static inline const char *get_container_name(uint8_t typecode) {
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return container_names[0];
- case ARRAY_CONTAINER_TYPE:
- return container_names[1];
- case RUN_CONTAINER_TYPE:
- return container_names[2];
- case SHARED_CONTAINER_TYPE:
- return container_names[3];
- default:
- assert(false);
- roaring_unreachable;
- return "unknown";
- }
-}*/
-
-static inline const char *get_full_container_name(const container_t *c,
- uint8_t typecode) {
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return container_names[0];
- case ARRAY_CONTAINER_TYPE:
- return container_names[1];
- case RUN_CONTAINER_TYPE:
- return container_names[2];
- case SHARED_CONTAINER_TYPE:
- switch (const_CAST_shared(c)->typecode) {
- case BITSET_CONTAINER_TYPE:
- return shared_container_names[0];
- case ARRAY_CONTAINER_TYPE:
- return shared_container_names[1];
- case RUN_CONTAINER_TYPE:
- return shared_container_names[2];
- default:
- assert(false);
- roaring_unreachable;
- return "unknown";
- }
- break;
- default:
- assert(false);
- roaring_unreachable;
- return "unknown";
- }
- roaring_unreachable;
- return NULL;
-}
-
-/**
- * Get the container cardinality (number of elements), requires a typecode
- */
-static inline int container_get_cardinality(const container_t *c,
- uint8_t typecode) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_cardinality(const_CAST_bitset(c));
- case ARRAY_CONTAINER_TYPE:
- return array_container_cardinality(const_CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_cardinality(const_CAST_run(c));
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-// returns true if a container is known to be full. Note that a lazy bitset
-// container
-// might be full without us knowing
-static inline bool container_is_full(const container_t *c, uint8_t typecode) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_cardinality(const_CAST_bitset(c)) ==
- (1 << 16);
- case ARRAY_CONTAINER_TYPE:
- return array_container_cardinality(const_CAST_array(c)) ==
- (1 << 16);
- case RUN_CONTAINER_TYPE:
- return run_container_is_full(const_CAST_run(c));
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-static inline int container_shrink_to_fit(container_t *c, uint8_t type) {
- c = container_mutable_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return 0; // no shrinking possible
- case ARRAY_CONTAINER_TYPE:
- return array_container_shrink_to_fit(CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_shrink_to_fit(CAST_run(c));
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * make a container with a run of ones
- */
-/* initially always use a run container, even if an array might be
- * marginally
- * smaller */
-static inline container_t *container_range_of_ones(uint32_t range_start,
- uint32_t range_end,
- uint8_t *result_type) {
- assert(range_end >= range_start);
- uint64_t cardinality = range_end - range_start + 1;
- if (cardinality <= 2) {
- *result_type = ARRAY_CONTAINER_TYPE;
- return array_container_create_range(range_start, range_end);
- } else {
- *result_type = RUN_CONTAINER_TYPE;
- return run_container_create_range(range_start, range_end);
- }
-}
-
-/* Create a container with all the values between in [min,max) at a
- distance k*step from min. */
-static inline container_t *container_from_range(uint8_t *type, uint32_t min,
- uint32_t max, uint16_t step) {
- if (step == 0) return NULL; // being paranoid
- if (step == 1) {
- return container_range_of_ones(min, max, type);
- // Note: the result is not always a run (need to check the cardinality)
- //*type = RUN_CONTAINER_TYPE;
- // return run_container_create_range(min, max);
- }
- int size = (max - min + step - 1) / step;
- if (size <= DEFAULT_MAX_SIZE) { // array container
- *type = ARRAY_CONTAINER_TYPE;
- array_container_t *array = array_container_create_given_capacity(size);
- array_container_add_from_range(array, min, max, step);
- assert(array->cardinality == size);
- return array;
- } else { // bitset container
- *type = BITSET_CONTAINER_TYPE;
- bitset_container_t *bitset = bitset_container_create();
- bitset_container_add_from_range(bitset, min, max, step);
- assert(bitset->cardinality == size);
- return bitset;
- }
-}
-
-/**
- * "repair" the container after lazy operations.
- */
-static inline container_t *container_repair_after_lazy(container_t *c,
- uint8_t *type) {
- c = get_writable_copy_if_shared(c, type); // !!! unnecessary cloning
- container_t *result = NULL;
- switch (*type) {
- case BITSET_CONTAINER_TYPE: {
- bitset_container_t *bc = CAST_bitset(c);
- bc->cardinality = bitset_container_compute_cardinality(bc);
- if (bc->cardinality <= DEFAULT_MAX_SIZE) {
- result = array_container_from_bitset(bc);
- bitset_container_free(bc);
- *type = ARRAY_CONTAINER_TYPE;
- return result;
- }
- return c;
- }
- case ARRAY_CONTAINER_TYPE:
- return c; // nothing to do
- case RUN_CONTAINER_TYPE:
- return convert_run_to_efficient_container_and_free(CAST_run(c),
- type);
- case SHARED_CONTAINER_TYPE:
- assert(false);
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * Writes the underlying array to buf, outputs how many bytes were written.
- * This is meant to be byte-by-byte compatible with the Java and Go versions of
- * Roaring.
- * The number of bytes written should be
- * container_write(container, buf).
- *
- */
-static inline int32_t container_write(const container_t *c, uint8_t typecode,
- char *buf) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_write(const_CAST_bitset(c), buf);
- case ARRAY_CONTAINER_TYPE:
- return array_container_write(const_CAST_array(c), buf);
- case RUN_CONTAINER_TYPE:
- return run_container_write(const_CAST_run(c), buf);
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * Get the container size in bytes under portable serialization (see
- * container_write), requires a
- * typecode
- */
-static inline int32_t container_size_in_bytes(const container_t *c,
- uint8_t typecode) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_size_in_bytes(const_CAST_bitset(c));
- case ARRAY_CONTAINER_TYPE:
- return array_container_size_in_bytes(const_CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_size_in_bytes(const_CAST_run(c));
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * print the container (useful for debugging), requires a typecode
- */
-void container_printf(const container_t *container, uint8_t typecode);
-
-/**
- * print the content of the container as a comma-separated list of 32-bit
values
- * starting at base, requires a typecode
- */
-void container_printf_as_uint32_array(const container_t *container,
- uint8_t typecode, uint32_t base);
-
-bool container_internal_validate(const container_t *container, uint8_t
typecode,
- const char **reason);
-
-/**
- * Checks whether a container is not empty, requires a typecode
- */
-static inline bool container_nonzero_cardinality(const container_t *c,
- uint8_t typecode) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_const_nonzero_cardinality(
- const_CAST_bitset(c));
- case ARRAY_CONTAINER_TYPE:
- return array_container_nonzero_cardinality(const_CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_nonzero_cardinality(const_CAST_run(c));
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * Recover memory from a container, requires a typecode
- */
-void container_free(container_t *container, uint8_t typecode);
-
-/**
- * Convert a container to an array of values, requires a typecode as well as a
- * "base" (most significant values)
- * Returns number of ints added.
- */
-static inline int container_to_uint32_array(uint32_t *output,
- const container_t *c,
- uint8_t typecode, uint32_t base) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_to_uint32_array(output,
- const_CAST_bitset(c),
base);
- case ARRAY_CONTAINER_TYPE:
- return array_container_to_uint32_array(output, const_CAST_array(c),
- base);
- case RUN_CONTAINER_TYPE:
- return run_container_to_uint32_array(output, const_CAST_run(c),
- base);
- }
- assert(false);
- roaring_unreachable;
- return 0; // unreached
-}
-
-/**
- * Add a value to a container, requires a typecode, fills in new_typecode and
- * return (possibly different) container.
- * This function may allocate a new container, and caller is responsible for
- * memory deallocation
- */
-static inline container_t *container_add(
- container_t *c, uint16_t val,
- uint8_t typecode, // !!! should be second argument?
- uint8_t *new_typecode) {
- c = get_writable_copy_if_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- bitset_container_set(CAST_bitset(c), val);
- *new_typecode = BITSET_CONTAINER_TYPE;
- return c;
- case ARRAY_CONTAINER_TYPE: {
- array_container_t *ac = CAST_array(c);
- if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) {
- *new_typecode = ARRAY_CONTAINER_TYPE;
- return ac;
- } else {
- bitset_container_t *bitset = bitset_container_from_array(ac);
- bitset_container_add(bitset, val);
- *new_typecode = BITSET_CONTAINER_TYPE;
- return bitset;
- }
- } break;
- case RUN_CONTAINER_TYPE:
- // per Java, no container type adjustments are done (revisit?)
- run_container_add(CAST_run(c), val);
- *new_typecode = RUN_CONTAINER_TYPE;
- return c;
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Remove a value from a container, requires a typecode, fills in new_typecode
- * and
- * return (possibly different) container.
- * This function may allocate a new container, and caller is responsible for
- * memory deallocation
- */
-static inline container_t *container_remove(
- container_t *c, uint16_t val,
- uint8_t typecode, // !!! should be second argument?
- uint8_t *new_typecode) {
- c = get_writable_copy_if_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- if (bitset_container_remove(CAST_bitset(c), val)) {
- int card = bitset_container_cardinality(CAST_bitset(c));
- if (card <= DEFAULT_MAX_SIZE) {
- *new_typecode = ARRAY_CONTAINER_TYPE;
- return array_container_from_bitset(CAST_bitset(c));
- }
- }
- *new_typecode = typecode;
- return c;
- case ARRAY_CONTAINER_TYPE:
- *new_typecode = typecode;
- array_container_remove(CAST_array(c), val);
- return c;
- case RUN_CONTAINER_TYPE:
- // per Java, no container type adjustments are done (revisit?)
- run_container_remove(CAST_run(c), val);
- *new_typecode = RUN_CONTAINER_TYPE;
- return c;
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Check whether a value is in a container, requires a typecode
- */
-static inline bool container_contains(
- const container_t *c, uint16_t val,
- uint8_t typecode // !!! should be second argument?
-) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_get(const_CAST_bitset(c), val);
- case ARRAY_CONTAINER_TYPE:
- return array_container_contains(const_CAST_array(c), val);
- case RUN_CONTAINER_TYPE:
- return run_container_contains(const_CAST_run(c), val);
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-/**
- * Check whether a range of values from range_start (included) to range_end
- * (excluded) is in a container, requires a typecode
- */
-static inline bool container_contains_range(
- const container_t *c, uint32_t range_start, uint32_t range_end,
- uint8_t typecode // !!! should be second argument?
-) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_get_range(const_CAST_bitset(c),
range_start,
- range_end);
- case ARRAY_CONTAINER_TYPE:
- return array_container_contains_range(const_CAST_array(c),
- range_start, range_end);
- case RUN_CONTAINER_TYPE:
- return run_container_contains_range(const_CAST_run(c), range_start,
- range_end);
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-/**
- * Returns true if the two containers have the same content. Note that
- * two containers having different types can be "equal" in this sense.
- */
-static inline bool container_equals(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- return bitset_container_equals(const_CAST_bitset(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(BITSET, RUN):
- return run_container_equals_bitset(const_CAST_run(c2),
- const_CAST_bitset(c1));
-
- case CONTAINER_PAIR(RUN, BITSET):
- return run_container_equals_bitset(const_CAST_run(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- // java would always return false?
- return array_container_equal_bitset(const_CAST_array(c2),
- const_CAST_bitset(c1));
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- // java would always return false?
- return array_container_equal_bitset(const_CAST_array(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(ARRAY, RUN):
- return run_container_equals_array(const_CAST_run(c2),
- const_CAST_array(c1));
-
- case CONTAINER_PAIR(RUN, ARRAY):
- return run_container_equals_array(const_CAST_run(c1),
- const_CAST_array(c2));
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- return array_container_equals(const_CAST_array(c1),
- const_CAST_array(c2));
-
- case CONTAINER_PAIR(RUN, RUN):
- return run_container_equals(const_CAST_run(c1),
const_CAST_run(c2));
-
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-/**
- * Returns true if the container c1 is a subset of the container c2. Note that
- * c1 can be a subset of c2 even if they have a different type.
- */
-static inline bool container_is_subset(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- return bitset_container_is_subset(const_CAST_bitset(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(BITSET, RUN):
- return bitset_container_is_subset_run(const_CAST_bitset(c1),
- const_CAST_run(c2));
-
- case CONTAINER_PAIR(RUN, BITSET):
- return run_container_is_subset_bitset(const_CAST_run(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- return false; // by construction, size(c1) > size(c2)
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- return array_container_is_subset_bitset(const_CAST_array(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(ARRAY, RUN):
- return array_container_is_subset_run(const_CAST_array(c1),
- const_CAST_run(c2));
-
- case CONTAINER_PAIR(RUN, ARRAY):
- return run_container_is_subset_array(const_CAST_run(c1),
- const_CAST_array(c2));
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- return array_container_is_subset(const_CAST_array(c1),
- const_CAST_array(c2));
-
- case CONTAINER_PAIR(RUN, RUN):
- return run_container_is_subset(const_CAST_run(c1),
- const_CAST_run(c2));
-
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-// macro-izations possibilities for generic non-inplace binary-op dispatch
-
-/**
- * Compute intersection between two containers, generate a new container
(having
- * type result_type), requires a typecode. This allocates new memory, caller
- * is responsible for deallocation.
- */
-static inline container_t *container_and(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- *result_type =
- bitset_bitset_container_intersection(
- const_CAST_bitset(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- result = array_container_create();
- array_container_intersection(
- const_CAST_array(c1), const_CAST_array(c2),
CAST_array(result));
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- result = run_container_create();
- run_container_intersection(const_CAST_run(c1), const_CAST_run(c2),
- CAST_run(result));
- return
convert_run_to_efficient_container_and_free(CAST_run(result),
- result_type);
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- result = array_container_create();
- array_bitset_container_intersection(const_CAST_array(c2),
- const_CAST_bitset(c1),
- CAST_array(result));
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- array_bitset_container_intersection(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_array(result));
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- *result_type =
- run_bitset_container_intersection(
- const_CAST_run(c2), const_CAST_bitset(c1), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- *result_type =
- run_bitset_container_intersection(
- const_CAST_run(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- array_run_container_intersection(
- const_CAST_array(c1), const_CAST_run(c2), CAST_array(result));
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- array_run_container_intersection(
- const_CAST_array(c2), const_CAST_run(c1), CAST_array(result));
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Compute the size of the intersection between two containers.
- */
-static inline int container_and_cardinality(const container_t *c1,
- uint8_t type1,
- const container_t *c2,
- uint8_t type2) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- return bitset_container_and_justcard(const_CAST_bitset(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- return array_container_intersection_cardinality(
- const_CAST_array(c1), const_CAST_array(c2));
-
- case CONTAINER_PAIR(RUN, RUN):
- return run_container_intersection_cardinality(const_CAST_run(c1),
- const_CAST_run(c2));
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- return array_bitset_container_intersection_cardinality(
- const_CAST_array(c2), const_CAST_bitset(c1));
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- return array_bitset_container_intersection_cardinality(
- const_CAST_array(c1), const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(BITSET, RUN):
- return run_bitset_container_intersection_cardinality(
- const_CAST_run(c2), const_CAST_bitset(c1));
-
- case CONTAINER_PAIR(RUN, BITSET):
- return run_bitset_container_intersection_cardinality(
- const_CAST_run(c1), const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(ARRAY, RUN):
- return array_run_container_intersection_cardinality(
- const_CAST_array(c1), const_CAST_run(c2));
-
- case CONTAINER_PAIR(RUN, ARRAY):
- return array_run_container_intersection_cardinality(
- const_CAST_array(c2), const_CAST_run(c1));
-
- default:
- assert(false);
- roaring_unreachable;
- return 0;
- }
-}
-
-/**
- * Check whether two containers intersect.
- */
-static inline bool container_intersect(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- return bitset_container_intersect(const_CAST_bitset(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- return array_container_intersect(const_CAST_array(c1),
- const_CAST_array(c2));
-
- case CONTAINER_PAIR(RUN, RUN):
- return run_container_intersect(const_CAST_run(c1),
- const_CAST_run(c2));
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- return array_bitset_container_intersect(const_CAST_array(c2),
- const_CAST_bitset(c1));
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- return array_bitset_container_intersect(const_CAST_array(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(BITSET, RUN):
- return run_bitset_container_intersect(const_CAST_run(c2),
- const_CAST_bitset(c1));
-
- case CONTAINER_PAIR(RUN, BITSET):
- return run_bitset_container_intersect(const_CAST_run(c1),
- const_CAST_bitset(c2));
-
- case CONTAINER_PAIR(ARRAY, RUN):
- return array_run_container_intersect(const_CAST_array(c1),
- const_CAST_run(c2));
-
- case CONTAINER_PAIR(RUN, ARRAY):
- return array_run_container_intersect(const_CAST_array(c2),
- const_CAST_run(c1));
-
- default:
- assert(false);
- roaring_unreachable;
- return 0;
- }
-}
-
-/**
- * Compute intersection between two containers, with result in the first
- container if possible. If the returned pointer is identical to c1,
- then the container has been modified. If the returned pointer is different
- from c1, then a new container has been created and the caller is responsible
- for freeing it.
- The type of the first container may change. Returns the modified
- (and possibly new) container.
-*/
-static inline container_t *container_iand(container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type) {
- c1 = get_writable_copy_if_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- *result_type = bitset_bitset_container_intersection_inplace(
- CAST_bitset(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- array_container_intersection_inplace(CAST_array(c1),
- const_CAST_array(c2));
- *result_type = ARRAY_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(RUN, RUN):
- result = run_container_create();
- run_container_intersection(const_CAST_run(c1), const_CAST_run(c2),
- CAST_run(result));
- // as of January 2016, Java code used non-in-place intersection for
- // two runcontainers
- return
convert_run_to_efficient_container_and_free(CAST_run(result),
- result_type);
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- // c1 is a bitmap so no inplace possible
- result = array_container_create();
- array_bitset_container_intersection(const_CAST_array(c2),
- const_CAST_bitset(c1),
- CAST_array(result));
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- array_bitset_container_intersection(
- const_CAST_array(c1), const_CAST_bitset(c2),
- CAST_array(c1)); // result is allowed to be same as c1
- return c1;
-
- case CONTAINER_PAIR(BITSET, RUN):
- // will attempt in-place computation
- *result_type = run_bitset_container_intersection(
- const_CAST_run(c2), const_CAST_bitset(c1), &c1)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(RUN, BITSET):
- *result_type =
- run_bitset_container_intersection(
- const_CAST_run(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- array_run_container_intersection(
- const_CAST_array(c1), const_CAST_run(c2), CAST_array(result));
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE; // never bitset
- array_run_container_intersection(
- const_CAST_array(c2), const_CAST_run(c1), CAST_array(result));
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Compute union between two containers, generate a new container (having type
- * result_type), requires a typecode. This allocates new memory, caller
- * is responsible for deallocation.
- */
-static inline container_t *container_or(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- result = bitset_container_create();
- bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
- CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type =
- array_array_container_union(const_CAST_array(c1),
- const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- result = run_container_create();
- run_container_union(const_CAST_run(c1), const_CAST_run(c2),
- CAST_run(result));
- *result_type = RUN_CONTAINER_TYPE;
- // todo: could be optimized since will never convert to array
- result = convert_run_to_efficient_container_and_free(
- CAST_run(result), result_type);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- result = bitset_container_create();
- array_bitset_container_union(const_CAST_array(c2),
- const_CAST_bitset(c1),
- CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- result = bitset_container_create();
- array_bitset_container_union(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = run_container_create();
- *result_type = RUN_CONTAINER_TYPE;
- run_container_copy(const_CAST_run(c2), CAST_run(result));
- return result;
- }
- result = bitset_container_create();
- run_bitset_container_union(
- const_CAST_run(c2), const_CAST_bitset(c1),
CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- if (run_container_is_full(const_CAST_run(c1))) {
- result = run_container_create();
- *result_type = RUN_CONTAINER_TYPE;
- run_container_copy(const_CAST_run(c1), CAST_run(result));
- return result;
- }
- result = bitset_container_create();
- run_bitset_container_union(
- const_CAST_run(c1), const_CAST_bitset(c2),
CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = run_container_create();
- array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
- CAST_run(result));
- result = convert_run_to_efficient_container_and_free(
- CAST_run(result), result_type);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- result = run_container_create();
- array_run_container_union(const_CAST_array(c2), const_CAST_run(c1),
- CAST_run(result));
- result = convert_run_to_efficient_container_and_free(
- CAST_run(result), result_type);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL; // unreached
- }
-}
-
-/**
- * Compute union between two containers, generate a new container (having type
- * result_type), requires a typecode. This allocates new memory, caller
- * is responsible for deallocation.
- *
- * This lazy version delays some operations such as the maintenance of the
- * cardinality. It requires repair later on the generated containers.
- */
-static inline container_t *container_lazy_or(const container_t *c1,
- uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- result = bitset_container_create();
- bitset_container_or_nocard(const_CAST_bitset(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type =
- array_array_container_lazy_union(const_CAST_array(c1),
- const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- result = run_container_create();
- run_container_union(const_CAST_run(c1), const_CAST_run(c2),
- CAST_run(result));
- *result_type = RUN_CONTAINER_TYPE;
- // we are being lazy
- result = convert_run_to_efficient_container_and_free(
- CAST_run(result), result_type);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- result = bitset_container_create();
- array_bitset_container_lazy_union(const_CAST_array(c2),
- const_CAST_bitset(c1),
- CAST_bitset(result)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- result = bitset_container_create();
- array_bitset_container_lazy_union(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = run_container_create();
- *result_type = RUN_CONTAINER_TYPE;
- run_container_copy(const_CAST_run(c2), CAST_run(result));
- return result;
- }
- result = bitset_container_create();
- run_bitset_container_lazy_union(const_CAST_run(c2),
- const_CAST_bitset(c1),
- CAST_bitset(result)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- if (run_container_is_full(const_CAST_run(c1))) {
- result = run_container_create();
- *result_type = RUN_CONTAINER_TYPE;
- run_container_copy(const_CAST_run(c1), CAST_run(result));
- return result;
- }
- result = bitset_container_create();
- run_bitset_container_lazy_union(const_CAST_run(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = run_container_create();
- array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
- CAST_run(result));
- *result_type = RUN_CONTAINER_TYPE;
- // next line skipped since we are lazy
- // result = convert_run_to_efficient_container(result,
result_type);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- result = run_container_create();
- array_run_container_union(const_CAST_array(c2), const_CAST_run(c1),
- CAST_run(result)); // TODO make lazy
- *result_type = RUN_CONTAINER_TYPE;
- // next line skipped since we are lazy
- // result = convert_run_to_efficient_container(result,
result_type);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL; // unreached
- }
-}
-
-/**
- * Compute the union between two containers, with result in the first
container.
- * If the returned pointer is identical to c1, then the container has been
- * modified.
- * If the returned pointer is different from c1, then a new container has been
- * created and the caller is responsible for freeing it.
- * The type of the first container may change. Returns the modified
- * (and possibly new) container
- */
-static inline container_t *container_ior(container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type) {
- c1 = get_writable_copy_if_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
- CAST_bitset(c1));
-#ifdef OR_BITSET_CONVERSION_TO_FULL
- if (CAST_bitset(c1)->cardinality == (1 << 16)) { // we convert
- result = run_container_create_range(0, (1 << 16));
- *result_type = RUN_CONTAINER_TYPE;
- return result;
- }
-#endif
- *result_type = BITSET_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type = array_array_container_inplace_union(
- CAST_array(c1), const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) {
- return c1; // the computation was done in-place!
- }
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- run_container_union_inplace(CAST_run(c1), const_CAST_run(c2));
- return convert_run_to_efficient_container(CAST_run(c1),
- result_type);
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- array_bitset_container_union(
- const_CAST_array(c2), const_CAST_bitset(c1), CAST_bitset(c1));
- *result_type = BITSET_CONTAINER_TYPE; // never array
- return c1;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- // c1 is an array, so no in-place possible
- result = bitset_container_create();
- *result_type = BITSET_CONTAINER_TYPE;
- array_bitset_container_union(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result));
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = run_container_create();
- *result_type = RUN_CONTAINER_TYPE;
- run_container_copy(const_CAST_run(c2), CAST_run(result));
- return result;
- }
- run_bitset_container_union(const_CAST_run(c2),
- const_CAST_bitset(c1),
- CAST_bitset(c1)); // allowed
- *result_type = BITSET_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(RUN, BITSET):
- if (run_container_is_full(const_CAST_run(c1))) {
- *result_type = RUN_CONTAINER_TYPE;
- return c1;
- }
- result = bitset_container_create();
- run_bitset_container_union(
- const_CAST_run(c1), const_CAST_bitset(c2),
CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = run_container_create();
- array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
- CAST_run(result));
- result = convert_run_to_efficient_container_and_free(
- CAST_run(result), result_type);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- array_run_container_inplace_union(const_CAST_array(c2),
- CAST_run(c1));
- c1 = convert_run_to_efficient_container(CAST_run(c1), result_type);
- return c1;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Compute the union between two containers, with result in the first
container.
- * If the returned pointer is identical to c1, then the container has been
- * modified.
- * If the returned pointer is different from c1, then a new container has been
- * created and the caller is responsible for freeing it.
- * The type of the first container may change. Returns the modified
- * (and possibly new) container
- *
- * This lazy version delays some operations such as the maintenance of the
- * cardinality. It requires repair later on the generated containers.
- */
-static inline container_t *container_lazy_ior(container_t *c1, uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type) {
- assert(type1 != SHARED_CONTAINER_TYPE);
- // c1 = get_writable_copy_if_shared(c1,&type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
-#ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL
- // if we have two bitsets, we might as well compute the cardinality
- bitset_container_or(const_CAST_bitset(c1), const_CAST_bitset(c2),
- CAST_bitset(c1));
- // it is possible that two bitsets can lead to a full container
- if (CAST_bitset(c1)->cardinality == (1 << 16)) { // we convert
- result = run_container_create_range(0, (1 << 16));
- *result_type = RUN_CONTAINER_TYPE;
- return result;
- }
-#else
- bitset_container_or_nocard(const_CAST_bitset(c1),
- const_CAST_bitset(c2), CAST_bitset(c1));
-
-#endif
- *result_type = BITSET_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type = array_array_container_lazy_inplace_union(
- CAST_array(c1), const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- if ((result == NULL) && (*result_type == ARRAY_CONTAINER_TYPE)) {
- return c1; // the computation was done in-place!
- }
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- run_container_union_inplace(CAST_run(c1), const_CAST_run(c2));
- *result_type = RUN_CONTAINER_TYPE;
- return convert_run_to_efficient_container(CAST_run(c1),
- result_type);
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- array_bitset_container_lazy_union(const_CAST_array(c2),
- const_CAST_bitset(c1),
- CAST_bitset(c1)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE; // never array
- return c1;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- // c1 is an array, so no in-place possible
- result = bitset_container_create();
- *result_type = BITSET_CONTAINER_TYPE;
- array_bitset_container_lazy_union(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result)); // is lazy
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = run_container_create();
- *result_type = RUN_CONTAINER_TYPE;
- run_container_copy(const_CAST_run(c2), CAST_run(result));
- return result;
- }
- run_bitset_container_lazy_union(
- const_CAST_run(c2), const_CAST_bitset(c1),
- CAST_bitset(c1)); // allowed // lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(RUN, BITSET):
- if (run_container_is_full(const_CAST_run(c1))) {
- *result_type = RUN_CONTAINER_TYPE;
- return c1;
- }
- result = bitset_container_create();
- run_bitset_container_lazy_union(const_CAST_run(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result)); // lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = run_container_create();
- array_run_container_union(const_CAST_array(c1), const_CAST_run(c2),
- CAST_run(result));
- *result_type = RUN_CONTAINER_TYPE;
- // next line skipped since we are lazy
- // result = convert_run_to_efficient_container_and_free(result,
- // result_type);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- array_run_container_inplace_union(const_CAST_array(c2),
- CAST_run(c1));
- *result_type = RUN_CONTAINER_TYPE;
- // next line skipped since we are lazy
- // result = convert_run_to_efficient_container_and_free(result,
- // result_type);
- return c1;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Compute symmetric difference (xor) between two containers, generate a new
- * container (having type result_type), requires a typecode. This allocates new
- * memory, caller is responsible for deallocation.
- */
-static inline container_t *container_xor(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- *result_type =
- bitset_bitset_container_xor(const_CAST_bitset(c1),
- const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type =
- array_array_container_xor(const_CAST_array(c1),
- const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- *result_type = (uint8_t)run_run_container_xor(
- const_CAST_run(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- *result_type =
- array_bitset_container_xor(const_CAST_array(c2),
- const_CAST_bitset(c1), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- *result_type =
- array_bitset_container_xor(const_CAST_array(c1),
- const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- *result_type =
- run_bitset_container_xor(const_CAST_run(c2),
- const_CAST_bitset(c1), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- *result_type =
- run_bitset_container_xor(const_CAST_run(c1),
- const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- *result_type = (uint8_t)array_run_container_xor(
- const_CAST_array(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- *result_type = (uint8_t)array_run_container_xor(
- const_CAST_array(c2), const_CAST_run(c1), &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL; // unreached
- }
-}
-
-/* Applies an offset to the non-empty container 'c'.
- * The results are stored in new containers returned via 'lo' and 'hi', for the
- * low and high halves of the result (where the low half matches the original
- * key and the high one corresponds to values for the following key). Either
one
- * of 'lo' and 'hi' are allowed to be 'NULL', but not both. Whenever one of
them
- * is not 'NULL', it should point to a 'NULL' container. Whenever one of them
is
- * 'NULL' the shifted elements for that part will not be computed. If either of
- * the resulting containers turns out to be empty, the pointed container will
- * remain 'NULL'.
- */
-static inline void container_add_offset(const container_t *c, uint8_t type,
- container_t **lo, container_t **hi,
- uint16_t offset) {
- assert(offset != 0);
- assert(container_nonzero_cardinality(c, type));
- assert(lo != NULL || hi != NULL);
- assert(lo == NULL || *lo == NULL);
- assert(hi == NULL || *hi == NULL);
-
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- bitset_container_offset(const_CAST_bitset(c), lo, hi, offset);
- break;
- case ARRAY_CONTAINER_TYPE:
- array_container_offset(const_CAST_array(c), lo, hi, offset);
- break;
- case RUN_CONTAINER_TYPE:
- run_container_offset(const_CAST_run(c), lo, hi, offset);
- break;
- default:
- assert(false);
- roaring_unreachable;
- break;
- }
-}
-
-/**
- * Compute xor between two containers, generate a new container (having type
- * result_type), requires a typecode. This allocates new memory, caller
- * is responsible for deallocation.
- *
- * This lazy version delays some operations such as the maintenance of the
- * cardinality. It requires repair later on the generated containers.
- */
-static inline container_t *container_lazy_xor(const container_t *c1,
- uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- result = bitset_container_create();
- bitset_container_xor_nocard(const_CAST_bitset(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type =
- array_array_container_lazy_xor(const_CAST_array(c1),
- const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- // nothing special done yet.
- *result_type = (uint8_t)run_run_container_xor(
- const_CAST_run(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- result = bitset_container_create();
- *result_type = BITSET_CONTAINER_TYPE;
- array_bitset_container_lazy_xor(const_CAST_array(c2),
- const_CAST_bitset(c1),
- CAST_bitset(result));
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- result = bitset_container_create();
- *result_type = BITSET_CONTAINER_TYPE;
- array_bitset_container_lazy_xor(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_bitset(result));
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- result = bitset_container_create();
- run_bitset_container_lazy_xor(
- const_CAST_run(c2), const_CAST_bitset(c1),
CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- result = bitset_container_create();
- run_bitset_container_lazy_xor(
- const_CAST_run(c1), const_CAST_bitset(c2),
CAST_bitset(result));
- *result_type = BITSET_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- result = run_container_create();
- array_run_container_lazy_xor(const_CAST_array(c1),
- const_CAST_run(c2), CAST_run(result));
- *result_type = RUN_CONTAINER_TYPE;
- // next line skipped since we are lazy
- // result = convert_run_to_efficient_container(result,
result_type);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- result = run_container_create();
- array_run_container_lazy_xor(const_CAST_array(c2),
- const_CAST_run(c1), CAST_run(result));
- *result_type = RUN_CONTAINER_TYPE;
- // next line skipped since we are lazy
- // result = convert_run_to_efficient_container(result,
result_type);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL; // unreached
- }
-}
-
-/**
- * Compute the xor between two containers, with result in the first container.
- * If the returned pointer is identical to c1, then the container has been
- * modified.
- * If the returned pointer is different from c1, then a new container has been
- * created. The original container is freed by container_ixor.
- * The type of the first container may change. Returns the modified (and
- * possibly new) container.
- */
-static inline container_t *container_ixor(container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type) {
- c1 = get_writable_copy_if_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- *result_type = bitset_bitset_container_ixor(
- CAST_bitset(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- *result_type = array_array_container_ixor(
- CAST_array(c1), const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- *result_type = (uint8_t)run_run_container_ixor(
- CAST_run(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- *result_type = bitset_array_container_ixor(
- CAST_bitset(c1), const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- *result_type = array_bitset_container_ixor(
- CAST_array(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- *result_type = bitset_run_container_ixor(
- CAST_bitset(c1), const_CAST_run(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
-
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- *result_type = run_bitset_container_ixor(
- CAST_run(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- *result_type = (uint8_t)array_run_container_ixor(
- CAST_array(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- *result_type = (uint8_t)run_array_container_ixor(
- CAST_run(c1), const_CAST_array(c2), &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Compute the xor between two containers, with result in the first container.
- * If the returned pointer is identical to c1, then the container has been
- * modified.
- * If the returned pointer is different from c1, then a new container has been
- * created and the caller is responsible for freeing it.
- * The type of the first container may change. Returns the modified
- * (and possibly new) container
- *
- * This lazy version delays some operations such as the maintenance of the
- * cardinality. It requires repair later on the generated containers.
- */
-static inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type) {
- assert(type1 != SHARED_CONTAINER_TYPE);
- // c1 = get_writable_copy_if_shared(c1,&type1);
- c2 = container_unwrap_shared(c2, &type2);
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- bitset_container_xor_nocard(CAST_bitset(c1), const_CAST_bitset(c2),
- CAST_bitset(c1)); // is lazy
- *result_type = BITSET_CONTAINER_TYPE;
- return c1;
-
- // TODO: other cases being lazy, esp. when we know inplace not likely
- // could see the corresponding code for union
- default:
- // we may have a dirty bitset (without a precomputed cardinality)
- // and calling container_ixor on it might be unsafe.
- if (type1 == BITSET_CONTAINER_TYPE) {
- bitset_container_t *bc = CAST_bitset(c1);
- if (bc->cardinality == BITSET_UNKNOWN_CARDINALITY) {
- bc->cardinality = bitset_container_compute_cardinality(bc);
- }
- }
- return container_ixor(c1, type1, c2, type2, result_type);
- }
-}
-
-/**
- * Compute difference (andnot) between two containers, generate a new
- * container (having type result_type), requires a typecode. This allocates new
- * memory, caller is responsible for deallocation.
- */
-static inline container_t *container_andnot(const container_t *c1,
- uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type) {
- c1 = container_unwrap_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- *result_type =
- bitset_bitset_container_andnot(const_CAST_bitset(c1),
- const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- result = array_container_create();
- array_array_container_andnot(
- const_CAST_array(c1), const_CAST_array(c2),
CAST_array(result));
- *result_type = ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE;
- return result;
- }
- *result_type = (uint8_t)run_run_container_andnot(
- const_CAST_run(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- *result_type =
- bitset_array_container_andnot(const_CAST_bitset(c1),
- const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- result = array_container_create();
- array_bitset_container_andnot(const_CAST_array(c1),
- const_CAST_bitset(c2),
- CAST_array(result));
- *result_type = ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(BITSET, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE;
- return result;
- }
- *result_type =
- bitset_run_container_andnot(const_CAST_bitset(c1),
- const_CAST_run(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- *result_type =
- run_bitset_container_andnot(const_CAST_run(c1),
- const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- if (run_container_is_full(const_CAST_run(c2))) {
- result = array_container_create();
- *result_type = ARRAY_CONTAINER_TYPE;
- return result;
- }
- result = array_container_create();
- array_run_container_andnot(const_CAST_array(c1),
const_CAST_run(c2),
- CAST_array(result));
- *result_type = ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- *result_type = (uint8_t)run_array_container_andnot(
- const_CAST_run(c1), const_CAST_array(c2), &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL; // unreached
- }
-}
-
-/**
- * Compute the andnot between two containers, with result in the first
- * container.
- * If the returned pointer is identical to c1, then the container has been
- * modified.
- * If the returned pointer is different from c1, then a new container has been
- * created. The original container is freed by container_iandnot.
- * The type of the first container may change. Returns the modified (and
- * possibly new) container.
- */
-static inline container_t *container_iandnot(container_t *c1, uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type) {
- c1 = get_writable_copy_if_shared(c1, &type1);
- c2 = container_unwrap_shared(c2, &type2);
- container_t *result = NULL;
- switch (PAIR_CONTAINER_TYPES(type1, type2)) {
- case CONTAINER_PAIR(BITSET, BITSET):
- *result_type = bitset_bitset_container_iandnot(
- CAST_bitset(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, ARRAY):
- array_array_container_iandnot(CAST_array(c1),
const_CAST_array(c2));
- *result_type = ARRAY_CONTAINER_TYPE;
- return c1;
-
- case CONTAINER_PAIR(RUN, RUN):
- *result_type = (uint8_t)run_run_container_iandnot(
- CAST_run(c1), const_CAST_run(c2), &result);
- return result;
-
- case CONTAINER_PAIR(BITSET, ARRAY):
- *result_type = bitset_array_container_iandnot(
- CAST_bitset(c1), const_CAST_array(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, BITSET):
- *result_type = ARRAY_CONTAINER_TYPE;
- array_bitset_container_iandnot(CAST_array(c1),
- const_CAST_bitset(c2));
- return c1;
-
- case CONTAINER_PAIR(BITSET, RUN):
- *result_type = bitset_run_container_iandnot(
- CAST_bitset(c1), const_CAST_run(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(RUN, BITSET):
- *result_type = run_bitset_container_iandnot(
- CAST_run(c1), const_CAST_bitset(c2), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
-
- case CONTAINER_PAIR(ARRAY, RUN):
- *result_type = ARRAY_CONTAINER_TYPE;
- array_run_container_iandnot(CAST_array(c1), const_CAST_run(c2));
- return c1;
-
- case CONTAINER_PAIR(RUN, ARRAY):
- *result_type = (uint8_t)run_array_container_iandnot(
- CAST_run(c1), const_CAST_array(c2), &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-/**
- * Visit all values x of the container once, passing (base+x,ptr)
- * to iterator. You need to specify a container and its type.
- * Returns true if the iteration should continue.
- */
-static inline bool container_iterate(const container_t *c, uint8_t type,
- uint32_t base, roaring_iterator iterator,
- void *ptr) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_iterate(const_CAST_bitset(c), base,
- iterator, ptr);
- case ARRAY_CONTAINER_TYPE:
- return array_container_iterate(const_CAST_array(c), base, iterator,
- ptr);
- case RUN_CONTAINER_TYPE:
- return run_container_iterate(const_CAST_run(c), base, iterator,
- ptr);
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-static inline bool container_iterate64(const container_t *c, uint8_t type,
- uint32_t base,
- roaring_iterator64 iterator,
- uint64_t high_bits, void *ptr) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_iterate64(const_CAST_bitset(c), base,
- iterator, high_bits, ptr);
- case ARRAY_CONTAINER_TYPE:
- return array_container_iterate64(const_CAST_array(c), base,
- iterator, high_bits, ptr);
- case RUN_CONTAINER_TYPE:
- return run_container_iterate64(const_CAST_run(c), base, iterator,
- high_bits, ptr);
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-static inline container_t *container_not(const container_t *c, uint8_t type,
- uint8_t *result_type) {
- c = container_unwrap_shared(c, &type);
- container_t *result = NULL;
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- *result_type =
- bitset_container_negation(const_CAST_bitset(c), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
- case ARRAY_CONTAINER_TYPE:
- result = bitset_container_create();
- *result_type = BITSET_CONTAINER_TYPE;
- array_container_negation(const_CAST_array(c), CAST_bitset(result));
- return result;
- case RUN_CONTAINER_TYPE:
- *result_type =
- (uint8_t)run_container_negation(const_CAST_run(c), &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return NULL;
-}
-
-static inline container_t *container_not_range(const container_t *c,
- uint8_t type,
- uint32_t range_start,
- uint32_t range_end,
- uint8_t *result_type) {
- c = container_unwrap_shared(c, &type);
- container_t *result = NULL;
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- *result_type =
- bitset_container_negation_range(const_CAST_bitset(c),
- range_start, range_end,
&result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
- case ARRAY_CONTAINER_TYPE:
- *result_type =
- array_container_negation_range(const_CAST_array(c),
range_start,
- range_end, &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
- case RUN_CONTAINER_TYPE:
- *result_type = (uint8_t)run_container_negation_range(
- const_CAST_run(c), range_start, range_end, &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return NULL;
-}
-
-static inline container_t *container_inot(container_t *c, uint8_t type,
- uint8_t *result_type) {
- c = get_writable_copy_if_shared(c, &type);
- container_t *result = NULL;
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- *result_type =
- bitset_container_negation_inplace(CAST_bitset(c), &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
- case ARRAY_CONTAINER_TYPE:
- // will never be inplace
- result = bitset_container_create();
- *result_type = BITSET_CONTAINER_TYPE;
- array_container_negation(CAST_array(c), CAST_bitset(result));
- array_container_free(CAST_array(c));
- return result;
- case RUN_CONTAINER_TYPE:
- *result_type =
- (uint8_t)run_container_negation_inplace(CAST_run(c), &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return NULL;
-}
-
-static inline container_t *container_inot_range(container_t *c, uint8_t type,
- uint32_t range_start,
- uint32_t range_end,
- uint8_t *result_type) {
- c = get_writable_copy_if_shared(c, &type);
- container_t *result = NULL;
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- *result_type = bitset_container_negation_range_inplace(
- CAST_bitset(c), range_start, range_end, &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
- case ARRAY_CONTAINER_TYPE:
- *result_type = array_container_negation_range_inplace(
- CAST_array(c), range_start, range_end, &result)
- ? BITSET_CONTAINER_TYPE
- : ARRAY_CONTAINER_TYPE;
- return result;
- case RUN_CONTAINER_TYPE:
- *result_type = (uint8_t)run_container_negation_range_inplace(
- CAST_run(c), range_start, range_end, &result);
- return result;
-
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return NULL;
-}
-
-/**
- * If the element of given rank is in this container, supposing that
- * the first
- * element has rank start_rank, then the function returns true and
- * sets element
- * accordingly.
- * Otherwise, it returns false and update start_rank.
- */
-static inline bool container_select(const container_t *c, uint8_t type,
- uint32_t *start_rank, uint32_t rank,
- uint32_t *element) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_select(const_CAST_bitset(c), start_rank,
- rank, element);
- case ARRAY_CONTAINER_TYPE:
- return array_container_select(const_CAST_array(c), start_rank,
rank,
- element);
- case RUN_CONTAINER_TYPE:
- return run_container_select(const_CAST_run(c), start_rank, rank,
- element);
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-static inline uint16_t container_maximum(const container_t *c, uint8_t type) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_maximum(const_CAST_bitset(c));
- case ARRAY_CONTAINER_TYPE:
- return array_container_maximum(const_CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_maximum(const_CAST_run(c));
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-static inline uint16_t container_minimum(const container_t *c, uint8_t type) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_minimum(const_CAST_bitset(c));
- case ARRAY_CONTAINER_TYPE:
- return array_container_minimum(const_CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_minimum(const_CAST_run(c));
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-// number of values smaller or equal to x
-static inline int container_rank(const container_t *c, uint8_t type,
- uint16_t x) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_rank(const_CAST_bitset(c), x);
- case ARRAY_CONTAINER_TYPE:
- return array_container_rank(const_CAST_array(c), x);
- case RUN_CONTAINER_TYPE:
- return run_container_rank(const_CAST_run(c), x);
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-// bulk version of container_rank(); return number of consumed elements
-static inline uint32_t container_rank_many(const container_t *c, uint8_t type,
- uint64_t start_rank,
- const uint32_t *begin,
- const uint32_t *end, uint64_t *ans)
{
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_rank_many(const_CAST_bitset(c), start_rank,
- begin, end, ans);
- case ARRAY_CONTAINER_TYPE:
- return array_container_rank_many(const_CAST_array(c), start_rank,
- begin, end, ans);
- case RUN_CONTAINER_TYPE:
- return run_container_rank_many(const_CAST_run(c), start_rank,
begin,
- end, ans);
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return 0;
-}
-
-// return the index of x, if not exsist return -1
-static inline int container_get_index(const container_t *c, uint8_t type,
- uint16_t x) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_get_index(const_CAST_bitset(c), x);
- case ARRAY_CONTAINER_TYPE:
- return array_container_get_index(const_CAST_array(c), x);
- case RUN_CONTAINER_TYPE:
- return run_container_get_index(const_CAST_run(c), x);
- default:
- assert(false);
- roaring_unreachable;
- }
- assert(false);
- roaring_unreachable;
- return false;
-}
-
-/**
- * Add all values in range [min, max] to a given container.
- *
- * If the returned pointer is different from $container, then a new container
- * has been created and the caller is responsible for freeing it.
- * The type of the first container may change. Returns the modified
- * (and possibly new) container.
- */
-static inline container_t *container_add_range(container_t *c, uint8_t type,
- uint32_t min, uint32_t max,
- uint8_t *result_type) {
- // NB: when selecting new container type, we perform only inexpensive
checks
- switch (type) {
- case BITSET_CONTAINER_TYPE: {
- bitset_container_t *bitset = CAST_bitset(c);
-
- int32_t union_cardinality = 0;
- union_cardinality += bitset->cardinality;
- union_cardinality += max - min + 1;
- union_cardinality -=
- bitset_lenrange_cardinality(bitset->words, min, max - min);
-
- if (union_cardinality == INT32_C(0x10000)) {
- *result_type = RUN_CONTAINER_TYPE;
- return run_container_create_range(0, INT32_C(0x10000));
- } else {
- *result_type = BITSET_CONTAINER_TYPE;
- bitset_set_lenrange(bitset->words, min, max - min);
- bitset->cardinality = union_cardinality;
- return bitset;
- }
- }
- case ARRAY_CONTAINER_TYPE: {
- array_container_t *array = CAST_array(c);
-
- int32_t nvals_greater =
- count_greater(array->array, array->cardinality, (uint16_t)max);
- int32_t nvals_less =
- count_less(array->array, array->cardinality - nvals_greater,
- (uint16_t)min);
- int32_t union_cardinality =
- nvals_less + (max - min + 1) + nvals_greater;
-
- if (union_cardinality == INT32_C(0x10000)) {
- *result_type = RUN_CONTAINER_TYPE;
- return run_container_create_range(0, INT32_C(0x10000));
- } else if (union_cardinality <= DEFAULT_MAX_SIZE) {
- *result_type = ARRAY_CONTAINER_TYPE;
- array_container_add_range_nvals(array, min, max, nvals_less,
- nvals_greater);
- return array;
- } else {
- *result_type = BITSET_CONTAINER_TYPE;
- bitset_container_t *bitset =
bitset_container_from_array(array);
- bitset_set_lenrange(bitset->words, min, max - min);
- bitset->cardinality = union_cardinality;
- return bitset;
- }
- }
- case RUN_CONTAINER_TYPE: {
- run_container_t *run = CAST_run(c);
-
- int32_t nruns_greater =
- rle16_count_greater(run->runs, run->n_runs, (uint16_t)max);
- int32_t nruns_less = rle16_count_less(
- run->runs, run->n_runs - nruns_greater, (uint16_t)min);
-
- int32_t run_size_bytes =
- (nruns_less + 1 + nruns_greater) * sizeof(rle16_t);
- int32_t bitset_size_bytes =
- BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
-
- if (run_size_bytes <= bitset_size_bytes) {
- run_container_add_range_nruns(run, min, max, nruns_less,
- nruns_greater);
- *result_type = RUN_CONTAINER_TYPE;
- return run;
- } else {
- return container_from_run_range(run, min, max, result_type);
- }
- }
- default:
- roaring_unreachable;
- }
-}
-
-/*
- * Removes all elements in range [min, max].
- * Returns one of:
- * - NULL if no elements left
- * - pointer to the original container
- * - pointer to a newly-allocated container (if it is more efficient)
- *
- * If the returned pointer is different from $container, then a new container
- * has been created and the caller is responsible for freeing the original
- * container.
- */
-static inline container_t *container_remove_range(container_t *c, uint8_t type,
- uint32_t min, uint32_t max,
- uint8_t *result_type) {
- switch (type) {
- case BITSET_CONTAINER_TYPE: {
- bitset_container_t *bitset = CAST_bitset(c);
-
- int32_t result_cardinality =
- bitset->cardinality -
- bitset_lenrange_cardinality(bitset->words, min, max - min);
-
- if (result_cardinality == 0) {
- return NULL;
- } else if (result_cardinality <= DEFAULT_MAX_SIZE) {
- *result_type = ARRAY_CONTAINER_TYPE;
- bitset_reset_range(bitset->words, min, max + 1);
- bitset->cardinality = result_cardinality;
- return array_container_from_bitset(bitset);
- } else {
- *result_type = BITSET_CONTAINER_TYPE;
- bitset_reset_range(bitset->words, min, max + 1);
- bitset->cardinality = result_cardinality;
- return bitset;
- }
- }
- case ARRAY_CONTAINER_TYPE: {
- array_container_t *array = CAST_array(c);
-
- int32_t nvals_greater =
- count_greater(array->array, array->cardinality, (uint16_t)max);
- int32_t nvals_less =
- count_less(array->array, array->cardinality - nvals_greater,
- (uint16_t)min);
- int32_t result_cardinality = nvals_less + nvals_greater;
-
- if (result_cardinality == 0) {
- return NULL;
- } else {
- *result_type = ARRAY_CONTAINER_TYPE;
- array_container_remove_range(
- array, nvals_less, array->cardinality -
result_cardinality);
- return array;
- }
- }
- case RUN_CONTAINER_TYPE: {
- run_container_t *run = CAST_run(c);
-
- if (run->n_runs == 0) {
- return NULL;
- }
- if (min <= run_container_minimum(run) &&
- max >= run_container_maximum(run)) {
- return NULL;
- }
-
- run_container_remove_range(run, min, max);
- return convert_run_to_efficient_container(run, result_type);
- }
- default:
- roaring_unreachable;
- }
-}
-
-#ifdef __cplusplus
-using api::roaring_container_iterator_t;
-#endif
-
-/**
- * Initializes the iterator at the first entry in the container.
- */
-roaring_container_iterator_t container_init_iterator(const container_t *c,
- uint8_t typecode,
- uint16_t *value);
-
-/**
- * Initializes the iterator at the last entry in the container.
- */
-roaring_container_iterator_t container_init_iterator_last(const container_t *c,
- uint8_t typecode,
- uint16_t *value);
-
-/**
- * Moves the iterator to the next entry. Returns true and sets `value` if a
- * value is present.
- */
-bool container_iterator_next(const container_t *c, uint8_t typecode,
- roaring_container_iterator_t *it, uint16_t
*value);
-
-/**
- * Moves the iterator to the previous entry. Returns true and sets `value` if a
- * value is present.
- */
-bool container_iterator_prev(const container_t *c, uint8_t typecode,
- roaring_container_iterator_t *it, uint16_t
*value);
-
-/**
- * Moves the iterator to the smallest entry that is greater than or equal to
- * `val`. Returns true and sets `value_out` if a value is present. `value_out`
- * should be initialized to a value.
- */
-bool container_iterator_lower_bound(const container_t *c, uint8_t typecode,
- roaring_container_iterator_t *it,
- uint16_t *value_out, uint16_t val);
-
-/**
- * Reads up to `count` entries from the container, and writes them into `buf`
- * as `high16 | entry`. Returns true and sets `value_out` if a value is present
- * after reading the entries. Sets `consumed` to the number of values read.
- * `count` should be greater than zero.
- */
-bool container_iterator_read_into_uint32(const container_t *c, uint8_t
typecode,
- roaring_container_iterator_t *it,
- uint32_t high16, uint32_t *buf,
- uint32_t count, uint32_t *consumed,
- uint16_t *value_out);
-
-/**
- * Reads up to `count` entries from the container, and writes them into `buf`
- * as `high48 | entry`. Returns true and sets `value_out` if a value is present
- * after reading the entries. Sets `consumed` to the number of values read.
- * `count` should be greater than zero.
- */
-bool container_iterator_read_into_uint64(const container_t *c, uint8_t
typecode,
- roaring_container_iterator_t *it,
- uint64_t high48, uint64_t *buf,
- uint32_t count, uint32_t *consumed,
- uint16_t *value_out);
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#endif
-/* end file include/roaring/containers/containers.h */
-/* begin file include/roaring/roaring_array.h */
-#ifndef INCLUDE_ROARING_ARRAY_H
-#define INCLUDE_ROARING_ARRAY_H
-
-#include <assert.h>
-#include <stdbool.h>
-#include <stdint.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-
-// Note: in pure C++ code, you should avoid putting `using` in header files
-using api::roaring_array_t;
-
-namespace internal {
-#endif
-
-enum {
- SERIAL_COOKIE_NO_RUNCONTAINER = 12346,
- SERIAL_COOKIE = 12347,
- FROZEN_COOKIE = 13766,
- NO_OFFSET_THRESHOLD = 4
-};
-
-/**
- * Create a new roaring array
- */
-roaring_array_t *ra_create(void);
-
-/**
- * Initialize an existing roaring array with the specified capacity (in number
- * of containers)
- */
-bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap);
-
-/**
- * Initialize with zero capacity
- */
-void ra_init(roaring_array_t *t);
-
-/**
- * Copies this roaring array, we assume that dest is not initialized
- */
-bool ra_copy(const roaring_array_t *source, roaring_array_t *dest,
- bool copy_on_write);
-
-/*
- * Shrinks the capacity, returns the number of bytes saved.
- */
-int ra_shrink_to_fit(roaring_array_t *ra);
-
-/**
- * Copies this roaring array, we assume that dest is initialized
- */
-bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
- bool copy_on_write);
-
-/**
- * Frees the memory used by a roaring array
- */
-void ra_clear(roaring_array_t *r);
-
-/**
- * Frees the memory used by a roaring array, but does not free the containers
- */
-void ra_clear_without_containers(roaring_array_t *r);
-
-/**
- * Frees just the containers
- */
-void ra_clear_containers(roaring_array_t *ra);
-
-/**
- * Get the index corresponding to a 16-bit key
- */
-inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) {
- if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1;
- return binarySearch(ra->keys, (int32_t)ra->size, x);
-}
-
-/**
- * Retrieves the container at index i, filling in the typecode
- */
-inline container_t *ra_get_container_at_index(const roaring_array_t *ra,
- uint16_t i, uint8_t *typecode) {
- *typecode = ra->typecodes[i];
- return ra->containers[i];
-}
-
-/**
- * Retrieves the key at index i
- */
-inline uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) {
- return ra->keys[i];
-}
-
-/**
- * Add a new key-value pair at index i
- */
-void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
- container_t *c, uint8_t typecode);
-
-/**
- * Append a new key-value pair
- */
-void ra_append(roaring_array_t *ra, uint16_t key, container_t *c,
- uint8_t typecode);
-
-/**
- * Append a new key-value pair to ra, cloning (in COW sense) a value from sa
- * at index index
- */
-void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
- uint16_t index, bool copy_on_write);
-
-/**
- * Append new key-value pairs to ra, cloning (in COW sense) values from sa
- * at indexes
- * [start_index, end_index)
- */
-void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
- int32_t start_index, int32_t end_index,
- bool copy_on_write);
-
-/** appends from sa to ra, ending with the greatest key that is
- * is less or equal stopping_key
- */
-void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
- uint16_t stopping_key, bool copy_on_write);
-
-/** appends from sa to ra, starting with the smallest key that is
- * is strictly greater than before_start
- */
-
-void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
- uint16_t before_start, bool copy_on_write);
-
-/**
- * Move the key-value pairs to ra from sa at indexes
- * [start_index, end_index), old array should not be freed
- * (use ra_clear_without_containers)
- **/
-void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
- int32_t start_index, int32_t end_index);
-/**
- * Append new key-value pairs to ra, from sa at indexes
- * [start_index, end_index)
- */
-void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
- int32_t start_index, int32_t end_index,
- bool copy_on_write);
-
-/**
- * Set the container at the corresponding index using the specified
- * typecode.
- */
-inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i,
- container_t *c, uint8_t typecode) {
- assert(i < ra->size);
- ra->containers[i] = c;
- ra->typecodes[i] = typecode;
-}
-
-container_t *ra_get_container(roaring_array_t *ra, uint16_t x,
- uint8_t *typecode);
-
-/**
- * If needed, increase the capacity of the array so that it can fit k values
- * (at
- * least);
- */
-bool extend_array(roaring_array_t *ra, int32_t k);
-
-inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; }
-
-static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x,
- int32_t pos) {
- return advanceUntil(ra->keys, pos, ra->size, x);
-}
-
-int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos);
-
-void ra_downsize(roaring_array_t *ra, int32_t new_length);
-
-inline void ra_replace_key_and_container_at_index(roaring_array_t *ra,
- int32_t i, uint16_t key,
- container_t *c,
- uint8_t typecode) {
- assert(i < ra->size);
-
- ra->keys[i] = key;
- ra->containers[i] = c;
- ra->typecodes[i] = typecode;
-}
-
-// write set bits to an array
-void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans);
-
-bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset,
- size_t limit, uint32_t *ans);
-
-/**
- * write a bitmap to a buffer. This is meant to be compatible with
- * the
- * Java and Go versions. Return the size in bytes of the serialized
- * output (which should be ra_portable_size_in_bytes(ra)).
- */
-size_t ra_portable_serialize(const roaring_array_t *ra, char *buf);
-
-/**
- * read a bitmap from a serialized version. This is meant to be compatible
- * with the Java and Go versions.
- * maxbytes indicates how many bytes available from buf.
- * When the function returns true, roaring_array_t is populated with the data
- * and *readbytes indicates how many bytes were read. In all cases, if the
- * function returns true, then maxbytes >= *readbytes.
- */
-bool ra_portable_deserialize(roaring_array_t *ra, const char *buf,
- const size_t maxbytes, size_t *readbytes);
-
-/**
- * Quickly checks whether there is a serialized bitmap at the pointer,
- * not exceeding size "maxbytes" in bytes. This function does not allocate
- * memory dynamically.
- *
- * This function returns 0 if and only if no valid bitmap is found.
- * Otherwise, it returns how many bytes are occupied by the bitmap data.
- */
-size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes);
-
-/**
- * How many bytes are required to serialize this bitmap (meant to be
- * compatible
- * with Java and Go versions)
- */
-size_t ra_portable_size_in_bytes(const roaring_array_t *ra);
-
-/**
- * return true if it contains at least one run container.
- */
-bool ra_has_run_container(const roaring_array_t *ra);
-
-/**
- * Size of the header when serializing (meant to be compatible
- * with Java and Go versions)
- */
-uint32_t ra_portable_header_size(const roaring_array_t *ra);
-
-/**
- * If the container at the index i is share, unshare it (creating a local
- * copy if needed).
- */
-static inline void ra_unshare_container_at_index(roaring_array_t *ra,
- uint16_t i) {
- assert(i < ra->size);
- ra->containers[i] =
- get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]);
-}
-
-/**
- * remove at index i, sliding over all entries after i
- */
-void ra_remove_at_index(roaring_array_t *ra, int32_t i);
-
-/**
- * clears all containers, sets the size at 0 and shrinks the memory usage.
- */
-void ra_reset(roaring_array_t *ra);
-
-/**
- * remove at index i, sliding over all entries after i. Free removed container.
- */
-void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i);
-
-/**
- * remove a chunk of indices, sliding over entries after it
- */
-// void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end);
-
-// used in inplace andNot only, to slide left the containers from
-// the mutated RoaringBitmap that are after the largest container of
-// the argument RoaringBitmap. It is followed by a call to resize.
-//
-void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
- uint32_t new_begin);
-
-/**
- * Shifts rightmost $count containers to the left (distance < 0) or
- * to the right (distance > 0).
- * Allocates memory if necessary.
- * This function doesn't free or create new containers.
- * Caller is responsible for that.
- */
-void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance);
-
-#ifdef __cplusplus
-} // namespace internal
-}
-} // extern "C" { namespace roaring {
-#endif
-
-#endif
-/* end file include/roaring/roaring_array.h */
-/* begin file include/roaring/art/art.h */
-#ifndef ART_ART_H
-#define ART_ART_H
-
-#include <stdbool.h>
-#include <stddef.h>
-#include <stdint.h>
-
-/*
- * This file contains an implementation of an Adaptive Radix Tree as described
- * in https://db.in.tum.de/~leis/papers/ART.pdf.
- *
- * The ART contains the keys in _byte lexographical_ order.
- *
- * Other features:
- * * Fixed 48 bit key length: all keys are assumed to be be 48 bits in size.
- * This allows us to put the key and key prefixes directly in nodes,
reducing
- * indirection at no additional memory overhead.
- * * Key compression: the only inner nodes created are at points where key
- * chunks _differ_. This means that if there are two entries with different
- * high 48 bits, then there is only one inner node containing the common key
- * prefix, and two leaves.
- * * Intrusive leaves: the leaf struct is included in user values. This
removes
- * a layer of indirection.
- */
-
-// Fixed length of keys in the ART. All keys are assumed to be of this length.
-#define ART_KEY_BYTES 6
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-typedef uint8_t art_key_chunk_t;
-typedef struct art_node_s art_node_t;
-
-/**
- * Wrapper to allow an empty tree.
- */
-typedef struct art_s {
- art_node_t *root;
-} art_t;
-
-/**
- * Values inserted into the tree have to be cast-able to art_val_t. This
- * improves performance by reducing indirection.
- *
- * NOTE: Value pointers must be unique! This is because each value struct
- * contains the key corresponding to the value.
- */
-typedef struct art_val_s {
- art_key_chunk_t key[ART_KEY_BYTES];
-} art_val_t;
-
-/**
- * Compares two keys, returns their relative order:
- * * Key 1 < key 2: returns a negative value
- * * Key 1 == key 2: returns 0
- * * Key 1 > key 2: returns a positive value
- */
-int art_compare_keys(const art_key_chunk_t key1[],
- const art_key_chunk_t key2[]);
-
-/**
- * Inserts the given key and value.
- */
-void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val);
-
-/**
- * Returns the value erased, NULL if not found.
- */
-art_val_t *art_erase(art_t *art, const art_key_chunk_t *key);
-
-/**
- * Returns the value associated with the given key, NULL if not found.
- */
-art_val_t *art_find(const art_t *art, const art_key_chunk_t *key);
-
-/**
- * Returns true if the ART is empty.
- */
-bool art_is_empty(const art_t *art);
-
-/**
- * Frees the nodes of the ART except the values, which the user is expected to
- * free.
- */
-void art_free(art_t *art);
-
-/**
- * Returns the size in bytes of the ART. Includes size of pointers to values,
- * but not the values themselves.
- */
-size_t art_size_in_bytes(const art_t *art);
-
-/**
- * Prints the ART using printf, useful for debugging.
- */
-void art_printf(const art_t *art);
-
-/**
- * Callback for validating the value stored in a leaf.
- *
- * Should return true if the value is valid, false otherwise
- * If false is returned, `*reason` should be set to a static string describing
- * the reason for the failure.
- */
-typedef bool (*art_validate_cb_t)(const art_val_t *val, const char **reason);
-
-/**
- * Validate the ART tree, ensuring it is internally consistent.
- */
-bool art_internal_validate(const art_t *art, const char **reason,
- art_validate_cb_t validate_cb);
-
-/**
- * ART-internal iterator bookkeeping. Users should treat this as an opaque
type.
- */
-typedef struct art_iterator_frame_s {
- art_node_t *node;
- uint8_t index_in_node;
-} art_iterator_frame_t;
-
-/**
- * Users should only access `key` and `value` in iterators. The iterator is
- * valid when `value != NULL`.
- */
-typedef struct art_iterator_s {
- art_key_chunk_t key[ART_KEY_BYTES];
- art_val_t *value;
-
- uint8_t depth; // Key depth
- uint8_t frame; // Node depth
-
- // State for each node in the ART the iterator has travelled from the root.
- // This is `ART_KEY_BYTES + 1` because it includes state for the leaf too.
- art_iterator_frame_t frames[ART_KEY_BYTES + 1];
-} art_iterator_t;
-
-/**
- * Creates an iterator initialzed to the first or last entry in the ART,
- * depending on `first`. The iterator is not valid if there are no entries in
- * the ART.
- */
-art_iterator_t art_init_iterator(const art_t *art, bool first);
-
-/**
- * Returns an initialized iterator positioned at a key equal to or greater than
- * the given key, if it exists.
- */
-art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key);
-
-/**
- * Returns an initialized iterator positioned at a key greater than the given
- * key, if it exists.
- */
-art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key);
-
-/**
- * The following iterator movement functions return true if a new entry was
- * encountered.
- */
-bool art_iterator_move(art_iterator_t *iterator, bool forward);
-bool art_iterator_next(art_iterator_t *iterator);
-bool art_iterator_prev(art_iterator_t *iterator);
-
-/**
- * Moves the iterator forward to a key equal to or greater than the given key.
- */
-bool art_iterator_lower_bound(art_iterator_t *iterator,
- const art_key_chunk_t *key);
-
-/**
- * Insert the value and positions the iterator at the key.
- */
-void art_iterator_insert(art_t *art, art_iterator_t *iterator,
- const art_key_chunk_t *key, art_val_t *val);
-
-/**
- * Erase the value pointed at by the iterator. Moves the iterator to the next
- * leaf. Returns the value erased or NULL if nothing was erased.
- */
-art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator);
-
-#ifdef __cplusplus
-} // extern "C"
-} // namespace roaring
-} // namespace internal
-#endif
-
-#endif
-/* end file include/roaring/art/art.h */
-/* begin file src/array_util.c */
-#include <assert.h>
-#include <stdbool.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#ifdef __cplusplus
-using namespace ::roaring::internal;
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-extern inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
- uint16_t ikey);
-
-#if CROARING_IS_X64
-// used by intersect_vector16
-ALIGNED(0x1000)
-static const uint8_t shuffle_mask16[] = {
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
- 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
- 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
- 0xFF, 0xFF, 0xFF, 0xFF, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
- 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
- 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 10, 11, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
- 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
- 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
- 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 10, 11,
- 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
- 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
- 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 10, 11,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
- 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9,
- 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
- 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
- 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 10, 11, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 4, 5, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
- 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 12, 13,
- 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
- 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
- 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11,
- 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
- 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
- 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 2, 3, 4, 5,
- 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
- 12, 13, 14, 15};
-
-/**
- * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
- * Optimized by D. Lemire on May 3rd 2013
- */
-CROARING_TARGET_AVX2
-int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
- const uint16_t *__restrict__ B, size_t s_b,
- uint16_t *C) {
- size_t count = 0;
- size_t i_a = 0, i_b = 0;
- const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
- const size_t st_a = (s_a / vectorlength) * vectorlength;
- const size_t st_b = (s_b / vectorlength) * vectorlength;
- __m128i v_a, v_b;
- if ((i_a < st_a) && (i_b < st_b)) {
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- while ((A[i_a] == 0) || (B[i_b] == 0)) {
- const __m128i res_v = _mm_cmpestrm(
- v_b, vectorlength, v_a, vectorlength,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- const int r = _mm_extract_epi32(res_v, 0);
- __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
r);
- __m128i p = _mm_shuffle_epi8(v_a, sm16);
- _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
- count += _mm_popcnt_u32(r);
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- i_a += vectorlength;
- if (i_a == st_a) break;
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- if ((i_a < st_a) && (i_b < st_b))
- while (true) {
- const __m128i res_v = _mm_cmpistrm(
- v_b, v_a,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- const int r = _mm_extract_epi32(res_v, 0);
- __m128i sm16 =
- _mm_loadu_si128((const __m128i *)shuffle_mask16 + r);
- __m128i p = _mm_shuffle_epi8(v_a, sm16);
- _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
- count += _mm_popcnt_u32(r);
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- i_a += vectorlength;
- if (i_a == st_a) break;
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- }
- // intersect the tail using scalar intersection
- while (i_a < s_a && i_b < s_b) {
- uint16_t a = A[i_a];
- uint16_t b = B[i_b];
- if (a < b) {
- i_a++;
- } else if (b < a) {
- i_b++;
- } else {
- C[count] = a; //==b;
- count++;
- i_a++;
- i_b++;
- }
- }
- return (int32_t)count;
-}
-
-ALLOW_UNALIGNED
-int array_container_to_uint32_array_vector16(void *vout, const uint16_t *array,
- size_t cardinality,
- uint32_t base) {
- int outpos = 0;
- uint32_t *out = (uint32_t *)vout;
- size_t i = 0;
- for (; i + sizeof(__m128i) / sizeof(uint16_t) <= cardinality;
- i += sizeof(__m128i) / sizeof(uint16_t)) {
- __m128i vinput = _mm_loadu_si128((const __m128i *)(array + i));
- __m256i voutput = _mm256_add_epi32(_mm256_cvtepu16_epi32(vinput),
- _mm256_set1_epi32(base));
- _mm256_storeu_si256((__m256i *)(out + outpos), voutput);
- outpos += sizeof(__m256i) / sizeof(uint32_t);
- }
- for (; i < cardinality; ++i) {
- const uint32_t val = base + array[i];
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- outpos++;
- }
- return outpos;
-}
-
-int32_t intersect_vector16_inplace(uint16_t *__restrict__ A, size_t s_a,
- const uint16_t *__restrict__ B, size_t s_b)
{
- size_t count = 0;
- size_t i_a = 0, i_b = 0;
- const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
- const size_t st_a = (s_a / vectorlength) * vectorlength;
- const size_t st_b = (s_b / vectorlength) * vectorlength;
- __m128i v_a, v_b;
- if ((i_a < st_a) && (i_b < st_b)) {
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- __m128i tmp[2] = {_mm_setzero_si128()};
- size_t tmp_count = 0;
- while ((A[i_a] == 0) || (B[i_b] == 0)) {
- const __m128i res_v = _mm_cmpestrm(
- v_b, vectorlength, v_a, vectorlength,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- const int r = _mm_extract_epi32(res_v, 0);
- __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
r);
- __m128i p = _mm_shuffle_epi8(v_a, sm16);
- _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p);
- tmp_count += _mm_popcnt_u32(r);
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- _mm_storeu_si128((__m128i *)&A[count], tmp[0]);
- _mm_storeu_si128(tmp, _mm_setzero_si128());
- count += tmp_count;
- tmp_count = 0;
- i_a += vectorlength;
- if (i_a == st_a) break;
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- if ((i_a < st_a) && (i_b < st_b)) {
- while (true) {
- const __m128i res_v = _mm_cmpistrm(
- v_b, v_a,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- const int r = _mm_extract_epi32(res_v, 0);
- __m128i sm16 =
- _mm_loadu_si128((const __m128i *)shuffle_mask16 + r);
- __m128i p = _mm_shuffle_epi8(v_a, sm16);
- _mm_storeu_si128((__m128i *)&((uint16_t *)tmp)[tmp_count], p);
- tmp_count += _mm_popcnt_u32(r);
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- _mm_storeu_si128((__m128i *)&A[count], tmp[0]);
- _mm_storeu_si128(tmp, _mm_setzero_si128());
- count += tmp_count;
- tmp_count = 0;
- i_a += vectorlength;
- if (i_a == st_a) break;
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- }
- // tmp_count <= 8, so this does not affect efficiency so much
- for (size_t i = 0; i < tmp_count; i++) {
- A[count] = ((uint16_t *)tmp)[i];
- count++;
- }
- i_a += tmp_count; // We can at least jump pass $tmp_count elements in
A
- }
- // intersect the tail using scalar intersection
- while (i_a < s_a && i_b < s_b) {
- uint16_t a = A[i_a];
- uint16_t b = B[i_b];
- if (a < b) {
- i_a++;
- } else if (b < a) {
- i_b++;
- } else {
- A[count] = a; //==b;
- count++;
- i_a++;
- i_b++;
- }
- }
- return (int32_t)count;
-}
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
- size_t s_a,
- const uint16_t *__restrict__ B,
- size_t s_b) {
- size_t count = 0;
- size_t i_a = 0, i_b = 0;
- const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
- const size_t st_a = (s_a / vectorlength) * vectorlength;
- const size_t st_b = (s_b / vectorlength) * vectorlength;
- __m128i v_a, v_b;
- if ((i_a < st_a) && (i_b < st_b)) {
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- while ((A[i_a] == 0) || (B[i_b] == 0)) {
- const __m128i res_v = _mm_cmpestrm(
- v_b, vectorlength, v_a, vectorlength,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- const int r = _mm_extract_epi32(res_v, 0);
- count += _mm_popcnt_u32(r);
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- i_a += vectorlength;
- if (i_a == st_a) break;
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- if ((i_a < st_a) && (i_b < st_b))
- while (true) {
- const __m128i res_v = _mm_cmpistrm(
- v_b, v_a,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- const int r = _mm_extract_epi32(res_v, 0);
- count += _mm_popcnt_u32(r);
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- i_a += vectorlength;
- if (i_a == st_a) break;
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- }
- // intersect the tail using scalar intersection
- while (i_a < s_a && i_b < s_b) {
- uint16_t a = A[i_a];
- uint16_t b = B[i_b];
- if (a < b) {
- i_a++;
- } else if (b < a) {
- i_b++;
- } else {
- count++;
- i_a++;
- i_b++;
- }
- }
- return (int32_t)count;
-}
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-/////////
-// Warning:
-// This function may not be safe if A == C or B == C.
-/////////
-int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
- const uint16_t *__restrict__ B, size_t s_b,
- uint16_t *C) {
- // we handle the degenerate case
- if (s_a == 0) return 0;
- if (s_b == 0) {
- if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a);
- return (int32_t)s_a;
- }
- // handle the leading zeroes, it is messy but it allows us to use the fast
- // _mm_cmpistrm instrinsic safely
- int32_t count = 0;
- if ((A[0] == 0) || (B[0] == 0)) {
- if ((A[0] == 0) && (B[0] == 0)) {
- A++;
- s_a--;
- B++;
- s_b--;
- } else if (A[0] == 0) {
- C[count++] = 0;
- A++;
- s_a--;
- } else {
- B++;
- s_b--;
- }
- }
- // at this point, we have two non-empty arrays, made of non-zero
- // increasing values.
- size_t i_a = 0, i_b = 0;
- const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t);
- const size_t st_a = (s_a / vectorlength) * vectorlength;
- const size_t st_b = (s_b / vectorlength) * vectorlength;
- if ((i_a < st_a) && (i_b < st_b)) { // this is the vectorized code path
- __m128i v_a, v_b; //, v_bmax;
- // we load a vector from A and a vector from B
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- // we have a runningmask which indicates which values from A have been
- // spotted in B, these don't get written out.
- __m128i runningmask_a_found_in_b = _mm_setzero_si128();
- /****
- * start of the main vectorized loop
- *****/
- while (true) {
- // afoundinb will contain a mask indicate for each entry in A
- // whether it is seen
- // in B
- const __m128i a_found_in_b = _mm_cmpistrm(
- v_b, v_a,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- runningmask_a_found_in_b =
- _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
- // we always compare the last values of A and B
- const uint16_t a_max = A[i_a + vectorlength - 1];
- const uint16_t b_max = B[i_b + vectorlength - 1];
- if (a_max <= b_max) {
- // Ok. In this code path, we are ready to write our v_a
- // because there is no need to read more from B, they will
- // all be large values.
- const int bitmask_belongs_to_difference =
- _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
- /*** next few lines are probably expensive *****/
- __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16
+
- bitmask_belongs_to_difference);
- __m128i p = _mm_shuffle_epi8(v_a, sm16);
- _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
- count += _mm_popcnt_u32(bitmask_belongs_to_difference);
- // we advance a
- i_a += vectorlength;
- if (i_a == st_a) // no more
- break;
- runningmask_a_found_in_b = _mm_setzero_si128();
- v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
- }
- if (b_max <= a_max) {
- // in this code path, the current v_b has become useless
- i_b += vectorlength;
- if (i_b == st_b) break;
- v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
- }
- }
- // at this point, either we have i_a == st_a, which is the end of the
- // vectorized processing,
- // or we have i_b == st_b, and we are not done processing the
vector...
- // so we need to finish it off.
- if (i_a < st_a) { // we have unfinished business...
- uint16_t buffer[8]; // buffer to do a masked load
- memset(buffer, 0, 8 * sizeof(uint16_t));
- memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t));
- v_b = _mm_lddqu_si128((__m128i *)buffer);
- const __m128i a_found_in_b = _mm_cmpistrm(
- v_b, v_a,
- _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
- runningmask_a_found_in_b =
- _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
- const int bitmask_belongs_to_difference =
- _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
- __m128i sm16 = _mm_loadu_si128((const __m128i *)shuffle_mask16 +
- bitmask_belongs_to_difference);
- __m128i p = _mm_shuffle_epi8(v_a, sm16);
- _mm_storeu_si128((__m128i *)&C[count], p); // can overflow
- count += _mm_popcnt_u32(bitmask_belongs_to_difference);
- i_a += vectorlength;
- }
- // at this point we should have i_a == st_a and i_b == st_b
- }
- // do the tail using scalar code
- while (i_a < s_a && i_b < s_b) {
- uint16_t a = A[i_a];
- uint16_t b = B[i_b];
- if (b < a) {
- i_b++;
- } else if (a < b) {
- C[count] = a;
- count++;
- i_a++;
- } else { //==
- i_a++;
- i_b++;
- }
- }
- if (i_a < s_a) {
- if (C == A) {
- assert((size_t)count <= i_a);
- if ((size_t)count < i_a) {
- memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a));
- }
- } else {
- for (size_t i = 0; i < (s_a - i_a); i++) {
- C[count + i] = A[i + i_a];
- }
- }
- count += (int32_t)(s_a - i_a);
- }
- return count;
-}
-CROARING_UNTARGET_AVX2
-#endif // CROARING_IS_X64
-
-/**
- * Branchless binary search going after 4 values at once.
- * Assumes that array is sorted.
- * You have that array[*index1] >= target1, array[*index12] >= target2, ...
- * except when *index1 = n, in which case you know that all values in array are
- * smaller than target1, and so forth.
- * It has logarithmic complexity.
- */
-static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1,
- uint16_t target2, uint16_t target3, uint16_t target4,
- int32_t *index1, int32_t *index2, int32_t *index3,
- int32_t *index4) {
- const uint16_t *base1 = array;
- const uint16_t *base2 = array;
- const uint16_t *base3 = array;
- const uint16_t *base4 = array;
- if (n == 0) return;
- while (n > 1) {
- int32_t half = n >> 1;
- base1 = (base1[half] < target1) ? &base1[half] : base1;
- base2 = (base2[half] < target2) ? &base2[half] : base2;
- base3 = (base3[half] < target3) ? &base3[half] : base3;
- base4 = (base4[half] < target4) ? &base4[half] : base4;
- n -= half;
- }
- *index1 = (int32_t)((*base1 < target1) + base1 - array);
- *index2 = (int32_t)((*base2 < target2) + base2 - array);
- *index3 = (int32_t)((*base3 < target3) + base3 - array);
- *index4 = (int32_t)((*base4 < target4) + base4 - array);
-}
-
-/**
- * Branchless binary search going after 2 values at once.
- * Assumes that array is sorted.
- * You have that array[*index1] >= target1, array[*index12] >= target2.
- * except when *index1 = n, in which case you know that all values in array are
- * smaller than target1, and so forth.
- * It has logarithmic complexity.
- */
-static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1,
- uint16_t target2, int32_t *index1, int32_t *index2) {
- const uint16_t *base1 = array;
- const uint16_t *base2 = array;
- if (n == 0) return;
- while (n > 1) {
- int32_t half = n >> 1;
- base1 = (base1[half] < target1) ? &base1[half] : base1;
- base2 = (base2[half] < target2) ? &base2[half] : base2;
- n -= half;
- }
- *index1 = (int32_t)((*base1 < target1) + base1 - array);
- *index2 = (int32_t)((*base2 < target2) + base2 - array);
-}
-
-/* Computes the intersection between one small and one large set of uint16_t.
- * Stores the result into buffer and return the number of elements.
- * Processes the small set in blocks of 4 values calling binarySearch4
- * and binarySearch2. This approach can be slightly superior to a conventional
- * galloping search in some instances.
- */
-int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
- const uint16_t *large, size_t size_l,
- uint16_t *buffer) {
- size_t pos = 0, idx_l = 0, idx_s = 0;
-
- if (0 == size_s) {
- return 0;
- }
- int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0;
- while ((idx_s + 4 <= size_s) && (idx_l < size_l)) {
- uint16_t target1 = small[idx_s];
- uint16_t target2 = small[idx_s + 1];
- uint16_t target3 = small[idx_s + 2];
- uint16_t target4 = small[idx_s + 3];
- binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1,
- target2, target3, target4, &index1, &index2, &index3,
- &index4);
- if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
- buffer[pos++] = target1;
- }
- if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
- buffer[pos++] = target2;
- }
- if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) {
- buffer[pos++] = target3;
- }
- if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) {
- buffer[pos++] = target4;
- }
- idx_s += 4;
- idx_l += index4;
- }
- if ((idx_s + 2 <= size_s) && (idx_l < size_l)) {
- uint16_t target1 = small[idx_s];
- uint16_t target2 = small[idx_s + 1];
- binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1,
- target2, &index1, &index2);
- if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
- buffer[pos++] = target1;
- }
- if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
- buffer[pos++] = target2;
- }
- idx_s += 2;
- idx_l += index2;
- }
- if ((idx_s < size_s) && (idx_l < size_l)) {
- uint16_t val_s = small[idx_s];
- int32_t index =
- binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s);
- if (index >= 0) buffer[pos++] = val_s;
- }
- return (int32_t)pos;
-}
-
-// TODO: this could be accelerated, possibly, by using binarySearch4 as above.
-int32_t intersect_skewed_uint16_cardinality(const uint16_t *small,
- size_t size_s,
- const uint16_t *large,
- size_t size_l) {
- size_t pos = 0, idx_l = 0, idx_s = 0;
-
- if (0 == size_s) {
- return 0;
- }
-
- uint16_t val_l = large[idx_l], val_s = small[idx_s];
-
- while (true) {
- if (val_l < val_s) {
- idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l,
val_s);
- if (idx_l == size_l) break;
- val_l = large[idx_l];
- } else if (val_s < val_l) {
- idx_s++;
- if (idx_s == size_s) break;
- val_s = small[idx_s];
- } else {
- pos++;
- idx_s++;
- if (idx_s == size_s) break;
- val_s = small[idx_s];
- idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l,
val_s);
- if (idx_l == size_l) break;
- val_l = large[idx_l];
- }
- }
-
- return (int32_t)pos;
-}
-
-bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s,
- const uint16_t *large, size_t size_l) {
- size_t idx_l = 0, idx_s = 0;
-
- if (0 == size_s) {
- return false;
- }
-
- uint16_t val_l = large[idx_l], val_s = small[idx_s];
-
- while (true) {
- if (val_l < val_s) {
- idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l,
val_s);
- if (idx_l == size_l) break;
- val_l = large[idx_l];
- } else if (val_s < val_l) {
- idx_s++;
- if (idx_s == size_s) break;
- val_s = small[idx_s];
- } else {
- return true;
- }
- }
-
- return false;
-}
-
-/**
- * Generic intersection function.
- */
-int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
- const uint16_t *B, const size_t lenB, uint16_t *out) {
- const uint16_t *initout = out;
- if (lenA == 0 || lenB == 0) return 0;
- const uint16_t *endA = A + lenA;
- const uint16_t *endB = B + lenB;
-
- while (1) {
- while (*A < *B) {
- SKIP_FIRST_COMPARE:
- if (++A == endA) return (int32_t)(out - initout);
- }
- while (*A > *B) {
- if (++B == endB) return (int32_t)(out - initout);
- }
- if (*A == *B) {
- *out++ = *A;
- if (++A == endA || ++B == endB) return (int32_t)(out - initout);
- } else {
- goto SKIP_FIRST_COMPARE;
- }
- }
- // return (int32_t)(out - initout); // NOTREACHED
-}
-
-int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
- const uint16_t *B, const size_t lenB) {
- int32_t answer = 0;
- if (lenA == 0 || lenB == 0) return 0;
- const uint16_t *endA = A + lenA;
- const uint16_t *endB = B + lenB;
-
- while (1) {
- while (*A < *B) {
- SKIP_FIRST_COMPARE:
- if (++A == endA) return answer;
- }
- while (*A > *B) {
- if (++B == endB) return answer;
- }
- if (*A == *B) {
- ++answer;
- if (++A == endA || ++B == endB) return answer;
- } else {
- goto SKIP_FIRST_COMPARE;
- }
- }
- // return answer; // NOTREACHED
-}
-
-bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
- const uint16_t *B, const size_t lenB) {
- if (lenA == 0 || lenB == 0) return 0;
- const uint16_t *endA = A + lenA;
- const uint16_t *endB = B + lenB;
-
- while (1) {
- while (*A < *B) {
- SKIP_FIRST_COMPARE:
- if (++A == endA) return false;
- }
- while (*A > *B) {
- if (++B == endB) return false;
- }
- if (*A == *B) {
- return true;
- } else {
- goto SKIP_FIRST_COMPARE;
- }
- }
- return false; // NOTREACHED
-}
-
-/**
- * Generic intersection function.
- */
-size_t intersection_uint32(const uint32_t *A, const size_t lenA,
- const uint32_t *B, const size_t lenB,
- uint32_t *out) {
- const uint32_t *initout = out;
- if (lenA == 0 || lenB == 0) return 0;
- const uint32_t *endA = A + lenA;
- const uint32_t *endB = B + lenB;
-
- while (1) {
- while (*A < *B) {
- SKIP_FIRST_COMPARE:
- if (++A == endA) return (out - initout);
- }
- while (*A > *B) {
- if (++B == endB) return (out - initout);
- }
- if (*A == *B) {
- *out++ = *A;
- if (++A == endA || ++B == endB) return (out - initout);
- } else {
- goto SKIP_FIRST_COMPARE;
- }
- }
- // return (out - initout); // NOTREACHED
-}
-
-size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
- const uint32_t *B, const size_t lenB) {
- if (lenA == 0 || lenB == 0) return 0;
- size_t card = 0;
- const uint32_t *endA = A + lenA;
- const uint32_t *endB = B + lenB;
-
- while (1) {
- while (*A < *B) {
- SKIP_FIRST_COMPARE:
- if (++A == endA) return card;
- }
- while (*A > *B) {
- if (++B == endB) return card;
- }
- if (*A == *B) {
- card++;
- if (++A == endA || ++B == endB) return card;
- } else {
- goto SKIP_FIRST_COMPARE;
- }
- }
- // return card; // NOTREACHED
-}
-
-// can one vectorize the computation of the union? (Update: Yes! See
-// union_vector16).
-
-size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t
*set_2,
- size_t size_2, uint16_t *buffer) {
- size_t pos = 0, idx_1 = 0, idx_2 = 0;
-
- if (0 == size_2) {
- memmove(buffer, set_1, size_1 * sizeof(uint16_t));
- return size_1;
- }
- if (0 == size_1) {
- memmove(buffer, set_2, size_2 * sizeof(uint16_t));
- return size_2;
- }
-
- uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
-
- while (true) {
- if (val_1 < val_2) {
- buffer[pos++] = val_1;
- ++idx_1;
- if (idx_1 >= size_1) break;
- val_1 = set_1[idx_1];
- } else if (val_2 < val_1) {
- buffer[pos++] = val_2;
- ++idx_2;
- if (idx_2 >= size_2) break;
- val_2 = set_2[idx_2];
- } else {
- buffer[pos++] = val_1;
- ++idx_1;
- ++idx_2;
- if (idx_1 >= size_1 || idx_2 >= size_2) break;
- val_1 = set_1[idx_1];
- val_2 = set_2[idx_2];
- }
- }
-
- if (idx_1 < size_1) {
- const size_t n_elems = size_1 - idx_1;
- memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t));
- pos += n_elems;
- } else if (idx_2 < size_2) {
- const size_t n_elems = size_2 - idx_2;
- memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t));
- pos += n_elems;
- }
-
- return pos;
-}
-
-int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
- int length2, uint16_t *a_out) {
- int out_card = 0;
- int k1 = 0, k2 = 0;
- if (length1 == 0) return 0;
- if (length2 == 0) {
- if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1);
- return length1;
- }
- uint16_t s1 = a1[k1];
- uint16_t s2 = a2[k2];
- while (true) {
- if (s1 < s2) {
- a_out[out_card++] = s1;
- ++k1;
- if (k1 >= length1) {
- break;
- }
- s1 = a1[k1];
- } else if (s1 == s2) {
- ++k1;
- ++k2;
- if (k1 >= length1) {
- break;
- }
- if (k2 >= length2) {
- memmove(a_out + out_card, a1 + k1,
- sizeof(uint16_t) * (length1 - k1));
- return out_card + length1 - k1;
- }
- s1 = a1[k1];
- s2 = a2[k2];
- } else { // if (val1>val2)
- ++k2;
- if (k2 >= length2) {
- memmove(a_out + out_card, a1 + k1,
- sizeof(uint16_t) * (length1 - k1));
- return out_card + length1 - k1;
- }
- s2 = a2[k2];
- }
- }
- return out_card;
-}
-
-int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
- const uint16_t *array_2, int32_t card_2, uint16_t *out) {
- int32_t pos1 = 0, pos2 = 0, pos_out = 0;
- while (pos1 < card_1 && pos2 < card_2) {
- const uint16_t v1 = array_1[pos1];
- const uint16_t v2 = array_2[pos2];
- if (v1 == v2) {
- ++pos1;
- ++pos2;
- continue;
- }
- if (v1 < v2) {
- out[pos_out++] = v1;
- ++pos1;
- } else {
- out[pos_out++] = v2;
- ++pos2;
- }
- }
- if (pos1 < card_1) {
- const size_t n_elems = card_1 - pos1;
- memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t));
- pos_out += (int32_t)n_elems;
- } else if (pos2 < card_2) {
- const size_t n_elems = card_2 - pos2;
- memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t));
- pos_out += (int32_t)n_elems;
- }
- return pos_out;
-}
-
-#if CROARING_IS_X64
-
-/***
- * start of the SIMD 16-bit union code
- *
- */
-CROARING_TARGET_AVX2
-
-// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going
-// from vecMin all the way to vecMax
-// developed originally for merge sort using SIMD instructions.
-// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly
-// Algorithm for Sorting an Array of Structures
-static inline void sse_merge(const __m128i *vInput1,
- const __m128i *vInput2, // input 1 &
2
- __m128i *vecMin, __m128i *vecMax) { // output
- __m128i vecTmp;
- vecTmp = _mm_min_epu16(*vInput1, *vInput2);
- *vecMax = _mm_max_epu16(*vInput1, *vInput2);
- vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
- *vecMin = _mm_min_epu16(vecTmp, *vecMax);
- *vecMax = _mm_max_epu16(vecTmp, *vecMax);
- *vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2);
-}
-CROARING_UNTARGET_AVX2
-// used by store_unique, generated by simdunion.py
-static uint8_t uniqshuf[] = {
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
- 0xc, 0xd, 0xe, 0xf, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
- 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
- 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
- 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
- 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9,
- 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9,
- 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
- 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
- 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
- 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xe, 0xf, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xe, 0xf,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
- 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
- 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
- 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
- 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
- 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
- 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xc, 0xd,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc, 0xd, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
- 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
- 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
- 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
- 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
- 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
- 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
- 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
- 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
- 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
- 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
- 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x2, 0x3, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0x0, 0x1, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
- 0xFF, 0xFF, 0xFF, 0xFF};
-CROARING_TARGET_AVX2
-// write vector new, while omitting repeated values assuming that previously
-// written vector was "old"
-static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) {
- __m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2);
- // lots of high latency instructions follow (optimize?)
- int M = _mm_movemask_epi8(
- _mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128()));
- int numberofnewvalues = 8 - _mm_popcnt_u32(M);
- __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
- __m128i val = _mm_shuffle_epi8(newval, key);
- _mm_storeu_si128((__m128i *)output, val);
- return numberofnewvalues;
-}
-CROARING_UNTARGET_AVX2
-
-// working in-place, this function overwrites the repeated values
-// could be avoided?
-static inline uint32_t unique(uint16_t *out, uint32_t len) {
- uint32_t pos = 1;
- for (uint32_t i = 1; i < len; ++i) {
- if (out[i] != out[i - 1]) {
- out[pos++] = out[i];
- }
- }
- return pos;
-}
-
-// use with qsort, could be avoided
-static int uint16_compare(const void *a, const void *b) {
- return (*(uint16_t *)a - *(uint16_t *)b);
-}
-
-CROARING_TARGET_AVX2
-// a one-pass SSE union algorithm
-// This function may not be safe if array1 == output or array2 == output.
-uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
- const uint16_t *__restrict__ array2, uint32_t length2,
- uint16_t *__restrict__ output) {
- if ((length1 < 8) || (length2 < 8)) {
- return (uint32_t)union_uint16(array1, length1, array2, length2,
output);
- }
- __m128i vA, vB, V, vecMin, vecMax;
- __m128i laststore;
- uint16_t *initoutput = output;
- uint32_t len1 = length1 / 8;
- uint32_t len2 = length2 / 8;
- uint32_t pos1 = 0;
- uint32_t pos2 = 0;
- // we start the machine
- vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
- pos1++;
- vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
- pos2++;
- sse_merge(&vA, &vB, &vecMin, &vecMax);
- laststore = _mm_set1_epi16(-1);
- output += store_unique(laststore, vecMin, output);
- laststore = vecMin;
- if ((pos1 < len1) && (pos2 < len2)) {
- uint16_t curA, curB;
- curA = array1[8 * pos1];
- curB = array2[8 * pos2];
- while (true) {
- if (curA <= curB) {
- V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
- pos1++;
- if (pos1 < len1) {
- curA = array1[8 * pos1];
- } else {
- break;
- }
- } else {
- V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
- pos2++;
- if (pos2 < len2) {
- curB = array2[8 * pos2];
- } else {
- break;
- }
- }
- sse_merge(&V, &vecMax, &vecMin, &vecMax);
- output += store_unique(laststore, vecMin, output);
- laststore = vecMin;
- }
- sse_merge(&V, &vecMax, &vecMin, &vecMax);
- output += store_unique(laststore, vecMin, output);
- laststore = vecMin;
- }
- // we finish the rest off using a scalar algorithm
- // could be improved?
- //
- // copy the small end on a tmp buffer
- uint32_t len = (uint32_t)(output - initoutput);
- uint16_t buffer[16];
- uint32_t leftoversize = store_unique(laststore, vecMax, buffer);
- if (pos1 == len1) {
- memcpy(buffer + leftoversize, array1 + 8 * pos1,
- (length1 - 8 * len1) * sizeof(uint16_t));
- leftoversize += length1 - 8 * len1;
- qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
-
- leftoversize = unique(buffer, leftoversize);
- len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2,
- length2 - 8 * pos2, output);
- } else {
- memcpy(buffer + leftoversize, array2 + 8 * pos2,
- (length2 - 8 * len2) * sizeof(uint16_t));
- leftoversize += length2 - 8 * len2;
- qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
- leftoversize = unique(buffer, leftoversize);
- len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1,
- length1 - 8 * pos1, output);
- }
- return len;
-}
-CROARING_UNTARGET_AVX2
-
-/**
- * End of the SIMD 16-bit union code
- *
- */
-
-/**
- * Start of SIMD 16-bit XOR code
- */
-
-CROARING_TARGET_AVX2
-// write vector new, while omitting repeated values assuming that previously
-// written vector was "old"
-static inline int store_unique_xor(__m128i old, __m128i newval,
- uint16_t *output) {
- __m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4);
- __m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2);
- __m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1);
- __m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval);
- __m128i equalleftoright = _mm_or_si128(equalleft, equalright);
- int M = _mm_movemask_epi8(
- _mm_packs_epi16(equalleftoright, _mm_setzero_si128()));
- int numberofnewvalues = 8 - _mm_popcnt_u32(M);
- __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
- __m128i val = _mm_shuffle_epi8(vecTmp2, key);
- _mm_storeu_si128((__m128i *)output, val);
- return numberofnewvalues;
-}
-CROARING_UNTARGET_AVX2
-
-// working in-place, this function overwrites the repeated values
-// could be avoided? Warning: assumes len > 0
-static inline uint32_t unique_xor(uint16_t *out, uint32_t len) {
- uint32_t pos = 1;
- for (uint32_t i = 1; i < len; ++i) {
- if (out[i] != out[i - 1]) {
- out[pos++] = out[i];
- } else
- pos--; // if it is identical to previous, delete it
- }
- return pos;
-}
-CROARING_TARGET_AVX2
-// a one-pass SSE xor algorithm
-uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
- const uint16_t *__restrict__ array2, uint32_t length2,
- uint16_t *__restrict__ output) {
- if ((length1 < 8) || (length2 < 8)) {
- return xor_uint16(array1, length1, array2, length2, output);
- }
- __m128i vA, vB, V, vecMin, vecMax;
- __m128i laststore;
- uint16_t *initoutput = output;
- uint32_t len1 = length1 / 8;
- uint32_t len2 = length2 / 8;
- uint32_t pos1 = 0;
- uint32_t pos2 = 0;
- // we start the machine
- vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
- pos1++;
- vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
- pos2++;
- sse_merge(&vA, &vB, &vecMin, &vecMax);
- laststore = _mm_set1_epi16(-1);
- uint16_t buffer[17];
- output += store_unique_xor(laststore, vecMin, output);
-
- laststore = vecMin;
- if ((pos1 < len1) && (pos2 < len2)) {
- uint16_t curA, curB;
- curA = array1[8 * pos1];
- curB = array2[8 * pos2];
- while (true) {
- if (curA <= curB) {
- V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
- pos1++;
- if (pos1 < len1) {
- curA = array1[8 * pos1];
- } else {
- break;
- }
- } else {
- V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
- pos2++;
- if (pos2 < len2) {
- curB = array2[8 * pos2];
- } else {
- break;
- }
- }
- sse_merge(&V, &vecMax, &vecMin, &vecMax);
- // conditionally stores the last value of laststore as well as all
- // but the
- // last value of vecMin
- output += store_unique_xor(laststore, vecMin, output);
- laststore = vecMin;
- }
- sse_merge(&V, &vecMax, &vecMin, &vecMax);
- // conditionally stores the last value of laststore as well as all but
- // the
- // last value of vecMin
- output += store_unique_xor(laststore, vecMin, output);
- laststore = vecMin;
- }
- uint32_t len = (uint32_t)(output - initoutput);
-
- // we finish the rest off using a scalar algorithm
- // could be improved?
- // conditionally stores the last value of laststore as well as all but the
- // last value of vecMax,
- // we store to "buffer"
- int leftoversize = store_unique_xor(laststore, vecMax, buffer);
- uint16_t vec7 = (uint16_t)_mm_extract_epi16(vecMax, 7);
- uint16_t vec6 = (uint16_t)_mm_extract_epi16(vecMax, 6);
- if (vec7 != vec6) buffer[leftoversize++] = vec7;
- if (pos1 == len1) {
- memcpy(buffer + leftoversize, array1 + 8 * pos1,
- (length1 - 8 * len1) * sizeof(uint16_t));
- leftoversize += length1 - 8 * len1;
- if (leftoversize == 0) { // trivial case
- memcpy(output, array2 + 8 * pos2,
- (length2 - 8 * pos2) * sizeof(uint16_t));
- len += (length2 - 8 * pos2);
- } else {
- qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
- leftoversize = unique_xor(buffer, leftoversize);
- len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2,
- length2 - 8 * pos2, output);
- }
- } else {
- memcpy(buffer + leftoversize, array2 + 8 * pos2,
- (length2 - 8 * len2) * sizeof(uint16_t));
- leftoversize += length2 - 8 * len2;
- if (leftoversize == 0) { // trivial case
- memcpy(output, array1 + 8 * pos1,
- (length1 - 8 * pos1) * sizeof(uint16_t));
- len += (length1 - 8 * pos1);
- } else {
- qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
- leftoversize = unique_xor(buffer, leftoversize);
- len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1,
- length1 - 8 * pos1, output);
- }
- }
- return len;
-}
-CROARING_UNTARGET_AVX2
-/**
- * End of SIMD 16-bit XOR code
- */
-
-#endif // CROARING_IS_X64
-
-size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t
*set_2,
- size_t size_2, uint32_t *buffer) {
- size_t pos = 0, idx_1 = 0, idx_2 = 0;
-
- if (0 == size_2) {
- memmove(buffer, set_1, size_1 * sizeof(uint32_t));
- return size_1;
- }
- if (0 == size_1) {
- memmove(buffer, set_2, size_2 * sizeof(uint32_t));
- return size_2;
- }
-
- uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
-
- while (true) {
- if (val_1 < val_2) {
- buffer[pos++] = val_1;
- ++idx_1;
- if (idx_1 >= size_1) break;
- val_1 = set_1[idx_1];
- } else if (val_2 < val_1) {
- buffer[pos++] = val_2;
- ++idx_2;
- if (idx_2 >= size_2) break;
- val_2 = set_2[idx_2];
- } else {
- buffer[pos++] = val_1;
- ++idx_1;
- ++idx_2;
- if (idx_1 >= size_1 || idx_2 >= size_2) break;
- val_1 = set_1[idx_1];
- val_2 = set_2[idx_2];
- }
- }
-
- if (idx_1 < size_1) {
- const size_t n_elems = size_1 - idx_1;
- memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t));
- pos += n_elems;
- } else if (idx_2 < size_2) {
- const size_t n_elems = size_2 - idx_2;
- memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t));
- pos += n_elems;
- }
-
- return pos;
-}
-
-size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
- const uint32_t *set_2, size_t size_2) {
- size_t pos = 0, idx_1 = 0, idx_2 = 0;
-
- if (0 == size_2) {
- return size_1;
- }
- if (0 == size_1) {
- return size_2;
- }
-
- uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
-
- while (true) {
- if (val_1 < val_2) {
- ++idx_1;
- ++pos;
- if (idx_1 >= size_1) break;
- val_1 = set_1[idx_1];
- } else if (val_2 < val_1) {
- ++idx_2;
- ++pos;
- if (idx_2 >= size_2) break;
- val_2 = set_2[idx_2];
- } else {
- ++idx_1;
- ++idx_2;
- ++pos;
- if (idx_1 >= size_1 || idx_2 >= size_2) break;
- val_1 = set_1[idx_1];
- val_2 = set_2[idx_2];
- }
- }
-
- if (idx_1 < size_1) {
- const size_t n_elems = size_1 - idx_1;
- pos += n_elems;
- } else if (idx_2 < size_2) {
- const size_t n_elems = size_2 - idx_2;
- pos += n_elems;
- }
- return pos;
-}
-
-size_t fast_union_uint16(const uint16_t *set_1, size_t size_1,
- const uint16_t *set_2, size_t size_2,
- uint16_t *buffer) {
-#if CROARING_IS_X64
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- // compute union with smallest array first
- if (size_1 < size_2) {
- return union_vector16(set_1, (uint32_t)size_1, set_2,
- (uint32_t)size_2, buffer);
- } else {
- return union_vector16(set_2, (uint32_t)size_2, set_1,
- (uint32_t)size_1, buffer);
- }
- } else {
- // compute union with smallest array first
- if (size_1 < size_2) {
- return union_uint16(set_1, size_1, set_2, size_2, buffer);
- } else {
- return union_uint16(set_2, size_2, set_1, size_1, buffer);
- }
- }
-#else
- // compute union with smallest array first
- if (size_1 < size_2) {
- return union_uint16(set_1, size_1, set_2, size_2, buffer);
- } else {
- return union_uint16(set_2, size_2, set_1, size_1, buffer);
- }
-#endif
-}
-#if CROARING_IS_X64
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-static inline bool _avx512_memequals(const void *s1, const void *s2, size_t n)
{
- const uint8_t *ptr1 = (const uint8_t *)s1;
- const uint8_t *ptr2 = (const uint8_t *)s2;
- const uint8_t *end1 = ptr1 + n;
- const uint8_t *end8 = ptr1 + ((n >> 3) << 3);
- const uint8_t *end32 = ptr1 + ((n >> 5) << 5);
- const uint8_t *end64 = ptr1 + ((n >> 6) << 6);
-
- while (ptr1 < end64) {
- __m512i r1 = _mm512_loadu_si512((const __m512i *)ptr1);
- __m512i r2 = _mm512_loadu_si512((const __m512i *)ptr2);
-
- uint64_t mask = _mm512_cmpeq_epi8_mask(r1, r2);
-
- if (mask != UINT64_MAX) {
- return false;
- }
-
- ptr1 += 64;
- ptr2 += 64;
- }
-
- while (ptr1 < end32) {
- __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1);
- __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2);
- int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
- if ((uint32_t)mask != UINT32_MAX) {
- return false;
- }
- ptr1 += 32;
- ptr2 += 32;
- }
-
- while (ptr1 < end8) {
- uint64_t v1, v2;
- memcpy(&v1, ptr1, sizeof(uint64_t));
- memcpy(&v2, ptr2, sizeof(uint64_t));
- if (v1 != v2) {
- return false;
- }
- ptr1 += 8;
- ptr2 += 8;
- }
-
- while (ptr1 < end1) {
- if (*ptr1 != *ptr2) {
- return false;
- }
- ptr1++;
- ptr2++;
- }
-
- return true;
-}
-CROARING_UNTARGET_AVX512
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-
-CROARING_TARGET_AVX2
-static inline bool _avx2_memequals(const void *s1, const void *s2, size_t n) {
- const uint8_t *ptr1 = (const uint8_t *)s1;
- const uint8_t *ptr2 = (const uint8_t *)s2;
- const uint8_t *end1 = ptr1 + n;
- const uint8_t *end8 = ptr1 + n / 8 * 8;
- const uint8_t *end32 = ptr1 + n / 32 * 32;
-
- while (ptr1 < end32) {
- __m256i r1 = _mm256_loadu_si256((const __m256i *)ptr1);
- __m256i r2 = _mm256_loadu_si256((const __m256i *)ptr2);
- int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
- if ((uint32_t)mask != UINT32_MAX) {
- return false;
- }
- ptr1 += 32;
- ptr2 += 32;
- }
-
- while (ptr1 < end8) {
- uint64_t v1, v2;
- memcpy(&v1, ptr1, sizeof(uint64_t));
- memcpy(&v2, ptr2, sizeof(uint64_t));
- if (v1 != v2) {
- return false;
- }
- ptr1 += 8;
- ptr2 += 8;
- }
-
- while (ptr1 < end1) {
- if (*ptr1 != *ptr2) {
- return false;
- }
- ptr1++;
- ptr2++;
- }
-
- return true;
-}
-CROARING_UNTARGET_AVX2
-#endif
-
-bool memequals(const void *s1, const void *s2, size_t n) {
- if (n == 0) {
- return true;
- }
-#if CROARING_IS_X64
- int support = croaring_hardware_support();
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if (support & ROARING_SUPPORTS_AVX512) {
- return _avx512_memequals(s1, s2, n);
- } else
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
- if (support & ROARING_SUPPORTS_AVX2) {
- return _avx2_memequals(s1, s2, n);
- } else {
- return memcmp(s1, s2, n) == 0;
- }
-#else
- return memcmp(s1, s2, n) == 0;
-#endif
-}
-
-#if CROARING_IS_X64
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-ALLOW_UNALIGNED
-int avx512_array_container_to_uint32_array(void *vout, const uint16_t *array,
- size_t cardinality, uint32_t base) {
- int outpos = 0;
- uint32_t *out = (uint32_t *)vout;
- size_t i = 0;
- for (; i + sizeof(__m256i) / sizeof(uint16_t) <= cardinality;
- i += sizeof(__m256i) / sizeof(uint16_t)) {
- __m256i vinput = _mm256_loadu_si256((const __m256i *)(array + i));
- __m512i voutput = _mm512_add_epi32(_mm512_cvtepu16_epi32(vinput),
- _mm512_set1_epi32(base));
- _mm512_storeu_si512((__m512i *)(out + outpos), voutput);
- outpos += sizeof(__m512i) / sizeof(uint32_t);
- }
- for (; i < cardinality; ++i) {
- const uint32_t val = base + array[i];
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- outpos++;
- }
- return outpos;
-}
-CROARING_UNTARGET_AVX512
-#endif // #if CROARING_COMPILER_SUPPORTS_AVX512
-#endif // #if CROARING_IS_X64
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif/* end file src/array_util.c */
-/* begin file src/art/art.c */
-#include <assert.h>
-#include <stdio.h>
-#include <string.h>
-
-
-#define CROARING_ART_NODE4_TYPE 0
-#define CROARING_ART_NODE16_TYPE 1
-#define CROARING_ART_NODE48_TYPE 2
-#define CROARING_ART_NODE256_TYPE 3
-#define CROARING_ART_NUM_TYPES 4
-
-// Node48 placeholder value to indicate no child is present at this key index.
-#define CROARING_ART_NODE48_EMPTY_VAL 48
-
-// We use the least significant bit of node pointers to indicate whether a node
-// is a leaf or an inner node. This is never surfaced to the user.
-//
-// Using pointer tagging to indicate leaves not only saves a bit of memory by
-// sparing the typecode, but also allows us to use an intrusive leaf struct.
-// Using an intrusive leaf struct leaves leaf allocation up to the user. Upon
-// deallocation of the ART, we know not to free the leaves without having to
-// dereference the leaf pointers.
-//
-// All internal operations on leaves should use CROARING_CAST_LEAF before using
-// the leaf. The only places that use CROARING_SET_LEAF are locations where a
-// field is directly assigned to a leaf pointer. After using CROARING_SET_LEAF,
-// the leaf should be treated as a node of unknown type.
-#define CROARING_IS_LEAF(p) (((uintptr_t)(p) & 1))
-#define CROARING_SET_LEAF(p) ((art_node_t *)((uintptr_t)(p) | 1))
-#define CROARING_CAST_LEAF(p) ((art_leaf_t *)((void *)((uintptr_t)(p) & ~1)))
-
-#define CROARING_NODE48_AVAILABLE_CHILDREN_MASK ((UINT64_C(1) << 48) - 1)
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-typedef uint8_t art_typecode_t;
-
-// Aliasing with a "leaf" naming so that its purpose is clearer in the context
-// of the trie internals.
-typedef art_val_t art_leaf_t;
-
-typedef struct art_internal_validate_s {
- const char **reason;
- art_validate_cb_t validate_cb;
-
- int depth;
- art_key_chunk_t current_key[ART_KEY_BYTES];
-} art_internal_validate_t;
-
-// Set the reason message, and return false for convenience.
-static inline bool art_validate_fail(const art_internal_validate_t *validate,
- const char *msg) {
- *validate->reason = msg;
- return false;
-}
-
-// Inner node, with prefix.
-//
-// We use a fixed-length array as a pointer would be larger than the array.
-typedef struct art_inner_node_s {
- art_typecode_t typecode;
- uint8_t prefix_size;
- uint8_t prefix[ART_KEY_BYTES - 1];
-} art_inner_node_t;
-
-// Inner node types.
-
-// Node4: key[i] corresponds with children[i]. Keys are sorted.
-typedef struct art_node4_s {
- art_inner_node_t base;
- uint8_t count;
- uint8_t keys[4];
- art_node_t *children[4];
-} art_node4_t;
-
-// Node16: key[i] corresponds with children[i]. Keys are sorted.
-typedef struct art_node16_s {
- art_inner_node_t base;
- uint8_t count;
- uint8_t keys[16];
- art_node_t *children[16];
-} art_node16_t;
-
-// Node48: key[i] corresponds with children[key[i]] if key[i] !=
-// CROARING_ART_NODE48_EMPTY_VAL. Keys are naturally sorted due to direct
-// indexing.
-typedef struct art_node48_s {
- art_inner_node_t base;
- uint8_t count;
- // Bitset where the ith bit is set if children[i] is available
- // Because there are at most 48 children, only the bottom 48 bits are used.
- uint64_t available_children;
- uint8_t keys[256];
- art_node_t *children[48];
-} art_node48_t;
-
-// Node256: children[i] is directly indexed by key chunk. A child is present if
-// children[i] != NULL.
-typedef struct art_node256_s {
- art_inner_node_t base;
- uint16_t count;
- art_node_t *children[256];
-} art_node256_t;
-
-// Helper struct to refer to a child within a node at a specific index.
-typedef struct art_indexed_child_s {
- art_node_t *child;
- uint8_t index;
- art_key_chunk_t key_chunk;
-} art_indexed_child_t;
-
-static inline bool art_is_leaf(const art_node_t *node) {
- return CROARING_IS_LEAF(node);
-}
-
-static void art_leaf_populate(art_leaf_t *leaf, const art_key_chunk_t key[]) {
- memcpy(leaf->key, key, ART_KEY_BYTES);
-}
-
-static inline uint8_t art_get_type(const art_inner_node_t *node) {
- return node->typecode;
-}
-
-static inline void art_init_inner_node(art_inner_node_t *node,
- art_typecode_t typecode,
- const art_key_chunk_t prefix[],
- uint8_t prefix_size) {
- node->typecode = typecode;
- node->prefix_size = prefix_size;
- memcpy(node->prefix, prefix, prefix_size * sizeof(art_key_chunk_t));
-}
-
-static void art_free_node(art_node_t *node);
-
-// ===================== Start of node-specific functions
======================
-
-static art_node4_t *art_node4_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size);
-static art_node16_t *art_node16_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size);
-static art_node48_t *art_node48_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size);
-static art_node256_t *art_node256_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size);
-
-static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child,
- uint8_t key);
-static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child,
- uint8_t key);
-static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child,
- uint8_t key);
-static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child,
- uint8_t key);
-
-static art_node4_t *art_node4_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size) {
- art_node4_t *node = (art_node4_t *)roaring_malloc(sizeof(art_node4_t));
- art_init_inner_node(&node->base, CROARING_ART_NODE4_TYPE, prefix,
- prefix_size);
- node->count = 0;
- return node;
-}
-
-static void art_free_node4(art_node4_t *node) {
- for (size_t i = 0; i < node->count; ++i) {
- art_free_node(node->children[i]);
- }
- roaring_free(node);
-}
-
-static inline art_node_t *art_node4_find_child(const art_node4_t *node,
- art_key_chunk_t key) {
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] == key) {
- return node->children[i];
- }
- }
- return NULL;
-}
-
-static art_node_t *art_node4_insert(art_node4_t *node, art_node_t *child,
- uint8_t key) {
- if (node->count < 4) {
- size_t idx = 0;
- for (; idx < node->count; ++idx) {
- if (node->keys[idx] > key) {
- break;
- }
- }
- size_t after = node->count - idx;
- // Shift other keys to maintain sorted order.
- memmove(node->keys + idx + 1, node->keys + idx,
- after * sizeof(art_key_chunk_t));
- memmove(node->children + idx + 1, node->children + idx,
- after * sizeof(art_node_t *));
-
- node->children[idx] = child;
- node->keys[idx] = key;
- node->count++;
- return (art_node_t *)node;
- }
- art_node16_t *new_node =
- art_node16_create(node->base.prefix, node->base.prefix_size);
- // Instead of calling insert, this could be specialized to 2x memcpy and
- // setting the count.
- for (size_t i = 0; i < 4; ++i) {
- art_node16_insert(new_node, node->children[i], node->keys[i]);
- }
- roaring_free(node);
- return art_node16_insert(new_node, child, key);
-}
-
-static inline art_node_t *art_node4_erase(art_node4_t *node,
- art_key_chunk_t key_chunk) {
- int idx = -1;
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] == key_chunk) {
- idx = i;
- }
- }
- if (idx == -1) {
- return (art_node_t *)node;
- }
- if (node->count == 2) {
- // Only one child remains after erasing, so compress the path by
- // removing this node.
- uint8_t other_idx = idx ^ 1;
- art_node_t *remaining_child = node->children[other_idx];
- art_key_chunk_t remaining_child_key = node->keys[other_idx];
- if (!art_is_leaf(remaining_child)) {
- // Correct the prefix of the child node.
- art_inner_node_t *inner_node = (art_inner_node_t *)remaining_child;
- memmove(inner_node->prefix + node->base.prefix_size + 1,
- inner_node->prefix, inner_node->prefix_size);
- memcpy(inner_node->prefix, node->base.prefix,
- node->base.prefix_size);
- inner_node->prefix[node->base.prefix_size] = remaining_child_key;
- inner_node->prefix_size += node->base.prefix_size + 1;
- }
- roaring_free(node);
- return remaining_child;
- }
- // Shift other keys to maintain sorted order.
- size_t after_next = node->count - idx - 1;
- memmove(node->keys + idx, node->keys + idx + 1,
- after_next * sizeof(art_key_chunk_t));
- memmove(node->children + idx, node->children + idx + 1,
- after_next * sizeof(art_node_t *));
- node->count--;
- return (art_node_t *)node;
-}
-
-static inline void art_node4_replace(art_node4_t *node,
- art_key_chunk_t key_chunk,
- art_node_t *new_child) {
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] == key_chunk) {
- node->children[i] = new_child;
- return;
- }
- }
-}
-
-static inline art_indexed_child_t art_node4_next_child(const art_node4_t *node,
- int index) {
- art_indexed_child_t indexed_child;
- index++;
- if (index >= node->count) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = node->keys[index];
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node4_prev_child(const art_node4_t *node,
- int index) {
- if (index > node->count) {
- index = node->count;
- }
- index--;
- art_indexed_child_t indexed_child;
- if (index < 0) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = node->keys[index];
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node4_child_at(const art_node4_t *node,
- int index) {
- art_indexed_child_t indexed_child;
- if (index < 0 || index >= node->count) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = node->keys[index];
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node4_lower_bound(
- art_node4_t *node, art_key_chunk_t key_chunk) {
- art_indexed_child_t indexed_child;
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] >= key_chunk) {
- indexed_child.index = i;
- indexed_child.child = node->children[i];
- indexed_child.key_chunk = node->keys[i];
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static bool art_internal_validate_at(const art_node_t *node,
- art_internal_validate_t validator);
-
-static bool art_node4_internal_validate(const art_node4_t *node,
- art_internal_validate_t validator) {
- if (node->count == 0) {
- return art_validate_fail(&validator, "Node4 has no children");
- }
- if (node->count > 4) {
- return art_validate_fail(&validator, "Node4 has too many children");
- }
- if (node->count == 1) {
- return art_validate_fail(
- &validator, "Node4 and child node should have been combined");
- }
- validator.depth++;
- for (int i = 0; i < node->count; ++i) {
- if (i > 0) {
- if (node->keys[i - 1] >= node->keys[i]) {
- return art_validate_fail(
- &validator, "Node4 keys are not strictly increasing");
- }
- }
- for (int j = i + 1; j < node->count; ++j) {
- if (node->children[i] == node->children[j]) {
- return art_validate_fail(&validator,
- "Node4 has duplicate children");
- }
- }
- validator.current_key[validator.depth - 1] = node->keys[i];
- if (!art_internal_validate_at(node->children[i], validator)) {
- return false;
- }
- }
- return true;
-}
-
-static art_node16_t *art_node16_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size) {
- art_node16_t *node = (art_node16_t *)roaring_malloc(sizeof(art_node16_t));
- art_init_inner_node(&node->base, CROARING_ART_NODE16_TYPE, prefix,
- prefix_size);
- node->count = 0;
- return node;
-}
-
-static void art_free_node16(art_node16_t *node) {
- for (size_t i = 0; i < node->count; ++i) {
- art_free_node(node->children[i]);
- }
- roaring_free(node);
-}
-
-static inline art_node_t *art_node16_find_child(const art_node16_t *node,
- art_key_chunk_t key) {
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] == key) {
- return node->children[i];
- }
- }
- return NULL;
-}
-
-static art_node_t *art_node16_insert(art_node16_t *node, art_node_t *child,
- uint8_t key) {
- if (node->count < 16) {
- size_t idx = 0;
- for (; idx < node->count; ++idx) {
- if (node->keys[idx] > key) {
- break;
- }
- }
- size_t after = node->count - idx;
- // Shift other keys to maintain sorted order.
- memmove(node->keys + idx + 1, node->keys + idx,
- after * sizeof(art_key_chunk_t));
- memmove(node->children + idx + 1, node->children + idx,
- after * sizeof(art_node_t *));
-
- node->children[idx] = child;
- node->keys[idx] = key;
- node->count++;
- return (art_node_t *)node;
- }
- art_node48_t *new_node =
- art_node48_create(node->base.prefix, node->base.prefix_size);
- for (size_t i = 0; i < 16; ++i) {
- art_node48_insert(new_node, node->children[i], node->keys[i]);
- }
- roaring_free(node);
- return art_node48_insert(new_node, child, key);
-}
-
-static inline art_node_t *art_node16_erase(art_node16_t *node,
- uint8_t key_chunk) {
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] == key_chunk) {
- // Shift other keys to maintain sorted order.
- size_t after_next = node->count - i - 1;
- memmove(node->keys + i, node->keys + i + 1,
- after_next * sizeof(key_chunk));
- memmove(node->children + i, node->children + i + 1,
- after_next * sizeof(art_node_t *));
- node->count--;
- break;
- }
- }
- if (node->count > 4) {
- return (art_node_t *)node;
- }
- art_node4_t *new_node =
- art_node4_create(node->base.prefix, node->base.prefix_size);
- // Instead of calling insert, this could be specialized to 2x memcpy and
- // setting the count.
- for (size_t i = 0; i < 4; ++i) {
- art_node4_insert(new_node, node->children[i], node->keys[i]);
- }
- roaring_free(node);
- return (art_node_t *)new_node;
-}
-
-static inline void art_node16_replace(art_node16_t *node,
- art_key_chunk_t key_chunk,
- art_node_t *new_child) {
- for (uint8_t i = 0; i < node->count; ++i) {
- if (node->keys[i] == key_chunk) {
- node->children[i] = new_child;
- return;
- }
- }
-}
-
-static inline art_indexed_child_t art_node16_next_child(
- const art_node16_t *node, int index) {
- art_indexed_child_t indexed_child;
- index++;
- if (index >= node->count) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = node->keys[index];
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node16_prev_child(
- const art_node16_t *node, int index) {
- if (index > node->count) {
- index = node->count;
- }
- index--;
- art_indexed_child_t indexed_child;
- if (index < 0) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = node->keys[index];
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node16_child_at(const art_node16_t *node,
- int index) {
- art_indexed_child_t indexed_child;
- if (index < 0 || index >= node->count) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = node->keys[index];
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node16_lower_bound(
- art_node16_t *node, art_key_chunk_t key_chunk) {
- art_indexed_child_t indexed_child;
- for (size_t i = 0; i < node->count; ++i) {
- if (node->keys[i] >= key_chunk) {
- indexed_child.index = i;
- indexed_child.child = node->children[i];
- indexed_child.key_chunk = node->keys[i];
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static bool art_node16_internal_validate(const art_node16_t *node,
- art_internal_validate_t validator) {
- if (node->count <= 4) {
- return art_validate_fail(&validator, "Node16 has too few children");
- }
- if (node->count > 16) {
- return art_validate_fail(&validator, "Node16 has too many children");
- }
- validator.depth++;
- for (int i = 0; i < node->count; ++i) {
- if (i > 0) {
- if (node->keys[i - 1] >= node->keys[i]) {
- return art_validate_fail(
- &validator, "Node16 keys are not strictly increasing");
- }
- }
- for (int j = i + 1; j < node->count; ++j) {
- if (node->children[i] == node->children[j]) {
- return art_validate_fail(&validator,
- "Node16 has duplicate children");
- }
- }
- validator.current_key[validator.depth - 1] = node->keys[i];
- if (!art_internal_validate_at(node->children[i], validator)) {
- return false;
- }
- }
- return true;
-}
-
-static art_node48_t *art_node48_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size) {
- art_node48_t *node = (art_node48_t *)roaring_malloc(sizeof(art_node48_t));
- art_init_inner_node(&node->base, CROARING_ART_NODE48_TYPE, prefix,
- prefix_size);
- node->count = 0;
- node->available_children = CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
- for (size_t i = 0; i < 256; ++i) {
- node->keys[i] = CROARING_ART_NODE48_EMPTY_VAL;
- }
- return node;
-}
-
-static void art_free_node48(art_node48_t *node) {
- uint64_t used_children =
- (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
- while (used_children != 0) {
- // We checked above that used_children is not zero
- uint8_t child_idx = roaring_trailing_zeroes(used_children);
- art_free_node(node->children[child_idx]);
- used_children &= ~(UINT64_C(1) << child_idx);
- }
- roaring_free(node);
-}
-
-static inline art_node_t *art_node48_find_child(const art_node48_t *node,
- art_key_chunk_t key) {
- uint8_t val_idx = node->keys[key];
- if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
- return node->children[val_idx];
- }
- return NULL;
-}
-
-static art_node_t *art_node48_insert(art_node48_t *node, art_node_t *child,
- uint8_t key) {
- if (node->count < 48) {
- // node->available_children is only zero when the node is full (count
==
- // 48), we just checked count < 48
- uint8_t val_idx = roaring_trailing_zeroes(node->available_children);
- node->keys[key] = val_idx;
- node->children[val_idx] = child;
- node->count++;
- node->available_children &= ~(UINT64_C(1) << val_idx);
- return (art_node_t *)node;
- }
- art_node256_t *new_node =
- art_node256_create(node->base.prefix, node->base.prefix_size);
- for (size_t i = 0; i < 256; ++i) {
- uint8_t val_idx = node->keys[i];
- if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
- art_node256_insert(new_node, node->children[val_idx], i);
- }
- }
- roaring_free(node);
- return art_node256_insert(new_node, child, key);
-}
-
-static inline art_node_t *art_node48_erase(art_node48_t *node,
- uint8_t key_chunk) {
- uint8_t val_idx = node->keys[key_chunk];
- if (val_idx == CROARING_ART_NODE48_EMPTY_VAL) {
- return (art_node_t *)node;
- }
- node->keys[key_chunk] = CROARING_ART_NODE48_EMPTY_VAL;
- node->available_children |= UINT64_C(1) << val_idx;
- node->count--;
- if (node->count > 16) {
- return (art_node_t *)node;
- }
-
- art_node16_t *new_node =
- art_node16_create(node->base.prefix, node->base.prefix_size);
- for (size_t i = 0; i < 256; ++i) {
- val_idx = node->keys[i];
- if (val_idx != CROARING_ART_NODE48_EMPTY_VAL) {
- art_node16_insert(new_node, node->children[val_idx], i);
- }
- }
- roaring_free(node);
- return (art_node_t *)new_node;
-}
-
-static inline void art_node48_replace(art_node48_t *node,
- art_key_chunk_t key_chunk,
- art_node_t *new_child) {
- uint8_t val_idx = node->keys[key_chunk];
- assert(val_idx != CROARING_ART_NODE48_EMPTY_VAL);
- node->children[val_idx] = new_child;
-}
-
-static inline art_indexed_child_t art_node48_next_child(
- const art_node48_t *node, int index) {
- art_indexed_child_t indexed_child;
- index++;
- for (size_t i = index; i < 256; ++i) {
- if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
- indexed_child.index = i;
- indexed_child.child = node->children[node->keys[i]];
- indexed_child.key_chunk = i;
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node48_prev_child(
- const art_node48_t *node, int index) {
- if (index > 256) {
- index = 256;
- }
- index--;
- art_indexed_child_t indexed_child;
- for (int i = index; i >= 0; --i) {
- if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
- indexed_child.index = i;
- indexed_child.child = node->children[node->keys[i]];
- indexed_child.key_chunk = i;
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node48_child_at(const art_node48_t *node,
- int index) {
- art_indexed_child_t indexed_child;
- if (index < 0 || index >= 256) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[node->keys[index]];
- indexed_child.key_chunk = index;
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node48_lower_bound(
- art_node48_t *node, art_key_chunk_t key_chunk) {
- art_indexed_child_t indexed_child;
- for (size_t i = key_chunk; i < 256; ++i) {
- if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
- indexed_child.index = i;
- indexed_child.child = node->children[node->keys[i]];
- indexed_child.key_chunk = i;
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static bool art_node48_internal_validate(const art_node48_t *node,
- art_internal_validate_t validator) {
- if (node->count <= 16) {
- return art_validate_fail(&validator, "Node48 has too few children");
- }
- if (node->count > 48) {
- return art_validate_fail(&validator, "Node48 has too many children");
- }
- uint64_t used_children = 0;
- for (int i = 0; i < 256; ++i) {
- uint8_t child_idx = node->keys[i];
- if (child_idx != CROARING_ART_NODE48_EMPTY_VAL) {
- if (used_children & (UINT64_C(1) << child_idx)) {
- return art_validate_fail(
- &validator, "Node48 keys point to the same child index");
- }
-
- art_node_t *child = node->children[child_idx];
- if (child == NULL) {
- return art_validate_fail(&validator, "Node48 has a NULL
child");
- }
- used_children |= UINT64_C(1) << child_idx;
- }
- }
- uint64_t expected_used_children =
- (node->available_children) ^ CROARING_NODE48_AVAILABLE_CHILDREN_MASK;
- if (used_children != expected_used_children) {
- return art_validate_fail(
- &validator,
- "Node48 available_children does not match actual children");
- }
- while (used_children != 0) {
- uint8_t child_idx = roaring_trailing_zeroes(used_children);
- used_children &= used_children - 1;
-
- uint64_t other_children = used_children;
- while (other_children != 0) {
- uint8_t other_child_idx = roaring_trailing_zeroes(other_children);
- if (node->children[child_idx] == node->children[other_child_idx]) {
- return art_validate_fail(&validator,
- "Node48 has duplicate children");
- }
- other_children &= other_children - 1;
- }
- }
-
- validator.depth++;
- for (int i = 0; i < 256; ++i) {
- if (node->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
- validator.current_key[validator.depth - 1] = i;
- if (!art_internal_validate_at(node->children[node->keys[i]],
- validator)) {
- return false;
- }
- }
- }
- return true;
-}
-
-static art_node256_t *art_node256_create(const art_key_chunk_t prefix[],
- uint8_t prefix_size) {
- art_node256_t *node =
- (art_node256_t *)roaring_malloc(sizeof(art_node256_t));
- art_init_inner_node(&node->base, CROARING_ART_NODE256_TYPE, prefix,
- prefix_size);
- node->count = 0;
- for (size_t i = 0; i < 256; ++i) {
- node->children[i] = NULL;
- }
- return node;
-}
-
-static void art_free_node256(art_node256_t *node) {
- for (size_t i = 0; i < 256; ++i) {
- if (node->children[i] != NULL) {
- art_free_node(node->children[i]);
- }
- }
- roaring_free(node);
-}
-
-static inline art_node_t *art_node256_find_child(const art_node256_t *node,
- art_key_chunk_t key) {
- return node->children[key];
-}
-
-static art_node_t *art_node256_insert(art_node256_t *node, art_node_t *child,
- uint8_t key) {
- node->children[key] = child;
- node->count++;
- return (art_node_t *)node;
-}
-
-static inline art_node_t *art_node256_erase(art_node256_t *node,
- uint8_t key_chunk) {
- node->children[key_chunk] = NULL;
- node->count--;
- if (node->count > 48) {
- return (art_node_t *)node;
- }
-
- art_node48_t *new_node =
- art_node48_create(node->base.prefix, node->base.prefix_size);
- for (size_t i = 0; i < 256; ++i) {
- if (node->children[i] != NULL) {
- art_node48_insert(new_node, node->children[i], i);
- }
- }
- roaring_free(node);
- return (art_node_t *)new_node;
-}
-
-static inline void art_node256_replace(art_node256_t *node,
- art_key_chunk_t key_chunk,
- art_node_t *new_child) {
- node->children[key_chunk] = new_child;
-}
-
-static inline art_indexed_child_t art_node256_next_child(
- const art_node256_t *node, int index) {
- art_indexed_child_t indexed_child;
- index++;
- for (size_t i = index; i < 256; ++i) {
- if (node->children[i] != NULL) {
- indexed_child.index = i;
- indexed_child.child = node->children[i];
- indexed_child.key_chunk = i;
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node256_prev_child(
- const art_node256_t *node, int index) {
- if (index > 256) {
- index = 256;
- }
- index--;
- art_indexed_child_t indexed_child;
- for (int i = index; i >= 0; --i) {
- if (node->children[i] != NULL) {
- indexed_child.index = i;
- indexed_child.child = node->children[i];
- indexed_child.key_chunk = i;
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node256_child_at(
- const art_node256_t *node, int index) {
- art_indexed_child_t indexed_child;
- if (index < 0 || index >= 256) {
- indexed_child.child = NULL;
- return indexed_child;
- }
- indexed_child.index = index;
- indexed_child.child = node->children[index];
- indexed_child.key_chunk = index;
- return indexed_child;
-}
-
-static inline art_indexed_child_t art_node256_lower_bound(
- art_node256_t *node, art_key_chunk_t key_chunk) {
- art_indexed_child_t indexed_child;
- for (size_t i = key_chunk; i < 256; ++i) {
- if (node->children[i] != NULL) {
- indexed_child.index = i;
- indexed_child.child = node->children[i];
- indexed_child.key_chunk = i;
- return indexed_child;
- }
- }
- indexed_child.child = NULL;
- return indexed_child;
-}
-
-static bool art_node256_internal_validate(const art_node256_t *node,
- art_internal_validate_t validator) {
- if (node->count <= 48) {
- return art_validate_fail(&validator, "Node256 has too few children");
- }
- if (node->count > 256) {
- return art_validate_fail(&validator, "Node256 has too many children");
- }
- validator.depth++;
- int actual_count = 0;
- for (int i = 0; i < 256; ++i) {
- if (node->children[i] != NULL) {
- actual_count++;
-
- for (int j = i + 1; j < 256; ++j) {
- if (node->children[i] == node->children[j]) {
- return art_validate_fail(&validator,
- "Node256 has duplicate children");
- }
- }
-
- validator.current_key[validator.depth - 1] = i;
- if (!art_internal_validate_at(node->children[i], validator)) {
- return false;
- }
- }
- }
- if (actual_count != node->count) {
- return art_validate_fail(
- &validator, "Node256 count does not match actual children");
- }
- return true;
-}
-
-// Finds the child with the given key chunk in the inner node, returns NULL if
-// no such child is found.
-static art_node_t *art_find_child(const art_inner_node_t *node,
- art_key_chunk_t key_chunk) {
- switch (art_get_type(node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_find_child((art_node4_t *)node, key_chunk);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_find_child((art_node16_t *)node, key_chunk);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_find_child((art_node48_t *)node, key_chunk);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_find_child((art_node256_t *)node, key_chunk);
- default:
- assert(false);
- return NULL;
- }
-}
-
-// Replaces the child with the given key chunk in the inner node.
-static void art_replace(art_inner_node_t *node, art_key_chunk_t key_chunk,
- art_node_t *new_child) {
- switch (art_get_type(node)) {
- case CROARING_ART_NODE4_TYPE:
- art_node4_replace((art_node4_t *)node, key_chunk, new_child);
- break;
- case CROARING_ART_NODE16_TYPE:
- art_node16_replace((art_node16_t *)node, key_chunk, new_child);
- break;
- case CROARING_ART_NODE48_TYPE:
- art_node48_replace((art_node48_t *)node, key_chunk, new_child);
- break;
- case CROARING_ART_NODE256_TYPE:
- art_node256_replace((art_node256_t *)node, key_chunk, new_child);
- break;
- default:
- assert(false);
- }
-}
-
-// Erases the child with the given key chunk from the inner node, returns the
-// updated node (the same as the initial node if it was not shrunk).
-static art_node_t *art_node_erase(art_inner_node_t *node,
- art_key_chunk_t key_chunk) {
- switch (art_get_type(node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_erase((art_node4_t *)node, key_chunk);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_erase((art_node16_t *)node, key_chunk);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_erase((art_node48_t *)node, key_chunk);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_erase((art_node256_t *)node, key_chunk);
- default:
- assert(false);
- return NULL;
- }
-}
-
-// Inserts the leaf with the given key chunk in the inner node, returns a
-// pointer to the (possibly expanded) node.
-static art_node_t *art_node_insert_leaf(art_inner_node_t *node,
- art_key_chunk_t key_chunk,
- art_leaf_t *leaf) {
- art_node_t *child = (art_node_t *)(CROARING_SET_LEAF(leaf));
- switch (art_get_type(node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_insert((art_node4_t *)node, child, key_chunk);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_insert((art_node16_t *)node, child, key_chunk);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_insert((art_node48_t *)node, child, key_chunk);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_insert((art_node256_t *)node, child, key_chunk);
- default:
- assert(false);
- return NULL;
- }
-}
-
-// Frees the node and its children. Leaves are freed by the user.
-static void art_free_node(art_node_t *node) {
- if (art_is_leaf(node)) {
- // We leave it up to the user to free leaves.
- return;
- }
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE:
- art_free_node4((art_node4_t *)node);
- break;
- case CROARING_ART_NODE16_TYPE:
- art_free_node16((art_node16_t *)node);
- break;
- case CROARING_ART_NODE48_TYPE:
- art_free_node48((art_node48_t *)node);
- break;
- case CROARING_ART_NODE256_TYPE:
- art_free_node256((art_node256_t *)node);
- break;
- default:
- assert(false);
- }
-}
-
-// Returns the next child in key order, or NULL if called on a leaf.
-// Provided index may be in the range [-1, 255].
-static art_indexed_child_t art_node_next_child(const art_node_t *node,
- int index) {
- if (art_is_leaf(node)) {
- art_indexed_child_t indexed_child;
- indexed_child.child = NULL;
- return indexed_child;
- }
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_next_child((art_node4_t *)node, index);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_next_child((art_node16_t *)node, index);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_next_child((art_node48_t *)node, index);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_next_child((art_node256_t *)node, index);
- default:
- assert(false);
- return (art_indexed_child_t){0, 0, 0};
- }
-}
-
-// Returns the previous child in key order, or NULL if called on a leaf.
-// Provided index may be in the range [0, 256].
-static art_indexed_child_t art_node_prev_child(const art_node_t *node,
- int index) {
- if (art_is_leaf(node)) {
- art_indexed_child_t indexed_child;
- indexed_child.child = NULL;
- return indexed_child;
- }
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_prev_child((art_node4_t *)node, index);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_prev_child((art_node16_t *)node, index);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_prev_child((art_node48_t *)node, index);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_prev_child((art_node256_t *)node, index);
- default:
- assert(false);
- return (art_indexed_child_t){0, 0, 0};
- }
-}
-
-// Returns the child found at the provided index, or NULL if called on a leaf.
-// Provided index is only valid if returned by art_node_(next|prev)_child.
-static art_indexed_child_t art_node_child_at(const art_node_t *node,
- int index) {
- if (art_is_leaf(node)) {
- art_indexed_child_t indexed_child;
- indexed_child.child = NULL;
- return indexed_child;
- }
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_child_at((art_node4_t *)node, index);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_child_at((art_node16_t *)node, index);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_child_at((art_node48_t *)node, index);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_child_at((art_node256_t *)node, index);
- default:
- assert(false);
- return (art_indexed_child_t){0, 0, 0};
- }
-}
-
-// Returns the child with the smallest key equal to or greater than the given
-// key chunk, NULL if called on a leaf or no such child was found.
-static art_indexed_child_t art_node_lower_bound(const art_node_t *node,
- art_key_chunk_t key_chunk) {
- if (art_is_leaf(node)) {
- art_indexed_child_t indexed_child;
- indexed_child.child = NULL;
- return indexed_child;
- }
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE:
- return art_node4_lower_bound((art_node4_t *)node, key_chunk);
- case CROARING_ART_NODE16_TYPE:
- return art_node16_lower_bound((art_node16_t *)node, key_chunk);
- case CROARING_ART_NODE48_TYPE:
- return art_node48_lower_bound((art_node48_t *)node, key_chunk);
- case CROARING_ART_NODE256_TYPE:
- return art_node256_lower_bound((art_node256_t *)node, key_chunk);
- default:
- assert(false);
- return (art_indexed_child_t){0, 0, 0};
- }
-}
-
-// ====================== End of node-specific functions
=======================
-
-// Compares the given ranges of two keys, returns their relative order:
-// * Key range 1 < key range 2: a negative value
-// * Key range 1 == key range 2: 0
-// * Key range 1 > key range 2: a positive value
-static inline int art_compare_prefix(const art_key_chunk_t key1[],
- uint8_t key1_from,
- const art_key_chunk_t key2[],
- uint8_t key2_from, uint8_t length) {
- return memcmp(key1 + key1_from, key2 + key2_from, length);
-}
-
-// Compares two keys in full, see art_compare_prefix.
-int art_compare_keys(const art_key_chunk_t key1[],
- const art_key_chunk_t key2[]) {
- return art_compare_prefix(key1, 0, key2, 0, ART_KEY_BYTES);
-}
-
-// Returns the length of the common prefix between two key ranges.
-static uint8_t art_common_prefix(const art_key_chunk_t key1[],
- uint8_t key1_from, uint8_t key1_to,
- const art_key_chunk_t key2[],
- uint8_t key2_from, uint8_t key2_to) {
- uint8_t min_len = key1_to - key1_from;
- uint8_t key2_len = key2_to - key2_from;
- if (key2_len < min_len) {
- min_len = key2_len;
- }
- uint8_t offset = 0;
- for (; offset < min_len; ++offset) {
- if (key1[key1_from + offset] != key2[key2_from + offset]) {
- return offset;
- }
- }
- return offset;
-}
-
-// Returns a pointer to the rootmost node where the value was inserted, may not
-// be equal to `node`.
-static art_node_t *art_insert_at(art_node_t *node, const art_key_chunk_t key[],
- uint8_t depth, art_leaf_t *new_leaf) {
- if (art_is_leaf(node)) {
- art_leaf_t *leaf = CROARING_CAST_LEAF(node);
- uint8_t common_prefix = art_common_prefix(
- leaf->key, depth, ART_KEY_BYTES, key, depth, ART_KEY_BYTES);
-
- // Previously this was a leaf, create an inner node instead and add
both
- // the existing and new leaf to it.
- art_node_t *new_node =
- (art_node_t *)art_node4_create(key + depth, common_prefix);
-
- new_node = art_node_insert_leaf((art_inner_node_t *)new_node,
- leaf->key[depth + common_prefix],
leaf);
- new_node = art_node_insert_leaf((art_inner_node_t *)new_node,
- key[depth + common_prefix], new_leaf);
-
- // The new inner node is now the rootmost node.
- return new_node;
- }
- art_inner_node_t *inner_node = (art_inner_node_t *)node;
- // Not a leaf: inner node
- uint8_t common_prefix =
- art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key,
- depth, ART_KEY_BYTES);
- if (common_prefix != inner_node->prefix_size) {
- // Partial prefix match. Create a new internal node to hold the common
- // prefix.
- art_node4_t *node4 =
- art_node4_create(inner_node->prefix, common_prefix);
-
- // Make the existing internal node a child of the new internal node.
- node4 = (art_node4_t *)art_node4_insert(
- node4, node, inner_node->prefix[common_prefix]);
-
- // Correct the prefix of the moved internal node, trimming off the
chunk
- // inserted into the new internal node.
- inner_node->prefix_size = inner_node->prefix_size - common_prefix - 1;
- if (inner_node->prefix_size > 0) {
- // Move the remaining prefix to the correct position.
- memmove(inner_node->prefix, inner_node->prefix + common_prefix + 1,
- inner_node->prefix_size);
- }
-
- // Insert the value in the new internal node.
- return art_node_insert_leaf(&node4->base, key[common_prefix + depth],
- new_leaf);
- }
- // Prefix matches entirely or node has no prefix. Look for an existing
- // child.
- art_key_chunk_t key_chunk = key[depth + common_prefix];
- art_node_t *child = art_find_child(inner_node, key_chunk);
- if (child != NULL) {
- art_node_t *new_child =
- art_insert_at(child, key, depth + common_prefix + 1, new_leaf);
- if (new_child != child) {
- // Node type changed.
- art_replace(inner_node, key_chunk, new_child);
- }
- return node;
- }
- return art_node_insert_leaf(inner_node, key_chunk, new_leaf);
-}
-
-// Erase helper struct.
-typedef struct art_erase_result_s {
- // The rootmost node where the value was erased, may not be equal to
`node`.
- // If no value was removed, this is null.
- art_node_t *rootmost_node;
-
- // Value removed, null if not removed.
- art_val_t *value_erased;
-} art_erase_result_t;
-
-// Searches for the given key starting at `node`, erases it if found.
-static art_erase_result_t art_erase_at(art_node_t *node,
- const art_key_chunk_t *key,
- uint8_t depth) {
- art_erase_result_t result;
- result.rootmost_node = NULL;
- result.value_erased = NULL;
-
- if (art_is_leaf(node)) {
- art_leaf_t *leaf = CROARING_CAST_LEAF(node);
- uint8_t common_prefix = art_common_prefix(leaf->key, 0, ART_KEY_BYTES,
- key, 0, ART_KEY_BYTES);
- if (common_prefix != ART_KEY_BYTES) {
- // Leaf key mismatch.
- return result;
- }
- result.value_erased = (art_val_t *)leaf;
- return result;
- }
- art_inner_node_t *inner_node = (art_inner_node_t *)node;
- uint8_t common_prefix =
- art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size, key,
- depth, ART_KEY_BYTES);
- if (common_prefix != inner_node->prefix_size) {
- // Prefix mismatch.
- return result;
- }
- art_key_chunk_t key_chunk = key[depth + common_prefix];
- art_node_t *child = art_find_child(inner_node, key_chunk);
- if (child == NULL) {
- // No child with key chunk.
- return result;
- }
- // Try to erase the key further down. Skip the key chunk associated with
the
- // child in the node.
- art_erase_result_t child_result =
- art_erase_at(child, key, depth + common_prefix + 1);
- if (child_result.value_erased == NULL) {
- return result;
- }
- result.value_erased = child_result.value_erased;
- result.rootmost_node = node;
- if (child_result.rootmost_node == NULL) {
- // Child node was fully erased, erase it from this node's children.
- result.rootmost_node = art_node_erase(inner_node, key_chunk);
- } else if (child_result.rootmost_node != child) {
- // Child node was not fully erased, update the pointer to it in this
- // node.
- art_replace(inner_node, key_chunk, child_result.rootmost_node);
- }
- return result;
-}
-
-// Searches for the given key starting at `node`, returns NULL if the key was
-// not found.
-static art_val_t *art_find_at(const art_node_t *node,
- const art_key_chunk_t *key, uint8_t depth) {
- while (!art_is_leaf(node)) {
- art_inner_node_t *inner_node = (art_inner_node_t *)node;
- uint8_t common_prefix =
- art_common_prefix(inner_node->prefix, 0, inner_node->prefix_size,
- key, depth, ART_KEY_BYTES);
- if (common_prefix != inner_node->prefix_size) {
- return NULL;
- }
- art_node_t *child =
- art_find_child(inner_node, key[depth + inner_node->prefix_size]);
- if (child == NULL) {
- return NULL;
- }
- node = child;
- // Include both the prefix and the child key chunk in the depth.
- depth += inner_node->prefix_size + 1;
- }
- art_leaf_t *leaf = CROARING_CAST_LEAF(node);
- if (depth >= ART_KEY_BYTES) {
- return (art_val_t *)leaf;
- }
- uint8_t common_prefix =
- art_common_prefix(leaf->key, 0, ART_KEY_BYTES, key, 0, ART_KEY_BYTES);
- if (common_prefix == ART_KEY_BYTES) {
- return (art_val_t *)leaf;
- }
- return NULL;
-}
-
-// Returns the size in bytes of the subtrie.
-size_t art_size_in_bytes_at(const art_node_t *node) {
- if (art_is_leaf(node)) {
- return 0;
- }
- size_t size = 0;
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE: {
- size += sizeof(art_node4_t);
- } break;
- case CROARING_ART_NODE16_TYPE: {
- size += sizeof(art_node16_t);
- } break;
- case CROARING_ART_NODE48_TYPE: {
- size += sizeof(art_node48_t);
- } break;
- case CROARING_ART_NODE256_TYPE: {
- size += sizeof(art_node256_t);
- } break;
- default:
- assert(false);
- break;
- }
- art_indexed_child_t indexed_child = art_node_next_child(node, -1);
- while (indexed_child.child != NULL) {
- size += art_size_in_bytes_at(indexed_child.child);
- indexed_child = art_node_next_child(node, indexed_child.index);
- }
- return size;
-}
-
-static void art_node_print_type(const art_node_t *node) {
- if (art_is_leaf(node)) {
- printf("Leaf");
- return;
- }
- switch (art_get_type((art_inner_node_t *)node)) {
- case CROARING_ART_NODE4_TYPE:
- printf("Node4");
- return;
- case CROARING_ART_NODE16_TYPE:
- printf("Node16");
- return;
- case CROARING_ART_NODE48_TYPE:
- printf("Node48");
- return;
- case CROARING_ART_NODE256_TYPE:
- printf("Node256");
- return;
- default:
- assert(false);
- return;
- }
-}
-
-void art_node_printf(const art_node_t *node, uint8_t depth) {
- if (art_is_leaf(node)) {
- printf("{ type: Leaf, key: ");
- art_leaf_t *leaf = CROARING_CAST_LEAF(node);
- for (size_t i = 0; i < ART_KEY_BYTES; ++i) {
- printf("%02x", leaf->key[i]);
- }
- printf(" }\n");
- return;
- }
- printf("{\n");
- depth++;
-
- printf("%*s", depth, "");
- printf("type: ");
- art_node_print_type(node);
- printf("\n");
-
- art_inner_node_t *inner_node = (art_inner_node_t *)node;
- printf("%*s", depth, "");
- printf("prefix_size: %d\n", inner_node->prefix_size);
-
- printf("%*s", depth, "");
- printf("prefix: ");
- for (uint8_t i = 0; i < inner_node->prefix_size; ++i) {
- printf("%02x", inner_node->prefix[i]);
- }
- printf("\n");
-
- switch (art_get_type(inner_node)) {
- case CROARING_ART_NODE4_TYPE: {
- art_node4_t *node4 = (art_node4_t *)node;
- for (uint8_t i = 0; i < node4->count; ++i) {
- printf("%*s", depth, "");
- printf("key: %02x ", node4->keys[i]);
- art_node_printf(node4->children[i], depth);
- }
- } break;
- case CROARING_ART_NODE16_TYPE: {
- art_node16_t *node16 = (art_node16_t *)node;
- for (uint8_t i = 0; i < node16->count; ++i) {
- printf("%*s", depth, "");
- printf("key: %02x ", node16->keys[i]);
- art_node_printf(node16->children[i], depth);
- }
- } break;
- case CROARING_ART_NODE48_TYPE: {
- art_node48_t *node48 = (art_node48_t *)node;
- for (int i = 0; i < 256; ++i) {
- if (node48->keys[i] != CROARING_ART_NODE48_EMPTY_VAL) {
- printf("%*s", depth, "");
- printf("key: %02x ", i);
- printf("child: %02x ", node48->keys[i]);
- art_node_printf(node48->children[node48->keys[i]], depth);
- }
- }
- } break;
- case CROARING_ART_NODE256_TYPE: {
- art_node256_t *node256 = (art_node256_t *)node;
- for (int i = 0; i < 256; ++i) {
- if (node256->children[i] != NULL) {
- printf("%*s", depth, "");
- printf("key: %02x ", i);
- art_node_printf(node256->children[i], depth);
- }
- }
- } break;
- default:
- assert(false);
- break;
- }
- depth--;
- printf("%*s", depth, "");
- printf("}\n");
-}
-
-void art_insert(art_t *art, const art_key_chunk_t *key, art_val_t *val) {
- art_leaf_t *leaf = (art_leaf_t *)val;
- art_leaf_populate(leaf, key);
- if (art->root == NULL) {
- art->root = (art_node_t *)CROARING_SET_LEAF(leaf);
- return;
- }
- art->root = art_insert_at(art->root, key, 0, leaf);
-}
-
-art_val_t *art_erase(art_t *art, const art_key_chunk_t *key) {
- if (art->root == NULL) {
- return NULL;
- }
- art_erase_result_t result = art_erase_at(art->root, key, 0);
- if (result.value_erased == NULL) {
- return NULL;
- }
- art->root = result.rootmost_node;
- return result.value_erased;
-}
-
-art_val_t *art_find(const art_t *art, const art_key_chunk_t *key) {
- if (art->root == NULL) {
- return NULL;
- }
- return art_find_at(art->root, key, 0);
-}
-
-bool art_is_empty(const art_t *art) { return art->root == NULL; }
-
-void art_free(art_t *art) {
- if (art->root == NULL) {
- return;
- }
- art_free_node(art->root);
-}
-
-size_t art_size_in_bytes(const art_t *art) {
- size_t size = sizeof(art_t);
- if (art->root != NULL) {
- size += art_size_in_bytes_at(art->root);
- }
- return size;
-}
-
-void art_printf(const art_t *art) {
- if (art->root == NULL) {
- return;
- }
- art_node_printf(art->root, 0);
-}
-
-// Returns the current node that the iterator is positioned at.
-static inline art_node_t *art_iterator_node(art_iterator_t *iterator) {
- return iterator->frames[iterator->frame].node;
-}
-
-// Sets the iterator key and value to the leaf's key and value. Always returns
-// true for convenience.
-static inline bool art_iterator_valid_loc(art_iterator_t *iterator,
- art_leaf_t *leaf) {
- iterator->frames[iterator->frame].node = CROARING_SET_LEAF(leaf);
- iterator->frames[iterator->frame].index_in_node = 0;
- memcpy(iterator->key, leaf->key, ART_KEY_BYTES);
- iterator->value = (art_val_t *)leaf;
- return true;
-}
-
-// Invalidates the iterator key and value. Always returns false for
convenience.
-static inline bool art_iterator_invalid_loc(art_iterator_t *iterator) {
- memset(iterator->key, 0, ART_KEY_BYTES);
- iterator->value = NULL;
- return false;
-}
-
-// Moves the iterator one level down in the tree, given a node at the current
-// level and the index of the child that we're going down to.
-//
-// Note: does not set the index at the new level.
-static void art_iterator_down(art_iterator_t *iterator,
- const art_inner_node_t *node,
- uint8_t index_in_node) {
- iterator->frames[iterator->frame].node = (art_node_t *)node;
- iterator->frames[iterator->frame].index_in_node = index_in_node;
- iterator->frame++;
- art_indexed_child_t indexed_child =
- art_node_child_at((art_node_t *)node, index_in_node);
- assert(indexed_child.child != NULL);
- iterator->frames[iterator->frame].node = indexed_child.child;
- iterator->depth += node->prefix_size + 1;
-}
-
-// Moves the iterator to the next/previous child of the current node. Returns
-// the child moved to, or NULL if there is no neighboring child.
-static art_node_t *art_iterator_neighbor_child(
- art_iterator_t *iterator, const art_inner_node_t *inner_node,
- bool forward) {
- art_iterator_frame_t frame = iterator->frames[iterator->frame];
- art_indexed_child_t indexed_child;
- if (forward) {
- indexed_child = art_node_next_child(frame.node, frame.index_in_node);
- } else {
- indexed_child = art_node_prev_child(frame.node, frame.index_in_node);
- }
- if (indexed_child.child != NULL) {
- art_iterator_down(iterator, inner_node, indexed_child.index);
- }
- return indexed_child.child;
-}
-
-// Moves the iterator one level up in the tree, returns false if not possible.
-static bool art_iterator_up(art_iterator_t *iterator) {
- if (iterator->frame == 0) {
- return false;
- }
- iterator->frame--;
- // We went up, so we are at an inner node.
- iterator->depth -=
- ((art_inner_node_t *)art_iterator_node(iterator))->prefix_size + 1;
- return true;
-}
-
-// Moves the iterator one level, followed by a move to the next / previous
leaf.
-// Sets the status of the iterator.
-static bool art_iterator_up_and_move(art_iterator_t *iterator, bool forward) {
- if (!art_iterator_up(iterator)) {
- // We're at the root.
- return art_iterator_invalid_loc(iterator);
- }
- return art_iterator_move(iterator, forward);
-}
-
-// Initializes the iterator at the first / last leaf of the given node.
-// Returns true for convenience.
-static bool art_node_init_iterator(const art_node_t *node,
- art_iterator_t *iterator, bool first) {
- while (!art_is_leaf(node)) {
- art_indexed_child_t indexed_child;
- if (first) {
- indexed_child = art_node_next_child(node, -1);
- } else {
- indexed_child = art_node_prev_child(node, 256);
- }
- art_iterator_down(iterator, (art_inner_node_t *)node,
- indexed_child.index);
- node = indexed_child.child;
- }
- // We're at a leaf.
- iterator->frames[iterator->frame].node = (art_node_t *)node;
- iterator->frames[iterator->frame].index_in_node = 0; // Should not matter.
- return art_iterator_valid_loc(iterator, CROARING_CAST_LEAF(node));
-}
-
-bool art_iterator_move(art_iterator_t *iterator, bool forward) {
- if (art_is_leaf(art_iterator_node(iterator))) {
- bool went_up = art_iterator_up(iterator);
- if (!went_up) {
- // This leaf is the root, we're done.
- return art_iterator_invalid_loc(iterator);
- }
- }
- // Advance within inner node.
- art_node_t *neighbor_child = art_iterator_neighbor_child(
- iterator, (art_inner_node_t *)art_iterator_node(iterator), forward);
- if (neighbor_child != NULL) {
- // There is another child at this level, go down to the first or last
- // leaf.
- return art_node_init_iterator(neighbor_child, iterator, forward);
- }
- // No more children at this level, go up.
- return art_iterator_up_and_move(iterator, forward);
-}
-
-// Assumes the iterator is positioned at a node with an equal prefix path up to
-// the depth of the iterator.
-static bool art_node_iterator_lower_bound(const art_node_t *node,
- art_iterator_t *iterator,
- const art_key_chunk_t key[]) {
- while (!art_is_leaf(node)) {
- art_inner_node_t *inner_node = (art_inner_node_t *)node;
- int prefix_comparison =
- art_compare_prefix(inner_node->prefix, 0, key, iterator->depth,
- inner_node->prefix_size);
- if (prefix_comparison < 0) {
- // Prefix so far has been equal, but we've found a smaller key.
- // Since we take the lower bound within each node, we can return
the
- // next leaf.
- return art_iterator_up_and_move(iterator, true);
- } else if (prefix_comparison > 0) {
- // No key equal to the key we're looking for, return the first
leaf.
- return art_node_init_iterator(node, iterator, true);
- }
- // Prefix is equal, move to lower bound child.
- art_key_chunk_t key_chunk =
- key[iterator->depth + inner_node->prefix_size];
- art_indexed_child_t indexed_child =
- art_node_lower_bound(node, key_chunk);
- if (indexed_child.child == NULL) {
- // Only smaller keys among children.
- return art_iterator_up_and_move(iterator, true);
- }
- if (indexed_child.key_chunk > key_chunk) {
- // Only larger children, return the first larger child.
- art_iterator_down(iterator, inner_node, indexed_child.index);
- return art_node_init_iterator(indexed_child.child, iterator, true);
- }
- // We found a child with an equal prefix.
- art_iterator_down(iterator, inner_node, indexed_child.index);
- node = indexed_child.child;
- }
- art_leaf_t *leaf = CROARING_CAST_LEAF(node);
- if (art_compare_keys(leaf->key, key) >= 0) {
- // Leaf has an equal or larger key.
- return art_iterator_valid_loc(iterator, leaf);
- }
- // Leaf has an equal prefix, but the full key is smaller. Move to the next
- // leaf.
- return art_iterator_up_and_move(iterator, true);
-}
-
-art_iterator_t art_init_iterator(const art_t *art, bool first) {
- art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
- if (art->root == NULL) {
- return iterator;
- }
- art_node_init_iterator(art->root, &iterator, first);
- return iterator;
-}
-
-bool art_iterator_next(art_iterator_t *iterator) {
- return art_iterator_move(iterator, true);
-}
-
-bool art_iterator_prev(art_iterator_t *iterator) {
- return art_iterator_move(iterator, false);
-}
-
-bool art_iterator_lower_bound(art_iterator_t *iterator,
- const art_key_chunk_t *key) {
- if (iterator->value == NULL) {
- // We're beyond the end / start of the ART so the iterator does not
have
- // a valid key. Start from the root.
- iterator->frame = 0;
- iterator->depth = 0;
- art_node_t *root = art_iterator_node(iterator);
- if (root == NULL) {
- return false;
- }
- return art_node_iterator_lower_bound(root, iterator, key);
- }
- int compare_result =
- art_compare_prefix(iterator->key, 0, key, 0, ART_KEY_BYTES);
- // Move up until we have an equal prefix, after which we can do a normal
- // lower bound search.
- while (compare_result != 0) {
- if (!art_iterator_up(iterator)) {
- if (compare_result < 0) {
- // Only smaller keys found.
- return art_iterator_invalid_loc(iterator);
- } else {
- return art_node_init_iterator(art_iterator_node(iterator),
- iterator, true);
- }
- }
- // Since we're only moving up, we can keep comparing against the
- // iterator key.
- art_inner_node_t *inner_node =
- (art_inner_node_t *)art_iterator_node(iterator);
- compare_result =
- art_compare_prefix(iterator->key, 0, key, 0,
- iterator->depth + inner_node->prefix_size);
- }
- if (compare_result > 0) {
- return art_node_init_iterator(art_iterator_node(iterator), iterator,
- true);
- }
- return art_node_iterator_lower_bound(art_iterator_node(iterator), iterator,
- key);
-}
-
-art_iterator_t art_lower_bound(const art_t *art, const art_key_chunk_t *key) {
- art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
- if (art->root != NULL) {
- art_node_iterator_lower_bound(art->root, &iterator, key);
- }
- return iterator;
-}
-
-art_iterator_t art_upper_bound(const art_t *art, const art_key_chunk_t *key) {
- art_iterator_t iterator = CROARING_ZERO_INITIALIZER;
- if (art->root != NULL) {
- if (art_node_iterator_lower_bound(art->root, &iterator, key) &&
- art_compare_keys(iterator.key, key) == 0) {
- art_iterator_next(&iterator);
- }
- }
- return iterator;
-}
-
-void art_iterator_insert(art_t *art, art_iterator_t *iterator,
- const art_key_chunk_t *key, art_val_t *val) {
- // TODO: This can likely be faster.
- art_insert(art, key, val);
- assert(art->root != NULL);
- iterator->frame = 0;
- iterator->depth = 0;
- art_node_iterator_lower_bound(art->root, iterator, key);
-}
-
-// TODO: consider keeping `art_t *art` in the iterator.
-art_val_t *art_iterator_erase(art_t *art, art_iterator_t *iterator) {
- if (iterator->value == NULL) {
- return NULL;
- }
- art_key_chunk_t initial_key[ART_KEY_BYTES];
- memcpy(initial_key, iterator->key, ART_KEY_BYTES);
-
- art_val_t *value_erased = iterator->value;
- bool went_up = art_iterator_up(iterator);
- if (!went_up) {
- // We're erasing the root.
- art->root = NULL;
- art_iterator_invalid_loc(iterator);
- return value_erased;
- }
-
- // Erase the leaf.
- art_inner_node_t *parent_node =
- (art_inner_node_t *)art_iterator_node(iterator);
- art_key_chunk_t key_chunk_in_parent =
- iterator->key[iterator->depth + parent_node->prefix_size];
- art_node_t *new_parent_node =
- art_node_erase(parent_node, key_chunk_in_parent);
-
- if (new_parent_node != ((art_node_t *)parent_node)) {
- // Replace the pointer to the inner node we erased from in its
- // parent (it may be a leaf now).
- iterator->frames[iterator->frame].node = new_parent_node;
- went_up = art_iterator_up(iterator);
- if (went_up) {
- art_inner_node_t *grandparent_node =
- (art_inner_node_t *)art_iterator_node(iterator);
- art_key_chunk_t key_chunk_in_grandparent =
- iterator->key[iterator->depth + grandparent_node->prefix_size];
- art_replace(grandparent_node, key_chunk_in_grandparent,
- new_parent_node);
- } else {
- // We were already at the rootmost node.
- art->root = new_parent_node;
- }
- }
-
- iterator->frame = 0;
- iterator->depth = 0;
- // Do a lower bound search for the initial key, which will find the first
- // greater key if it exists. This can likely be mildly faster if we instead
- // start from the current position.
- art_node_iterator_lower_bound(art->root, iterator, initial_key);
- return value_erased;
-}
-
-static bool art_internal_validate_at(const art_node_t *node,
- art_internal_validate_t validator) {
- if (node == NULL) {
- return art_validate_fail(&validator, "node is null");
- }
- if (art_is_leaf(node)) {
- art_leaf_t *leaf = CROARING_CAST_LEAF(node);
- if (art_compare_prefix(leaf->key, 0, validator.current_key, 0,
- validator.depth) != 0) {
- return art_validate_fail(
- &validator,
- "leaf key does not match its position's prefix in the tree");
- }
- if (validator.validate_cb != NULL &&
- !validator.validate_cb(leaf, validator.reason)) {
- if (*validator.reason == NULL) {
- *validator.reason = "leaf validation failed";
- }
- return false;
- }
- } else {
- art_inner_node_t *inner_node = (art_inner_node_t *)node;
-
- if (validator.depth + inner_node->prefix_size + 1 > ART_KEY_BYTES) {
- return art_validate_fail(&validator,
- "node has too much prefix at given
depth");
- }
- memcpy(validator.current_key + validator.depth, inner_node->prefix,
- inner_node->prefix_size);
- validator.depth += inner_node->prefix_size;
-
- switch (inner_node->typecode) {
- case CROARING_ART_NODE4_TYPE:
- if (!art_node4_internal_validate((art_node4_t *)inner_node,
- validator)) {
- return false;
- }
- break;
- case CROARING_ART_NODE16_TYPE:
- if (!art_node16_internal_validate((art_node16_t *)inner_node,
- validator)) {
- return false;
- }
- break;
- case CROARING_ART_NODE48_TYPE:
- if (!art_node48_internal_validate((art_node48_t *)inner_node,
- validator)) {
- return false;
- }
- break;
- case CROARING_ART_NODE256_TYPE:
- if (!art_node256_internal_validate((art_node256_t *)inner_node,
- validator)) {
- return false;
- }
- break;
- default:
- return art_validate_fail(&validator, "invalid node type");
- }
- }
- return true;
-}
-
-bool art_internal_validate(const art_t *art, const char **reason,
- art_validate_cb_t validate_cb) {
- const char *reason_local;
- if (reason == NULL) {
- // Always allow assigning through *reason
- reason = &reason_local;
- }
- *reason = NULL;
- if (art->root == NULL) {
- return true;
- }
- art_internal_validate_t validator = {
- .reason = reason,
- .validate_cb = validate_cb,
- .depth = 0,
- .current_key = {0},
- };
- return art_internal_validate_at(art->root, validator);
-}
-
-#ifdef __cplusplus
-} // extern "C"
-} // namespace roaring
-} // namespace internal
-#endif
-/* end file src/art/art.c */
-/* begin file src/bitset.c */
-#include <limits.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-extern inline void bitset_print(const bitset_t *b);
-extern inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator,
- void *ptr);
-extern inline size_t bitset_next_set_bits(const bitset_t *bitset,
- size_t *buffer, size_t capacity,
- size_t *startfrom);
-extern inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag);
-extern inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i);
-extern inline void bitset_set(bitset_t *bitset, size_t i);
-extern inline bool bitset_get(const bitset_t *bitset, size_t i);
-extern inline size_t bitset_size_in_words(const bitset_t *bitset);
-extern inline size_t bitset_size_in_bits(const bitset_t *bitset);
-extern inline size_t bitset_size_in_bytes(const bitset_t *bitset);
-
-/* Create a new bitset. Return NULL in case of failure. */
-bitset_t *bitset_create(void) {
- bitset_t *bitset = NULL;
- /* Allocate the bitset itself. */
- if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
- return NULL;
- }
- bitset->array = NULL;
- bitset->arraysize = 0;
- bitset->capacity = 0;
- return bitset;
-}
-
-/* Create a new bitset able to contain size bits. Return NULL in case of
- * failure. */
-bitset_t *bitset_create_with_capacity(size_t size) {
- bitset_t *bitset = NULL;
- /* Allocate the bitset itself. */
- if ((bitset = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
- return NULL;
- }
- bitset->arraysize =
- (size + sizeof(uint64_t) * 8 - 1) / (sizeof(uint64_t) * 8);
- bitset->capacity = bitset->arraysize;
- if ((bitset->array = (uint64_t *)roaring_calloc(
- bitset->arraysize, sizeof(uint64_t))) == NULL) {
- roaring_free(bitset);
- return NULL;
- }
- return bitset;
-}
-
-/* Create a copy */
-bitset_t *bitset_copy(const bitset_t *bitset) {
- bitset_t *copy = NULL;
- /* Allocate the bitset itself. */
- if ((copy = (bitset_t *)roaring_malloc(sizeof(bitset_t))) == NULL) {
- return NULL;
- }
- memcpy(copy, bitset, sizeof(bitset_t));
- copy->capacity = copy->arraysize;
- if ((copy->array = (uint64_t *)roaring_malloc(sizeof(uint64_t) *
- bitset->arraysize)) == NULL)
{
- roaring_free(copy);
- return NULL;
- }
- memcpy(copy->array, bitset->array, sizeof(uint64_t) * bitset->arraysize);
- return copy;
-}
-
-void bitset_clear(bitset_t *bitset) {
- memset(bitset->array, 0, sizeof(uint64_t) * bitset->arraysize);
-}
-
-void bitset_fill(bitset_t *bitset) {
- memset(bitset->array, 0xff, sizeof(uint64_t) * bitset->arraysize);
-}
-
-void bitset_shift_left(bitset_t *bitset, size_t s) {
- size_t extra_words = s / 64;
- int inword_shift = s % 64;
- size_t as = bitset->arraysize;
- if (inword_shift == 0) {
- bitset_resize(bitset, as + extra_words, false);
- // could be done with a memmove
- for (size_t i = as + extra_words; i > extra_words; i--) {
- bitset->array[i - 1] = bitset->array[i - 1 - extra_words];
- }
- } else {
- bitset_resize(bitset, as + extra_words + 1, true);
- bitset->array[as + extra_words] =
- bitset->array[as - 1] >> (64 - inword_shift);
- for (size_t i = as + extra_words; i >= extra_words + 2; i--) {
- bitset->array[i - 1] =
- (bitset->array[i - 1 - extra_words] << inword_shift) |
- (bitset->array[i - 2 - extra_words] >> (64 - inword_shift));
- }
- bitset->array[extra_words] = bitset->array[0] << inword_shift;
- }
- for (size_t i = 0; i < extra_words; i++) {
- bitset->array[i] = 0;
- }
-}
-
-void bitset_shift_right(bitset_t *bitset, size_t s) {
- size_t extra_words = s / 64;
- int inword_shift = s % 64;
- size_t as = bitset->arraysize;
- if (inword_shift == 0) {
- // could be done with a memmove
- for (size_t i = 0; i < as - extra_words; i++) {
- bitset->array[i] = bitset->array[i + extra_words];
- }
- bitset_resize(bitset, as - extra_words, false);
-
- } else {
- for (size_t i = 0; i + extra_words + 1 < as; i++) {
- bitset->array[i] =
- (bitset->array[i + extra_words] >> inword_shift) |
- (bitset->array[i + extra_words + 1] << (64 - inword_shift));
- }
- bitset->array[as - extra_words - 1] =
- (bitset->array[as - 1] >> inword_shift);
- bitset_resize(bitset, as - extra_words, false);
- }
-}
-
-/* Free memory. */
-void bitset_free(bitset_t *bitset) {
- if (bitset == NULL) {
- return;
- }
- roaring_free(bitset->array);
- roaring_free(bitset);
-}
-
-/* Resize the bitset so that it can support newarraysize * 64 bits. Return true
- * in case of success, false for failure. */
-bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes) {
- if (newarraysize > SIZE_MAX / 64) {
- return false;
- }
- size_t smallest =
- newarraysize < bitset->arraysize ? newarraysize : bitset->arraysize;
- if (bitset->capacity < newarraysize) {
- uint64_t *newarray;
- size_t newcapacity = bitset->capacity;
- if (newcapacity == 0) {
- newcapacity = 1;
- }
- while (newcapacity < newarraysize) {
- newcapacity *= 2;
- }
- if ((newarray = (uint64_t *)roaring_realloc(
- bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) {
- return false;
- }
- bitset->capacity = newcapacity;
- bitset->array = newarray;
- }
- if (padwithzeroes && (newarraysize > smallest))
- memset(bitset->array + smallest, 0,
- sizeof(uint64_t) * (newarraysize - smallest));
- bitset->arraysize = newarraysize;
- return true; // success!
-}
-
-size_t bitset_count(const bitset_t *bitset) {
- size_t card = 0;
- size_t k = 0;
- for (; k + 7 < bitset->arraysize; k += 8) {
- card += roaring_hamming(bitset->array[k]);
- card += roaring_hamming(bitset->array[k + 1]);
- card += roaring_hamming(bitset->array[k + 2]);
- card += roaring_hamming(bitset->array[k + 3]);
- card += roaring_hamming(bitset->array[k + 4]);
- card += roaring_hamming(bitset->array[k + 5]);
- card += roaring_hamming(bitset->array[k + 6]);
- card += roaring_hamming(bitset->array[k + 7]);
- }
- for (; k + 3 < bitset->arraysize; k += 4) {
- card += roaring_hamming(bitset->array[k]);
- card += roaring_hamming(bitset->array[k + 1]);
- card += roaring_hamming(bitset->array[k + 2]);
- card += roaring_hamming(bitset->array[k + 3]);
- }
- for (; k < bitset->arraysize; k++) {
- card += roaring_hamming(bitset->array[k]);
- }
- return card;
-}
-
-bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- for (size_t k = 0; k < minlength; ++k) {
- b1->array[k] |= b2->array[k];
- }
- if (b2->arraysize > b1->arraysize) {
- size_t oldsize = b1->arraysize;
- if (!bitset_resize(b1, b2->arraysize, false)) return false;
- memcpy(b1->array + oldsize, b2->array + oldsize,
- (b2->arraysize - oldsize) * sizeof(uint64_t));
- }
- return true;
-}
-
-bool bitset_empty(const bitset_t *bitset) {
- for (size_t k = 0; k < bitset->arraysize; k++) {
- if (bitset->array[k] != 0) {
- return false;
- }
- }
- return true;
-}
-
-size_t bitset_minimum(const bitset_t *bitset) {
- for (size_t k = 0; k < bitset->arraysize; k++) {
- uint64_t w = bitset->array[k];
- if (w != 0) {
- return roaring_trailing_zeroes(w) + k * 64;
- }
- }
- return SIZE_MAX;
-}
-
-bool bitset_grow(bitset_t *bitset, size_t newarraysize) {
- if (newarraysize < bitset->arraysize) {
- return false;
- }
- if (newarraysize > SIZE_MAX / 64) {
- return false;
- }
- if (bitset->capacity < newarraysize) {
- uint64_t *newarray;
- size_t newcapacity = (UINT64_C(0xFFFFFFFFFFFFFFFF) >>
- roaring_leading_zeroes(newarraysize)) +
- 1;
- while (newcapacity < newarraysize) {
- newcapacity *= 2;
- }
- if ((newarray = (uint64_t *)roaring_realloc(
- bitset->array, sizeof(uint64_t) * newcapacity)) == NULL) {
- return false;
- }
- bitset->capacity = newcapacity;
- bitset->array = newarray;
- }
- memset(bitset->array + bitset->arraysize, 0,
- sizeof(uint64_t) * (newarraysize - bitset->arraysize));
- bitset->arraysize = newarraysize;
- return true; // success!
-}
-
-size_t bitset_maximum(const bitset_t *bitset) {
- for (size_t k = bitset->arraysize; k > 0; k--) {
- uint64_t w = bitset->array[k - 1];
- if (w != 0) {
- return 63 - roaring_leading_zeroes(w) + (k - 1) * 64;
- }
- }
- return 0;
-}
-
-/* Returns true if bitsets share no common elements, false otherwise.
- *
- * Performs early-out if common element found. */
-bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
-
- for (size_t k = 0; k < minlength; k++) {
- if ((b1->array[k] & b2->array[k]) != 0) return false;
- }
- return true;
-}
-
-/* Returns true if bitsets contain at least 1 common element, false if they are
- * disjoint.
- *
- * Performs early-out if common element found. */
-bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
-
- for (size_t k = 0; k < minlength; k++) {
- if ((b1->array[k] & b2->array[k]) != 0) return true;
- }
- return false;
-}
-
-/* Returns true if b has any bits set in or after b->array[starting_loc]. */
-static bool any_bits_set(const bitset_t *b, size_t starting_loc) {
- if (starting_loc >= b->arraysize) {
- return false;
- }
- for (size_t k = starting_loc; k < b->arraysize; k++) {
- if (b->array[k] != 0) return true;
- }
- return false;
-}
-
-/* Returns true if b1 has all of b2's bits set.
- *
- * Performs early out if a bit is found in b2 that is not found in b1. */
-bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t min_size = b1->arraysize;
- if (b1->arraysize > b2->arraysize) {
- min_size = b2->arraysize;
- }
- for (size_t k = 0; k < min_size; k++) {
- if ((b1->array[k] & b2->array[k]) != b2->array[k]) {
- return false;
- }
- }
- if (b2->arraysize > b1->arraysize) {
- /* Need to check if b2 has any bits set beyond b1's array */
- return !any_bits_set(b2, b1->arraysize);
- }
- return true;
-}
-
-size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t answer = 0;
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- size_t k = 0;
- for (; k + 3 < minlength; k += 4) {
- answer += roaring_hamming(b1->array[k] | b2->array[k]);
- answer += roaring_hamming(b1->array[k + 1] | b2->array[k + 1]);
- answer += roaring_hamming(b1->array[k + 2] | b2->array[k + 2]);
- answer += roaring_hamming(b1->array[k + 3] | b2->array[k + 3]);
- }
- for (; k < minlength; ++k) {
- answer += roaring_hamming(b1->array[k] | b2->array[k]);
- }
- if (b2->arraysize > b1->arraysize) {
- // k is equal to b1->arraysize
- for (; k + 3 < b2->arraysize; k += 4) {
- answer += roaring_hamming(b2->array[k]);
- answer += roaring_hamming(b2->array[k + 1]);
- answer += roaring_hamming(b2->array[k + 2]);
- answer += roaring_hamming(b2->array[k + 3]);
- }
- for (; k < b2->arraysize; ++k) {
- answer += roaring_hamming(b2->array[k]);
- }
- } else {
- // k is equal to b2->arraysize
- for (; k + 3 < b1->arraysize; k += 4) {
- answer += roaring_hamming(b1->array[k]);
- answer += roaring_hamming(b1->array[k + 1]);
- answer += roaring_hamming(b1->array[k + 2]);
- answer += roaring_hamming(b1->array[k + 3]);
- }
- for (; k < b1->arraysize; ++k) {
- answer += roaring_hamming(b1->array[k]);
- }
- }
- return answer;
-}
-
-void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2)
{
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- size_t k = 0;
- for (; k < minlength; ++k) {
- b1->array[k] &= b2->array[k];
- }
- for (; k < b1->arraysize; ++k) {
- b1->array[k] = 0; // memset could, maybe, be a tiny bit faster
- }
-}
-
-size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2)
{
- size_t answer = 0;
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- for (size_t k = 0; k < minlength; ++k) {
- answer += roaring_hamming(b1->array[k] & b2->array[k]);
- }
- return answer;
-}
-
-void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- size_t k = 0;
- for (; k < minlength; ++k) {
- b1->array[k] &= ~(b2->array[k]);
- }
-}
-
-size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- size_t k = 0;
- size_t answer = 0;
- for (; k < minlength; ++k) {
- answer += roaring_hamming(b1->array[k] & ~(b2->array[k]));
- }
- for (; k < b1->arraysize; ++k) {
- answer += roaring_hamming(b1->array[k]);
- }
- return answer;
-}
-
-bool bitset_inplace_symmetric_difference(
- bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- size_t k = 0;
- for (; k < minlength; ++k) {
- b1->array[k] ^= b2->array[k];
- }
- if (b2->arraysize > b1->arraysize) {
- size_t oldsize = b1->arraysize;
- if (!bitset_resize(b1, b2->arraysize, false)) return false;
- memcpy(b1->array + oldsize, b2->array + oldsize,
- (b2->arraysize - oldsize) * sizeof(uint64_t));
- }
- return true;
-}
-
-size_t bitset_symmetric_difference_count(
- const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2) {
- size_t minlength =
- b1->arraysize < b2->arraysize ? b1->arraysize : b2->arraysize;
- size_t k = 0;
- size_t answer = 0;
- for (; k < minlength; ++k) {
- answer += roaring_hamming(b1->array[k] ^ b2->array[k]);
- }
- if (b2->arraysize > b1->arraysize) {
- for (; k < b2->arraysize; ++k) {
- answer += roaring_hamming(b2->array[k]);
- }
- } else {
- for (; k < b1->arraysize; ++k) {
- answer += roaring_hamming(b1->array[k]);
- }
- }
- return answer;
-}
-
-bool bitset_trim(bitset_t *bitset) {
- size_t newsize = bitset->arraysize;
- while (newsize > 0) {
- if (bitset->array[newsize - 1] == 0)
- newsize -= 1;
- else
- break;
- }
- if (bitset->capacity == newsize) return true; // nothing to do
- uint64_t *newarray;
- if ((newarray = (uint64_t *)roaring_realloc(
- bitset->array, sizeof(uint64_t) * newsize)) == NULL) {
- return false;
- }
- bitset->array = newarray;
- bitset->capacity = newsize;
- bitset->arraysize = newsize;
- return true;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/bitset.c */
-/* begin file src/bitset_util.c */
-#include <assert.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#ifdef __cplusplus
-using namespace ::roaring::internal;
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-#if CROARING_IS_X64
-static uint8_t lengthTable[256] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4,
- 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
- 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
- 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
- 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
- 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
-#endif
-
-#if CROARING_IS_X64
-ALIGNED(32)
-static uint32_t vecDecodeTable[256][8] = {
- {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
- {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
- {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
- {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
- {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
- {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
- {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
- {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
- {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
- {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
- {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
- {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
- {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
- {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
- {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
- {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
- {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
- {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
- {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
- {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
- {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
- {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
- {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
- {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
- {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
- {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
- {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
- {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
- {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
- {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
- {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
- {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
- {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
- {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
- {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
- {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
- {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
- {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
- {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
- {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
- {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
- {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
- {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
- {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
- {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
- {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
- {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
- {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
- {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
- {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
- {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
- {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
- {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
- {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
- {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
- {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
- {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
- {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
- {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
- {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
- {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
- {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
- {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
- {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
- {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
- {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
- {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
- {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
- {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
- {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
- {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
- {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
- {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
- {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
- {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
- {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
- {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
- {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
- {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
- {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
- {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
- {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
- {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
- {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
- {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
- {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
- {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
- {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
- {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
- {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
- {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
- {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
- {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
- {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
- {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
- {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
- {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
- {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
- {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
- {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
- {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
- {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
- {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
- {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
- {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
- {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
- {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
- {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
- {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
- {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
- {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
- {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
- {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
- {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
- {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
- {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
- {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
- {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
- {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
- {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
- {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
- {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
- {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
- {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
- {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
- {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
- {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
- {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
- {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
- {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
- {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
- {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
- {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
- {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
- {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
- {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
- {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
- {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
- {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
- {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
- {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
- {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
- {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
- {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
- {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
- {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
- {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
- {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
- {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
- {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
- {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
- {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
- {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
- {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
- {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
- {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
- {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
- {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
- {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
- {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
- {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
- {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
- {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
- {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
- {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
- {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
- {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
- {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
- {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
- {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
- {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
- {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
- {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
- {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
- {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
- {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
- {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
- {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
- {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
- {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
- {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
- {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
- {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
- {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
- {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
- {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
- {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
- {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
- {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
- {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
- {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
- {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
- {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
- {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
- {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
- {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
- {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
- {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
- {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
- {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
- {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
- {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
- {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
- {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
- {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
- {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
- {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
- {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
- {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
- {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
- {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
- {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
- {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
- {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
- {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
- {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
- {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
- {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
- {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
- {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
- {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
- {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
- {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
- {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
- {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
- {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
- {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
- {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
- {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
- {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
- {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
- {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
- {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
- {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
- {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
- {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
- {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
- {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
- {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
- {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
- {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
- {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
- {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
- {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
- {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
- {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
- {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
- {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
- {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
- {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
- {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
- {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
- {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
- {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
- {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
- {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */
-};
-
-#endif // #if CROARING_IS_X64
-
-#if CROARING_IS_X64
-// same as vecDecodeTable but in 16 bits
-ALIGNED(32)
-static uint16_t vecDecodeTable_uint16[256][8] = {
- {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
- {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
- {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
- {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
- {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
- {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
- {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
- {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
- {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
- {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
- {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
- {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
- {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
- {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
- {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
- {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
- {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
- {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
- {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
- {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
- {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
- {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
- {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
- {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
- {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
- {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
- {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
- {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
- {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
- {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
- {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
- {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
- {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
- {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
- {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
- {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
- {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
- {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
- {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
- {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
- {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
- {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
- {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
- {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
- {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
- {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
- {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
- {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
- {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
- {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
- {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
- {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
- {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
- {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
- {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
- {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
- {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
- {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
- {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
- {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
- {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
- {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
- {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
- {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
- {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
- {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
- {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
- {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
- {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
- {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
- {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
- {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
- {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
- {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
- {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
- {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
- {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
- {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
- {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
- {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
- {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
- {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
- {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
- {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
- {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
- {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
- {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
- {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
- {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
- {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
- {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
- {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
- {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
- {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
- {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
- {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
- {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
- {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
- {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
- {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
- {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
- {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
- {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
- {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
- {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
- {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
- {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
- {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
- {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
- {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
- {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
- {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
- {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
- {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
- {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
- {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
- {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
- {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
- {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
- {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
- {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
- {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
- {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
- {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
- {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
- {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
- {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
- {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
- {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
- {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
- {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
- {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
- {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
- {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
- {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
- {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
- {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
- {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
- {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
- {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
- {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
- {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
- {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
- {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
- {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
- {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
- {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
- {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
- {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
- {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
- {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
- {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
- {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
- {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
- {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
- {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
- {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
- {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
- {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
- {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
- {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
- {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
- {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
- {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
- {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
- {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
- {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
- {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
- {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
- {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
- {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
- {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
- {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
- {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
- {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
- {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
- {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
- {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
- {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
- {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
- {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
- {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
- {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
- {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
- {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
- {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
- {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
- {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
- {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
- {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
- {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
- {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
- {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
- {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
- {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
- {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
- {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
- {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
- {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
- {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
- {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
- {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
- {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
- {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
- {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
- {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
- {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
- {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
- {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
- {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
- {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
- {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
- {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
- {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
- {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
- {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
- {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
- {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
- {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
- {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
- {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
- {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
- {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
- {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
- {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
- {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
- {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
- {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
- {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
- {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
- {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
- {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
- {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
- {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
- {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
- {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
- {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
- {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
- {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
- {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
- {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
- {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
- {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
- {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
- {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
- {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
- {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
- {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
- {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
- {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
- {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
- {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
- {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
- {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
- {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
- {1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */
-};
-
-#endif
-
-#if CROARING_IS_X64
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-const uint8_t vbmi2_table[64] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
-size_t bitset_extract_setbits_avx512(const uint64_t *words, size_t length,
- uint32_t *vout, size_t outcapacity,
- uint32_t base) {
- uint32_t *out = (uint32_t *)vout;
- uint32_t *initout = out;
- uint32_t *safeout = out + outcapacity;
- __m512i base_v = _mm512_set1_epi32(base);
- __m512i index_table = _mm512_loadu_si512(vbmi2_table);
- size_t i = 0;
-
- for (; (i < length) && ((out + 64) < safeout); i += 1) {
- uint64_t v = words[i];
- __m512i vec = _mm512_maskz_compress_epi8(v, index_table);
-
- uint8_t advance = (uint8_t)roaring_hamming(v);
-
- __m512i vbase =
- _mm512_add_epi32(base_v, _mm512_set1_epi32((int)(i * 64)));
- __m512i r1 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 0));
- __m512i r2 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 1));
- __m512i r3 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 2));
- __m512i r4 = _mm512_cvtepi8_epi32(_mm512_extracti32x4_epi32(vec, 3));
-
- r1 = _mm512_add_epi32(r1, vbase);
- r2 = _mm512_add_epi32(r2, vbase);
- r3 = _mm512_add_epi32(r3, vbase);
- r4 = _mm512_add_epi32(r4, vbase);
- _mm512_storeu_si512((__m512i *)out, r1);
- _mm512_storeu_si512((__m512i *)(out + 16), r2);
- _mm512_storeu_si512((__m512i *)(out + 32), r3);
- _mm512_storeu_si512((__m512i *)(out + 48), r4);
-
- out += advance;
- }
-
- base += i * 64;
-
- for (; (i < length) && (out < safeout); ++i) {
- uint64_t w = words[i];
- while ((w != 0) && (out < safeout)) {
- int r =
- roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
- uint32_t val = r + base;
- memcpy(out, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- out++;
- w &= (w - 1);
- }
- base += 64;
- }
-
- return out - initout;
-}
-
-// Reference:
-//
https://lemire.me/blog/2022/05/10/faster-bitset-decoding-using-intel-avx-512/
-size_t bitset_extract_setbits_avx512_uint16(const uint64_t *array,
- size_t length, uint16_t *vout,
- size_t capacity, uint16_t base) {
- uint16_t *out = (uint16_t *)vout;
- uint16_t *initout = out;
- uint16_t *safeout = vout + capacity;
-
- __m512i base_v = _mm512_set1_epi16(base);
- __m512i index_table = _mm512_loadu_si512(vbmi2_table);
- size_t i = 0;
-
- for (; (i < length) && ((out + 64) < safeout); i++) {
- uint64_t v = array[i];
- __m512i vec = _mm512_maskz_compress_epi8(v, index_table);
-
- uint8_t advance = (uint8_t)roaring_hamming(v);
-
- __m512i vbase =
- _mm512_add_epi16(base_v, _mm512_set1_epi16((short)(i * 64)));
- __m512i r1 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 0));
- __m512i r2 = _mm512_cvtepi8_epi16(_mm512_extracti32x8_epi32(vec, 1));
-
- r1 = _mm512_add_epi16(r1, vbase);
- r2 = _mm512_add_epi16(r2, vbase);
-
- _mm512_storeu_si512((__m512i *)out, r1);
- _mm512_storeu_si512((__m512i *)(out + 32), r2);
- out += advance;
- }
-
- base += i * 64;
-
- for (; (i < length) && (out < safeout); ++i) {
- uint64_t w = array[i];
- while ((w != 0) && (out < safeout)) {
- int r =
- roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
- uint32_t val = r + base;
- memcpy(out, &val, sizeof(uint16_t));
- out++;
- w &= (w - 1);
- }
- base += 64;
- }
-
- return out - initout;
-}
-CROARING_UNTARGET_AVX512
-#endif
-
-CROARING_TARGET_AVX2
-size_t bitset_extract_setbits_avx2(const uint64_t *words, size_t length,
- uint32_t *out, size_t outcapacity,
- uint32_t base) {
- uint32_t *initout = out;
- __m256i baseVec = _mm256_set1_epi32(base - 1);
- __m256i incVec = _mm256_set1_epi32(64);
- __m256i add8 = _mm256_set1_epi32(8);
- uint32_t *safeout = out + outcapacity;
- size_t i = 0;
- for (; (i < length) && (out + 64 <= safeout); ++i) {
- uint64_t w = words[i];
- if (w == 0) {
- baseVec = _mm256_add_epi32(baseVec, incVec);
- } else {
- for (int k = 0; k < 4; ++k) {
- uint8_t byteA = (uint8_t)w;
- uint8_t byteB = (uint8_t)(w >> 8);
- w >>= 16;
- __m256i vecA =
- _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteA]);
- __m256i vecB =
- _mm256_loadu_si256((const __m256i *)vecDecodeTable[byteB]);
- uint8_t advanceA = lengthTable[byteA];
- uint8_t advanceB = lengthTable[byteB];
- vecA = _mm256_add_epi32(baseVec, vecA);
- baseVec = _mm256_add_epi32(baseVec, add8);
- vecB = _mm256_add_epi32(baseVec, vecB);
- baseVec = _mm256_add_epi32(baseVec, add8);
- _mm256_storeu_si256((__m256i *)out, vecA);
- out += advanceA;
- _mm256_storeu_si256((__m256i *)out, vecB);
- out += advanceB;
- }
- }
- }
- base += i * 64;
- for (; (i < length) && (out < safeout); ++i) {
- uint64_t w = words[i];
- while ((w != 0) && (out < safeout)) {
- int r =
- roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
- uint32_t val = r + base;
- memcpy(out, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- out++;
- w &= (w - 1);
- }
- base += 64;
- }
- return out - initout;
-}
-CROARING_UNTARGET_AVX2
-#endif // CROARING_IS_X64
-
-size_t bitset_extract_setbits(const uint64_t *words, size_t length,
- uint32_t *out, uint32_t base) {
- int outpos = 0;
- for (size_t i = 0; i < length; ++i) {
- uint64_t w = words[i];
- while (w != 0) {
- int r =
- roaring_trailing_zeroes(w); // on x64, should compile to TZCNT
- uint32_t val = r + base;
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- outpos++;
- w &= (w - 1);
- }
- base += 64;
- }
- return outpos;
-}
-
-size_t bitset_extract_intersection_setbits_uint16(
- const uint64_t *__restrict__ words1, const uint64_t *__restrict__ words2,
- size_t length, uint16_t *out, uint16_t base) {
- int outpos = 0;
- for (size_t i = 0; i < length; ++i) {
- uint64_t w = words1[i] & words2[i];
- while (w != 0) {
- int r = roaring_trailing_zeroes(w);
- out[outpos++] = (uint16_t)(r + base);
- w &= (w - 1);
- }
- base += 64;
- }
- return outpos;
-}
-
-#if CROARING_IS_X64
-/*
- * Given a bitset containing "length" 64-bit words, write out the position
- * of all the set bits to "out" as 16-bit integers, values start at "base" (can
- *be set to zero).
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- *set.
- *
- * Returns how many values were actually decoded.
- *
- * This function uses SSE decoding.
- */
-CROARING_TARGET_AVX2
-size_t bitset_extract_setbits_sse_uint16(const uint64_t *words, size_t length,
- uint16_t *out, size_t outcapacity,
- uint16_t base) {
- uint16_t *initout = out;
- __m128i baseVec = _mm_set1_epi16(base - 1);
- __m128i incVec = _mm_set1_epi16(64);
- __m128i add8 = _mm_set1_epi16(8);
- uint16_t *safeout = out + outcapacity;
- const int numberofbytes = 2; // process two bytes at a time
- size_t i = 0;
- for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) {
- uint64_t w = words[i];
- if (w == 0) {
- baseVec = _mm_add_epi16(baseVec, incVec);
- } else {
- for (int k = 0; k < 4; ++k) {
- uint8_t byteA = (uint8_t)w;
- uint8_t byteB = (uint8_t)(w >> 8);
- w >>= 16;
- __m128i vecA = _mm_loadu_si128(
- (const __m128i *)vecDecodeTable_uint16[byteA]);
- __m128i vecB = _mm_loadu_si128(
- (const __m128i *)vecDecodeTable_uint16[byteB]);
- uint8_t advanceA = lengthTable[byteA];
- uint8_t advanceB = lengthTable[byteB];
- vecA = _mm_add_epi16(baseVec, vecA);
- baseVec = _mm_add_epi16(baseVec, add8);
- vecB = _mm_add_epi16(baseVec, vecB);
- baseVec = _mm_add_epi16(baseVec, add8);
- _mm_storeu_si128((__m128i *)out, vecA);
- out += advanceA;
- _mm_storeu_si128((__m128i *)out, vecB);
- out += advanceB;
- }
- }
- }
- base += (uint16_t)(i * 64);
- for (; (i < length) && (out < safeout); ++i) {
- uint64_t w = words[i];
- while ((w != 0) && (out < safeout)) {
- int r = roaring_trailing_zeroes(w);
- *out = (uint16_t)(r + base);
- out++;
- w &= (w - 1);
- }
- base += 64;
- }
- return out - initout;
-}
-CROARING_UNTARGET_AVX2
-#endif
-
-/*
- * Given a bitset containing "length" 64-bit words, write out the position
- * of all the set bits to "out", values start at "base" (can be set to zero).
- *
- * The "out" pointer should be sufficient to store the actual number of bits
- *set.
- *
- * Returns how many values were actually decoded.
- */
-size_t bitset_extract_setbits_uint16(const uint64_t *words, size_t length,
- uint16_t *out, uint16_t base) {
- int outpos = 0;
- for (size_t i = 0; i < length; ++i) {
- uint64_t w = words[i];
- while (w != 0) {
- int r = roaring_trailing_zeroes(w);
- out[outpos++] = (uint16_t)(r + base);
- w &= (w - 1);
- }
- base += 64;
- }
- return outpos;
-}
-
-#if defined(CROARING_ASMBITMANIPOPTIMIZATION) && defined(CROARING_IS_X64)
-
-static inline uint64_t _asm_bitset_set_list_withcard(uint64_t *words,
- uint64_t card,
- const uint16_t *list,
- uint64_t length) {
- uint64_t offset, load, pos;
- uint64_t shift = 6;
- const uint16_t *end = list + length;
- if (!length) return card;
- // TODO: could unroll for performance, see bitset_set_list
- // bts is not available as an intrinsic in GCC
- __asm volatile(
- "1:\n"
- "movzwq (%[list]), %[pos]\n"
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "bts %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)\n"
- "sbb $-1, %[card]\n"
- "add $2, %[list]\n"
- "cmp %[list], %[end]\n"
- "jnz 1b"
- : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
- [pos] "=&r"(pos), [offset] "=&r"(offset)
- : [end] "r"(end), [words] "r"(words), [shift] "r"(shift));
- return card;
-}
-
-static inline void _asm_bitset_set_list(uint64_t *words, const uint16_t *list,
- uint64_t length) {
- uint64_t pos;
- const uint16_t *end = list + length;
-
- uint64_t shift = 6;
- uint64_t offset;
- uint64_t load;
- for (; list + 3 < end; list += 4) {
- pos = list[0];
- __asm volatile(
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "bts %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)"
- : [load] "=&r"(load), [offset] "=&r"(offset)
- : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
- pos = list[1];
- __asm volatile(
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "bts %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)"
- : [load] "=&r"(load), [offset] "=&r"(offset)
- : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
- pos = list[2];
- __asm volatile(
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "bts %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)"
- : [load] "=&r"(load), [offset] "=&r"(offset)
- : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
- pos = list[3];
- __asm volatile(
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "bts %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)"
- : [load] "=&r"(load), [offset] "=&r"(offset)
- : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
- }
-
- while (list != end) {
- pos = list[0];
- __asm volatile(
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "bts %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)"
- : [load] "=&r"(load), [offset] "=&r"(offset)
- : [words] "r"(words), [shift] "r"(shift), [pos] "r"(pos));
- list++;
- }
-}
-
-static inline uint64_t _asm_bitset_clear_list(uint64_t *words, uint64_t card,
- const uint16_t *list,
- uint64_t length) {
- uint64_t offset, load, pos;
- uint64_t shift = 6;
- const uint16_t *end = list + length;
- if (!length) return card;
- // btr is not available as an intrinsic in GCC
- __asm volatile(
- "1:\n"
- "movzwq (%[list]), %[pos]\n"
- "shrx %[shift], %[pos], %[offset]\n"
- "mov (%[words],%[offset],8), %[load]\n"
- "btr %[pos], %[load]\n"
- "mov %[load], (%[words],%[offset],8)\n"
- "sbb $0, %[card]\n"
- "add $2, %[list]\n"
- "cmp %[list], %[end]\n"
- "jnz 1b"
- : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
- [pos] "=&r"(pos), [offset] "=&r"(offset)
- : [end] "r"(end), [words] "r"(words), [shift] "r"(shift)
- :
- /* clobbers */ "memory");
- return card;
-}
-
-static inline uint64_t _scalar_bitset_clear_list(uint64_t *words, uint64_t
card,
- const uint16_t *list,
- uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *(const uint16_t *)list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load & ~(UINT64_C(1) << index);
- card -= (load ^ newload) >> index;
- words[offset] = newload;
- list++;
- }
- return card;
-}
-
-static inline uint64_t _scalar_bitset_set_list_withcard(uint64_t *words,
- uint64_t card,
- const uint16_t *list,
- uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load | (UINT64_C(1) << index);
- card += (load ^ newload) >> index;
- words[offset] = newload;
- list++;
- }
- return card;
-}
-
-static inline void _scalar_bitset_set_list(uint64_t *words,
- const uint16_t *list,
- uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load | (UINT64_C(1) << index);
- words[offset] = newload;
- list++;
- }
-}
-
-uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t
*list,
- uint64_t length) {
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- return _asm_bitset_clear_list(words, card, list, length);
- } else {
- return _scalar_bitset_clear_list(words, card, list, length);
- }
-}
-
-uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
- const uint16_t *list, uint64_t length) {
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- return _asm_bitset_set_list_withcard(words, card, list, length);
- } else {
- return _scalar_bitset_set_list_withcard(words, card, list, length);
- }
-}
-
-void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) {
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- _asm_bitset_set_list(words, list, length);
- } else {
- _scalar_bitset_set_list(words, list, length);
- }
-}
-#else
-uint64_t bitset_clear_list(uint64_t *words, uint64_t card, const uint16_t
*list,
- uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *(const uint16_t *)list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load & ~(UINT64_C(1) << index);
- card -= (load ^ newload) >> index;
- words[offset] = newload;
- list++;
- }
- return card;
-}
-
-uint64_t bitset_set_list_withcard(uint64_t *words, uint64_t card,
- const uint16_t *list, uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load | (UINT64_C(1) << index);
- card += (load ^ newload) >> index;
- words[offset] = newload;
- list++;
- }
- return card;
-}
-
-void bitset_set_list(uint64_t *words, const uint16_t *list, uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load | (UINT64_C(1) << index);
- words[offset] = newload;
- list++;
- }
-}
-
-#endif
-
-/* flip specified bits */
-/* TODO: consider whether worthwhile to make an asm version */
-
-uint64_t bitset_flip_list_withcard(uint64_t *words, uint64_t card,
- const uint16_t *list, uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load ^ (UINT64_C(1) << index);
- // todo: is a branch here all that bad?
- card +=
- (1 - 2 * (((UINT64_C(1) << index) & load) >> index)); // +1 or -1
- words[offset] = newload;
- list++;
- }
- return card;
-}
-
-void bitset_flip_list(uint64_t *words, const uint16_t *list, uint64_t length) {
- uint64_t offset, load, newload, pos, index;
- const uint16_t *end = list + length;
- while (list != end) {
- pos = *list;
- offset = pos >> 6;
- index = pos % 64;
- load = words[offset];
- newload = load ^ (UINT64_C(1) << index);
- words[offset] = newload;
- list++;
- }
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace api {
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif
-/* end file src/bitset_util.c */
-/* begin file src/containers/array.c */
-/*
- * array.c
- *
- */
-
-#include <assert.h>
-#include <stdio.h>
-#include <stdlib.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-extern inline uint16_t array_container_minimum(const array_container_t *arr);
-extern inline uint16_t array_container_maximum(const array_container_t *arr);
-extern inline int array_container_index_equalorlarger(
- const array_container_t *arr, uint16_t x);
-
-extern inline int array_container_rank(const array_container_t *arr,
- uint16_t x);
-extern inline uint32_t array_container_rank_many(const array_container_t *arr,
- uint64_t start_rank,
- const uint32_t *begin,
- const uint32_t *end,
- uint64_t *ans);
-extern inline int array_container_get_index(const array_container_t *arr,
- uint16_t x);
-extern inline bool array_container_contains(const array_container_t *arr,
- uint16_t pos);
-extern inline int array_container_cardinality(const array_container_t *array);
-extern inline bool array_container_nonzero_cardinality(
- const array_container_t *array);
-extern inline int32_t array_container_serialized_size_in_bytes(int32_t card);
-extern inline bool array_container_empty(const array_container_t *array);
-extern inline bool array_container_full(const array_container_t *array);
-
-/* Create a new array with capacity size. Return NULL in case of failure. */
-array_container_t *array_container_create_given_capacity(int32_t size) {
- array_container_t *container;
-
- if ((container = (array_container_t *)roaring_malloc(
- sizeof(array_container_t))) == NULL) {
- return NULL;
- }
-
- if (size <= 0) { // we don't want to rely on malloc(0)
- container->array = NULL;
- } else if ((container->array = (uint16_t *)roaring_malloc(sizeof(uint16_t)
*
- size)) == NULL) {
- roaring_free(container);
- return NULL;
- }
-
- container->capacity = size;
- container->cardinality = 0;
-
- return container;
-}
-
-/* Create a new array. Return NULL in case of failure. */
-array_container_t *array_container_create(void) {
- return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE);
-}
-
-/* Create a new array containing all values in [min,max). */
-array_container_t *array_container_create_range(uint32_t min, uint32_t max) {
- array_container_t *answer =
- array_container_create_given_capacity(max - min + 1);
- if (answer == NULL) return answer;
- answer->cardinality = 0;
- for (uint32_t k = min; k < max; k++) {
- answer->array[answer->cardinality++] = k;
- }
- return answer;
-}
-
-/* Duplicate container */
-ALLOW_UNALIGNED
-array_container_t *array_container_clone(const array_container_t *src) {
- array_container_t *newcontainer =
- array_container_create_given_capacity(src->capacity);
- if (newcontainer == NULL) return NULL;
-
- newcontainer->cardinality = src->cardinality;
-
- memcpy(newcontainer->array, src->array,
- src->cardinality * sizeof(uint16_t));
-
- return newcontainer;
-}
-
-void array_container_offset(const array_container_t *c, container_t **loc,
- container_t **hic, uint16_t offset) {
- array_container_t *lo = NULL, *hi = NULL;
- int top, lo_cap, hi_cap;
-
- top = (1 << 16) - offset;
-
- lo_cap = count_less(c->array, c->cardinality, top);
- if (loc && lo_cap) {
- lo = array_container_create_given_capacity(lo_cap);
- for (int i = 0; i < lo_cap; ++i) {
- array_container_add(lo, c->array[i] + offset);
- }
- *loc = (container_t *)lo;
- }
-
- hi_cap = c->cardinality - lo_cap;
- if (hic && hi_cap) {
- hi = array_container_create_given_capacity(hi_cap);
- for (int i = lo_cap; i < c->cardinality; ++i) {
- array_container_add(hi, c->array[i] + offset);
- }
- *hic = (container_t *)hi;
- }
-}
-
-int array_container_shrink_to_fit(array_container_t *src) {
- if (src->cardinality == src->capacity) return 0; // nothing to do
- int savings = src->capacity - src->cardinality;
- src->capacity = src->cardinality;
- if (src->capacity ==
- 0) { // we do not want to rely on realloc for zero allocs
- roaring_free(src->array);
- src->array = NULL;
- } else {
- uint16_t *oldarray = src->array;
- src->array = (uint16_t *)roaring_realloc(
- oldarray, src->capacity * sizeof(uint16_t));
- if (src->array == NULL) roaring_free(oldarray); // should never
happen?
- }
- return savings;
-}
-
-/* Free memory. */
-void array_container_free(array_container_t *arr) {
- if (arr == NULL) return;
- roaring_free(arr->array);
- roaring_free(arr);
-}
-
-static inline int32_t grow_capacity(int32_t capacity) {
- return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE
- : capacity < 64 ? capacity * 2
- : capacity < 1024 ? capacity * 3 / 2
- : capacity * 5 / 4;
-}
-
-static inline int32_t clamp(int32_t val, int32_t min, int32_t max) {
- return ((val < min) ? min : (val > max) ? max : val);
-}
-
-void array_container_grow(array_container_t *container, int32_t min,
- bool preserve) {
- int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536);
- int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max);
-
- container->capacity = new_capacity;
- uint16_t *array = container->array;
-
- if (preserve) {
- container->array =
- (uint16_t *)roaring_realloc(array, new_capacity *
sizeof(uint16_t));
- if (container->array == NULL) roaring_free(array);
- } else {
- roaring_free(array);
- container->array =
- (uint16_t *)roaring_malloc(new_capacity * sizeof(uint16_t));
- }
-
- // if realloc fails, we have container->array == NULL.
-}
-
-/* Copy one container into another. We assume that they are distinct. */
-void array_container_copy(const array_container_t *src,
- array_container_t *dst) {
- const int32_t cardinality = src->cardinality;
- if (cardinality > dst->capacity) {
- array_container_grow(dst, cardinality, false);
- }
-
- dst->cardinality = cardinality;
- memcpy(dst->array, src->array, cardinality * sizeof(uint16_t));
-}
-
-void array_container_add_from_range(array_container_t *arr, uint32_t min,
- uint32_t max, uint16_t step) {
- for (uint32_t value = min; value < max; value += step) {
- array_container_append(arr, value);
- }
-}
-
-/* Computes the union of array1 and array2 and write the result to arrayout.
- * It is assumed that arrayout is distinct from both array1 and array2.
- */
-void array_container_union(const array_container_t *array_1,
- const array_container_t *array_2,
- array_container_t *out) {
- const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
- const int32_t max_cardinality = card_1 + card_2;
-
- if (out->capacity < max_cardinality) {
- array_container_grow(out, max_cardinality, false);
- }
- out->cardinality = (int32_t)fast_union_uint16(
- array_1->array, card_1, array_2->array, card_2, out->array);
-}
-
-/* Computes the difference of array1 and array2 and write the result
- * to array out.
- * Array out does not need to be distinct from array_1
- */
-void array_container_andnot(const array_container_t *array_1,
- const array_container_t *array_2,
- array_container_t *out) {
- if (out->capacity < array_1->cardinality)
- array_container_grow(out, array_1->cardinality, false);
-#if CROARING_IS_X64
- if ((croaring_hardware_support() & ROARING_SUPPORTS_AVX2) &&
- (out != array_1) && (out != array_2)) {
- out->cardinality = difference_vector16(
- array_1->array, array_1->cardinality, array_2->array,
- array_2->cardinality, out->array);
- } else {
- out->cardinality =
- difference_uint16(array_1->array, array_1->cardinality,
- array_2->array, array_2->cardinality,
out->array);
- }
-#else
- out->cardinality =
- difference_uint16(array_1->array, array_1->cardinality, array_2->array,
- array_2->cardinality, out->array);
-#endif
-}
-
-/* Computes the symmetric difference of array1 and array2 and write the
- * result
- * to arrayout.
- * It is assumed that arrayout is distinct from both array1 and array2.
- */
-void array_container_xor(const array_container_t *array_1,
- const array_container_t *array_2,
- array_container_t *out) {
- const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
- const int32_t max_cardinality = card_1 + card_2;
- if (out->capacity < max_cardinality) {
- array_container_grow(out, max_cardinality, false);
- }
-
-#if CROARING_IS_X64
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- out->cardinality =
- xor_vector16(array_1->array, array_1->cardinality, array_2->array,
- array_2->cardinality, out->array);
- } else {
- out->cardinality =
- xor_uint16(array_1->array, array_1->cardinality, array_2->array,
- array_2->cardinality, out->array);
- }
-#else
- out->cardinality =
- xor_uint16(array_1->array, array_1->cardinality, array_2->array,
- array_2->cardinality, out->array);
-#endif
-}
-
-static inline int32_t minimum_int32(int32_t a, int32_t b) {
- return (a < b) ? a : b;
-}
-
-/* computes the intersection of array1 and array2 and write the result to
- * arrayout.
- * It is assumed that arrayout is distinct from both array1 and array2.
- * */
-void array_container_intersection(const array_container_t *array1,
- const array_container_t *array2,
- array_container_t *out) {
- int32_t card_1 = array1->cardinality, card_2 = array2->cardinality,
- min_card = minimum_int32(card_1, card_2);
- const int threshold = 64; // subject to tuning
-#if CROARING_IS_X64
- if (out->capacity < min_card) {
- array_container_grow(out, min_card + sizeof(__m128i) /
sizeof(uint16_t),
- false);
- }
-#else
- if (out->capacity < min_card) {
- array_container_grow(out, min_card, false);
- }
-#endif
-
- if (card_1 * threshold < card_2) {
- out->cardinality = intersect_skewed_uint16(
- array1->array, card_1, array2->array, card_2, out->array);
- } else if (card_2 * threshold < card_1) {
- out->cardinality = intersect_skewed_uint16(
- array2->array, card_2, array1->array, card_1, out->array);
- } else {
-#if CROARING_IS_X64
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- out->cardinality = intersect_vector16(
- array1->array, card_1, array2->array, card_2, out->array);
- } else {
- out->cardinality = intersect_uint16(
- array1->array, card_1, array2->array, card_2, out->array);
- }
-#else
- out->cardinality = intersect_uint16(array1->array, card_1,
- array2->array, card_2, out->array);
-#endif
- }
-}
-
-/* computes the size of the intersection of array1 and array2
- * */
-int array_container_intersection_cardinality(const array_container_t *array1,
- const array_container_t *array2) {
- int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
- const int threshold = 64; // subject to tuning
- if (card_1 * threshold < card_2) {
- return intersect_skewed_uint16_cardinality(array1->array, card_1,
- array2->array, card_2);
- } else if (card_2 * threshold < card_1) {
- return intersect_skewed_uint16_cardinality(array2->array, card_2,
- array1->array, card_1);
- } else {
-#if CROARING_IS_X64
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- return intersect_vector16_cardinality(array1->array, card_1,
- array2->array, card_2);
- } else {
- return intersect_uint16_cardinality(array1->array, card_1,
- array2->array, card_2);
- }
-#else
- return intersect_uint16_cardinality(array1->array, card_1,
- array2->array, card_2);
-#endif
- }
-}
-
-bool array_container_intersect(const array_container_t *array1,
- const array_container_t *array2) {
- int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
- const int threshold = 64; // subject to tuning
- if (card_1 * threshold < card_2) {
- return intersect_skewed_uint16_nonempty(array1->array, card_1,
- array2->array, card_2);
- } else if (card_2 * threshold < card_1) {
- return intersect_skewed_uint16_nonempty(array2->array, card_2,
- array1->array, card_1);
- } else {
- // we do not bother vectorizing
- return intersect_uint16_nonempty(array1->array, card_1, array2->array,
- card_2);
- }
-}
-
-/* computes the intersection of array1 and array2 and write the result to
- * array1.
- * */
-void array_container_intersection_inplace(array_container_t *src_1,
- const array_container_t *src_2) {
- int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality;
- const int threshold = 64; // subject to tuning
- if (card_1 * threshold < card_2) {
- src_1->cardinality = intersect_skewed_uint16(
- src_1->array, card_1, src_2->array, card_2, src_1->array);
- } else if (card_2 * threshold < card_1) {
- src_1->cardinality = intersect_skewed_uint16(
- src_2->array, card_2, src_1->array, card_1, src_1->array);
- } else {
-#if CROARING_IS_X64
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- src_1->cardinality = intersect_vector16_inplace(
- src_1->array, card_1, src_2->array, card_2);
- } else {
- src_1->cardinality = intersect_uint16(
- src_1->array, card_1, src_2->array, card_2, src_1->array);
- }
-#else
- src_1->cardinality = intersect_uint16(
- src_1->array, card_1, src_2->array, card_2, src_1->array);
-#endif
- }
-}
-
-ALLOW_UNALIGNED
-int array_container_to_uint32_array(void *vout, const array_container_t *cont,
- uint32_t base) {
-#if CROARING_IS_X64
- int support = croaring_hardware_support();
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if (support & ROARING_SUPPORTS_AVX512) {
- return avx512_array_container_to_uint32_array(vout, cont->array,
- cont->cardinality, base);
- }
-#endif
- if (support & ROARING_SUPPORTS_AVX2) {
- return array_container_to_uint32_array_vector16(
- vout, cont->array, cont->cardinality, base);
- }
-#endif // CROARING_IS_X64
- int outpos = 0;
- uint32_t *out = (uint32_t *)vout;
- size_t i = 0;
- for (; i < (size_t)cont->cardinality; ++i) {
- const uint32_t val = base + cont->array[i];
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- outpos++;
- }
- return outpos;
-}
-
-void array_container_printf(const array_container_t *v) {
- if (v->cardinality == 0) {
- printf("{}");
- return;
- }
- printf("{");
- printf("%d", v->array[0]);
- for (int i = 1; i < v->cardinality; ++i) {
- printf(",%d", v->array[i]);
- }
- printf("}");
-}
-
-void array_container_printf_as_uint32_array(const array_container_t *v,
- uint32_t base) {
- if (v->cardinality == 0) {
- return;
- }
- printf("%u", v->array[0] + base);
- for (int i = 1; i < v->cardinality; ++i) {
- printf(",%u", v->array[i] + base);
- }
-}
-
-/*
- * Validate the container. Returns true if valid.
- */
-bool array_container_validate(const array_container_t *v, const char **reason)
{
- if (v->capacity < 0) {
- *reason = "negative capacity";
- return false;
- }
- if (v->cardinality < 0) {
- *reason = "negative cardinality";
- return false;
- }
- if (v->cardinality > v->capacity) {
- *reason = "cardinality exceeds capacity";
- return false;
- }
- if (v->cardinality > DEFAULT_MAX_SIZE) {
- *reason = "cardinality exceeds DEFAULT_MAX_SIZE";
- return false;
- }
- if (v->cardinality == 0) {
- *reason = "zero cardinality";
- return false;
- }
-
- if (v->array == NULL) {
- *reason = "NULL array pointer";
- return false;
- }
- uint16_t prev = v->array[0];
- for (int i = 1; i < v->cardinality; ++i) {
- if (v->array[i] <= prev) {
- *reason = "array elements not strictly increasing";
- return false;
- }
- prev = v->array[i];
- }
-
- return true;
-}
-
-/* Compute the number of runs */
-int32_t array_container_number_of_runs(const array_container_t *ac) {
- // Can SIMD work here?
- int32_t nr_runs = 0;
- int32_t prev = -2;
- for (const uint16_t *p = ac->array; p != ac->array + ac->cardinality; ++p)
{
- if (*p != prev + 1) nr_runs++;
- prev = *p;
- }
- return nr_runs;
-}
-
-/**
- * Writes the underlying array to buf, outputs how many bytes were written.
- * The number of bytes written should be
- * array_container_size_in_bytes(container).
- *
- */
-int32_t array_container_write(const array_container_t *container, char *buf) {
- memcpy(buf, container->array, container->cardinality * sizeof(uint16_t));
- return array_container_size_in_bytes(container);
-}
-
-bool array_container_is_subset(const array_container_t *container1,
- const array_container_t *container2) {
- if (container1->cardinality > container2->cardinality) {
- return false;
- }
- int i1 = 0, i2 = 0;
- while (i1 < container1->cardinality && i2 < container2->cardinality) {
- if (container1->array[i1] == container2->array[i2]) {
- i1++;
- i2++;
- } else if (container1->array[i1] > container2->array[i2]) {
- i2++;
- } else { // container1->array[i1] < container2->array[i2]
- return false;
- }
- }
- if (i1 == container1->cardinality) {
- return true;
- } else {
- return false;
- }
-}
-
-int32_t array_container_read(int32_t cardinality, array_container_t *container,
- const char *buf) {
- if (container->capacity < cardinality) {
- array_container_grow(container, cardinality, false);
- }
- container->cardinality = cardinality;
- memcpy(container->array, buf, container->cardinality * sizeof(uint16_t));
-
- return array_container_size_in_bytes(container);
-}
-
-bool array_container_iterate(const array_container_t *cont, uint32_t base,
- roaring_iterator iterator, void *ptr) {
- for (int i = 0; i < cont->cardinality; i++)
- if (!iterator(cont->array[i] + base, ptr)) return false;
- return true;
-}
-
-bool array_container_iterate64(const array_container_t *cont, uint32_t base,
- roaring_iterator64 iterator, uint64_t high_bits,
- void *ptr) {
- for (int i = 0; i < cont->cardinality; i++)
- if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr))
- return false;
- return true;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/array.c */
-/* begin file src/containers/bitset.c */
-/*
- * bitset.c
- *
- */
-#ifndef _POSIX_C_SOURCE
-#define _POSIX_C_SOURCE 200809L
-#endif
-#include <assert.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-extern inline int bitset_container_cardinality(
- const bitset_container_t *bitset);
-extern inline void bitset_container_set(bitset_container_t *bitset,
- uint16_t pos);
-// unused at this time:
-// extern inline void bitset_container_unset(bitset_container_t *bitset,
-// uint16_t pos);
-extern inline bool bitset_container_get(const bitset_container_t *bitset,
- uint16_t pos);
-extern inline int32_t bitset_container_serialized_size_in_bytes(void);
-extern inline bool bitset_container_add(bitset_container_t *bitset,
- uint16_t pos);
-extern inline bool bitset_container_remove(bitset_container_t *bitset,
- uint16_t pos);
-extern inline bool bitset_container_contains(const bitset_container_t *bitset,
- uint16_t pos);
-
-void bitset_container_clear(bitset_container_t *bitset) {
- memset(bitset->words, 0, sizeof(uint64_t) *
BITSET_CONTAINER_SIZE_IN_WORDS);
- bitset->cardinality = 0;
-}
-
-void bitset_container_set_all(bitset_container_t *bitset) {
- memset(bitset->words, INT64_C(-1),
- sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
- bitset->cardinality = (1 << 16);
-}
-
-/* Create a new bitset. Return NULL in case of failure. */
-bitset_container_t *bitset_container_create(void) {
- bitset_container_t *bitset =
- (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t));
-
- if (!bitset) {
- return NULL;
- }
-
- size_t align_size = 32;
-#if CROARING_IS_X64
- int support = croaring_hardware_support();
- if (support & ROARING_SUPPORTS_AVX512) {
- // sizeof(__m512i) == 64
- align_size = 64;
- } else {
- // sizeof(__m256i) == 32
- align_size = 32;
- }
-#endif
- bitset->words = (uint64_t *)roaring_aligned_malloc(
- align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
- if (!bitset->words) {
- roaring_free(bitset);
- return NULL;
- }
- bitset_container_clear(bitset);
- return bitset;
-}
-
-/* Copy one container into another. We assume that they are distinct. */
-void bitset_container_copy(const bitset_container_t *source,
- bitset_container_t *dest) {
- dest->cardinality = source->cardinality;
- memcpy(dest->words, source->words,
- sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
-}
-
-void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
- uint32_t max, uint16_t step) {
- if (step == 0) return; // refuse to crash
- if ((64 % step) == 0) { // step divides 64
- uint64_t mask = 0; // construct the repeated mask
- for (uint32_t value = (min % step); value < 64; value += step) {
- mask |= ((uint64_t)1 << value);
- }
- uint32_t firstword = min / 64;
- uint32_t endword = (max - 1) / 64;
- bitset->cardinality = (max - min + step - 1) / step;
- if (firstword == endword) {
- bitset->words[firstword] |=
- mask & (((~UINT64_C(0)) << (min % 64)) &
- ((~UINT64_C(0)) >> ((~max + 1) % 64)));
- return;
- }
- bitset->words[firstword] = mask & ((~UINT64_C(0)) << (min % 64));
- for (uint32_t i = firstword + 1; i < endword; i++)
- bitset->words[i] = mask;
- bitset->words[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64));
- } else {
- for (uint32_t value = min; value < max; value += step) {
- bitset_container_add(bitset, value);
- }
- }
-}
-
-/* Free memory. */
-void bitset_container_free(bitset_container_t *bitset) {
- if (bitset == NULL) return;
- roaring_aligned_free(bitset->words);
- roaring_free(bitset);
-}
-
-/* duplicate container. */
-ALLOW_UNALIGNED
-bitset_container_t *bitset_container_clone(const bitset_container_t *src) {
- bitset_container_t *bitset =
- (bitset_container_t *)roaring_malloc(sizeof(bitset_container_t));
-
- if (!bitset) {
- return NULL;
- }
-
- size_t align_size = 32;
-#if CROARING_IS_X64
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
- // sizeof(__m512i) == 64
- align_size = 64;
- } else {
- // sizeof(__m256i) == 32
- align_size = 32;
- }
-#endif
- bitset->words = (uint64_t *)roaring_aligned_malloc(
- align_size, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
- if (!bitset->words) {
- roaring_free(bitset);
- return NULL;
- }
- bitset->cardinality = src->cardinality;
- memcpy(bitset->words, src->words,
- sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
- return bitset;
-}
-
-void bitset_container_offset(const bitset_container_t *c, container_t **loc,
- container_t **hic, uint16_t offset) {
- bitset_container_t *bc = NULL;
- uint64_t val;
- uint16_t b, i, end;
-
- b = offset >> 6;
- i = offset % 64;
- end = 1024 - b;
-
- if (loc != NULL) {
- bc = bitset_container_create();
- if (i == 0) {
- memcpy(bc->words + b, c->words, 8 * end);
- } else {
- bc->words[b] = c->words[0] << i;
- for (uint32_t k = 1; k < end; ++k) {
- val = c->words[k] << i;
- val |= c->words[k - 1] >> (64 - i);
- bc->words[b + k] = val;
- }
- }
-
- bc->cardinality = bitset_container_compute_cardinality(bc);
- if (bc->cardinality != 0) {
- *loc = bc;
- }
- if (bc->cardinality == c->cardinality) {
- return;
- }
- }
-
- if (hic == NULL) {
- // Both hic and loc can't be NULL, so bc is never NULL here
- if (bc->cardinality == 0) {
- bitset_container_free(bc);
- }
- return;
- }
-
- if (bc == NULL || bc->cardinality != 0) {
- bc = bitset_container_create();
- }
-
- if (i == 0) {
- memcpy(bc->words, c->words + end, 8 * b);
- } else {
- for (uint32_t k = end; k < 1024; ++k) {
- val = c->words[k] << i;
- val |= c->words[k - 1] >> (64 - i);
- bc->words[k - end] = val;
- }
- bc->words[b] = c->words[1023] >> (64 - i);
- }
-
- bc->cardinality = bitset_container_compute_cardinality(bc);
- if (bc->cardinality == 0) {
- bitset_container_free(bc);
- return;
- }
- *hic = bc;
-}
-
-void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
- uint32_t end) {
- bitset_set_range(bitset->words, begin, end);
- bitset->cardinality =
- bitset_container_compute_cardinality(bitset); // could be smarter
-}
-
-bool bitset_container_intersect(const bitset_container_t *src_1,
- const bitset_container_t *src_2) {
- // could vectorize, but this is probably already quite fast in practice
- const uint64_t *__restrict__ words_1 = src_1->words;
- const uint64_t *__restrict__ words_2 = src_2->words;
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
- if ((words_1[i] & words_2[i]) != 0) return true;
- }
- return false;
-}
-
-#if CROARING_IS_X64
-#ifndef CROARING_WORDS_IN_AVX2_REG
-#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
-#endif
-#ifndef WORDS_IN_AVX512_REG
-#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t)
-#endif
-/* Get the number of bits set (force computation) */
-static inline int _scalar_bitset_container_compute_cardinality(
- const bitset_container_t *bitset) {
- const uint64_t *words = bitset->words;
- int32_t sum = 0;
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
- sum += roaring_hamming(words[i]);
- sum += roaring_hamming(words[i + 1]);
- sum += roaring_hamming(words[i + 2]);
- sum += roaring_hamming(words[i + 3]);
- }
- return sum;
-}
-/* Get the number of bits set (force computation) */
-int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
- int support = croaring_hardware_support();
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if (support & ROARING_SUPPORTS_AVX512) {
- return (int)avx512_vpopcount(
- (const __m512i *)bitset->words,
- BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG));
- } else
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
- if (support & ROARING_SUPPORTS_AVX2) {
- return (int)avx2_harley_seal_popcount256(
- (const __m256i *)bitset->words,
- BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG));
- } else {
- return _scalar_bitset_container_compute_cardinality(bitset);
- }
-}
-
-#elif defined(CROARING_USENEON)
-int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
- uint16x8_t n0 = vdupq_n_u16(0);
- uint16x8_t n1 = vdupq_n_u16(0);
- uint16x8_t n2 = vdupq_n_u16(0);
- uint16x8_t n3 = vdupq_n_u16(0);
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {
- uint64x2_t c0 = vld1q_u64(&bitset->words[i + 0]);
- n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));
- uint64x2_t c1 = vld1q_u64(&bitset->words[i + 2]);
- n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));
- uint64x2_t c2 = vld1q_u64(&bitset->words[i + 4]);
- n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));
- uint64x2_t c3 = vld1q_u64(&bitset->words[i + 6]);
- n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));
- }
- uint64x2_t n = vdupq_n_u64(0);
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));
- return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);
-}
-
-#else // CROARING_IS_X64
-
-/* Get the number of bits set (force computation) */
-int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
- const uint64_t *words = bitset->words;
- int32_t sum = 0;
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
- sum += roaring_hamming(words[i]);
- sum += roaring_hamming(words[i + 1]);
- sum += roaring_hamming(words[i + 2]);
- sum += roaring_hamming(words[i + 3]);
- }
- return sum;
-}
-
-#endif // CROARING_IS_X64
-
-#if CROARING_IS_X64
-
-#define CROARING_BITSET_CONTAINER_FN_REPEAT 8
-#ifndef WORDS_IN_AVX512_REG
-#define WORDS_IN_AVX512_REG sizeof(__m512i) / sizeof(uint64_t)
-#endif // WORDS_IN_AVX512_REG
-
-/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
- result to bitsetout */
-// clang-format off
-#define CROARING_AVX512_BITSET_CONTAINER_FN1(before, opname, opsymbol,
avx_intrinsic, \
- neon_intrinsic, after)
\
- static inline int _avx512_bitset_container_##opname##_nocard(
\
- const bitset_container_t *src_1, const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- const uint8_t * __restrict__ words_1 = (const uint8_t *)src_1->words;
\
- const uint8_t * __restrict__ words_2 = (const uint8_t *)src_2->words;
\
- /* not using the blocking optimization for some reason*/
\
- uint8_t *out = (uint8_t*)dst->words;
\
- const int innerloop = 8;
\
- for (size_t i = 0;
\
- i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX512_REG);
\
- i+=innerloop) {
\
- __m512i A1, A2, AO;
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)out, AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 64));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 64));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)(out+64), AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 128));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 128));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)(out+128), AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 192));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 192));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)(out+192), AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 256));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 256));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)(out+256), AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 320));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 320));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)(out+320), AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 384));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 384));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm512_storeu_si512((__m512i *)(out+384), AO);
\
- A1 = _mm512_loadu_si512((const __m512i *)(words_1 + 448));
\
- A2 = _mm512_loadu_si512((const __m512i *)(words_2 + 448));
\
- AO = avx_intrinsic(A2, A1); \
- _mm512_storeu_si512((__m512i *)(out+448), AO); \
- out+=512; \
- words_1 += 512; \
- words_2 += 512; \
- } \
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
- return dst->cardinality; \
- }
-
-#define CROARING_AVX512_BITSET_CONTAINER_FN2(before, opname, opsymbol,
avx_intrinsic, \
- neon_intrinsic, after)
\
- /* next, a version that updates cardinality*/
\
- static inline int _avx512_bitset_container_##opname(const bitset_container_t
*src_1, \
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- const __m512i * __restrict__ words_1 = (const __m512i *) src_1->words;
\
- const __m512i * __restrict__ words_2 = (const __m512i *) src_2->words;
\
- __m512i *out = (__m512i *) dst->words;
\
- dst->cardinality =
(int32_t)avx512_harley_seal_popcount512andstore_##opname(words_2,\
- words_1, out,BITSET_CONTAINER_SIZE_IN_WORDS /
(WORDS_IN_AVX512_REG)); \
- return dst->cardinality;
\
- }
-
-#define CROARING_AVX512_BITSET_CONTAINER_FN3(before, opname, opsymbol,
avx_intrinsic, \
- neon_intrinsic, after)
\
- /* next, a version that just computes the cardinality*/
\
- static inline int _avx512_bitset_container_##opname##_justcard(
\
- const bitset_container_t *src_1, const bitset_container_t *src_2) {
\
- const __m512i * __restrict__ data1 = (const __m512i *) src_1->words;
\
- const __m512i * __restrict__ data2 = (const __m512i *) src_2->words;
\
- return (int)avx512_harley_seal_popcount512_##opname(data2,
\
- data1, BITSET_CONTAINER_SIZE_IN_WORDS /
(WORDS_IN_AVX512_REG)); \
- }
-
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, or, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, union, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, and, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, intersection, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, xor, ^,
_mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX512, andnot, &~,
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, or, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, union, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, and, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, intersection, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, xor, ^,
_mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX512, andnot, &~,
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, or, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, union, |,
_mm512_or_si512, vorrq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, and, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, intersection, &,
_mm512_and_si512, vandq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, xor, ^,
_mm512_xor_si512, veorq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-CROARING_TARGET_AVX512
-CROARING_AVX512_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX512, andnot, &~,
_mm512_andnot_si512, vbicq_u64, CROARING_UNTARGET_AVX512)
-CROARING_UNTARGET_AVX512
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-
-#ifndef CROARING_WORDS_IN_AVX2_REG
-#define CROARING_WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
-#endif // CROARING_WORDS_IN_AVX2_REG
-#define CROARING_LOOP_SIZE \
- BITSET_CONTAINER_SIZE_IN_WORDS / \
- ((CROARING_WORDS_IN_AVX2_REG)*CROARING_BITSET_CONTAINER_FN_REPEAT)
-
-/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
- result to bitsetout */
-// clang-format off
-#define CROARING_AVX_BITSET_CONTAINER_FN1(before, opname, opsymbol,
avx_intrinsic, \
- neon_intrinsic, after)
\
- static inline int _avx2_bitset_container_##opname##_nocard(
\
- const bitset_container_t *src_1, const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- const uint8_t *__restrict__ words_1 = (const uint8_t *)src_1->words;
\
- const uint8_t *__restrict__ words_2 = (const uint8_t *)src_2->words;
\
- /* not using the blocking optimization for some reason*/
\
- uint8_t *out = (uint8_t *)dst->words;
\
- const int innerloop = 8;
\
- for (size_t i = 0;
\
- i < BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG);
\
- i += innerloop) {
\
- __m256i A1, A2, AO;
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)out, AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 32));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 32));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 32), AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 64));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 64));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 64), AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 96));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 96));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 96), AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 128));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 128));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 128), AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 160));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 160));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 160), AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 192));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 192));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 192), AO);
\
- A1 = _mm256_lddqu_si256((const __m256i *)(words_1 + 224));
\
- A2 = _mm256_lddqu_si256((const __m256i *)(words_2 + 224));
\
- AO = avx_intrinsic(A2, A1);
\
- _mm256_storeu_si256((__m256i *)(out + 224), AO);
\
- out += 256;
\
- words_1 += 256;
\
- words_2 += 256;
\
- }
\
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
\
- return dst->cardinality;
\
- }
-
-#define CROARING_AVX_BITSET_CONTAINER_FN2(before, opname, opsymbol,
avx_intrinsic, \
- neon_intrinsic, after)
\
- /* next, a version that updates cardinality*/
\
- static inline int _avx2_bitset_container_##opname(const bitset_container_t
*src_1, \
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- const __m256i *__restrict__ words_1 = (const __m256i *)src_1->words;
\
- const __m256i *__restrict__ words_2 = (const __m256i *)src_2->words;
\
- __m256i *out = (__m256i *)dst->words;
\
- dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname(
\
- words_2, words_1, out,
\
- BITSET_CONTAINER_SIZE_IN_WORDS / (CROARING_WORDS_IN_AVX2_REG));
\
- return dst->cardinality;
\
- }
\
-
-#define CROARING_AVX_BITSET_CONTAINER_FN3(before, opname, opsymbol,
avx_intrinsic, \
- neon_intrinsic, after)
\
- /* next, a version that just computes the cardinality*/
\
- static inline int _avx2_bitset_container_##opname##_justcard(
\
- const bitset_container_t *src_1, const bitset_container_t *src_2) {
\
- const __m256i *__restrict__ data1 = (const __m256i *)src_1->words;
\
- const __m256i *__restrict__ data2 = (const __m256i *)src_2->words;
\
- return (int)avx2_harley_seal_popcount256_##opname(
\
- data2, data1, BITSET_CONTAINER_SIZE_IN_WORDS /
(CROARING_WORDS_IN_AVX2_REG)); \
- }
-
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, or, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, union, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, and, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, intersection, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, xor, ^,
_mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN1(CROARING_TARGET_AVX2, andnot, &~,
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, or, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, union, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, and, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, intersection, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, xor, ^,
_mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN2(CROARING_TARGET_AVX2, andnot, &~,
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, or, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, union, |,
_mm256_or_si256, vorrq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, and, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, intersection, &,
_mm256_and_si256, vandq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, xor, ^,
_mm256_xor_si256, veorq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-CROARING_TARGET_AVX2
-CROARING_AVX_BITSET_CONTAINER_FN3(CROARING_TARGET_AVX2, andnot, &~,
_mm256_andnot_si256, vbicq_u64, CROARING_UNTARGET_AVX2)
-CROARING_UNTARGET_AVX2
-
-
-#define SCALAR_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
\
- neon_intrinsic)
\
- static inline int _scalar_bitset_container_##opname(const bitset_container_t
*src_1, \
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- const uint64_t *__restrict__ words_1 = src_1->words;
\
- const uint64_t *__restrict__ words_2 = src_2->words;
\
- uint64_t *out = dst->words;
\
- int32_t sum = 0;
\
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {
\
- const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),
\
- word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]);
\
- out[i] = word_1;
\
- out[i + 1] = word_2;
\
- sum += roaring_hamming(word_1);
\
- sum += roaring_hamming(word_2);
\
- }
\
- dst->cardinality = sum;
\
- return dst->cardinality;
\
- }
\
- static inline int _scalar_bitset_container_##opname##_nocard(
\
- const bitset_container_t *src_1, const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- const uint64_t *__restrict__ words_1 = src_1->words;
\
- const uint64_t *__restrict__ words_2 = src_2->words;
\
- uint64_t *out = dst->words;
\
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {
\
- out[i] = (words_1[i])opsymbol(words_2[i]);
\
- }
\
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
\
- return dst->cardinality;
\
- }
\
- static inline int _scalar_bitset_container_##opname##_justcard(
\
- const bitset_container_t *src_1, const bitset_container_t *src_2) {
\
- const uint64_t *__restrict__ words_1 = src_1->words;
\
- const uint64_t *__restrict__ words_2 = src_2->words;
\
- int32_t sum = 0;
\
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {
\
- const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]),
\
- word_2 = (words_1[i + 1]) opsymbol(words_2[i + 1]);
\
- sum += roaring_hamming(word_1);
\
- sum += roaring_hamming(word_2);
\
- }
\
- return sum;
\
- }
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-SCALAR_BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64)
-SCALAR_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-SCALAR_BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64)
-SCALAR_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
-
-SCALAR_BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64)
-SCALAR_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
-
-#if CROARING_COMPILER_SUPPORTS_AVX512
-#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
- int bitset_container_##opname(const bitset_container_t *src_1,
\
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- int support = croaring_hardware_support();
\
- if ( support & ROARING_SUPPORTS_AVX512 ) {
\
- return _avx512_bitset_container_##opname(src_1, src_2, dst);
\
- }
\
- else if ( support & ROARING_SUPPORTS_AVX2 ) {
\
- return _avx2_bitset_container_##opname(src_1, src_2, dst);
\
- } else {
\
- return _scalar_bitset_container_##opname(src_1, src_2, dst);
\
- }
\
- }
\
- int bitset_container_##opname##_nocard(const bitset_container_t *src_1,
\
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- int support = croaring_hardware_support();
\
- if ( support & ROARING_SUPPORTS_AVX512 ) {
\
- return _avx512_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
- }
\
- else if ( support & ROARING_SUPPORTS_AVX2 ) {
\
- return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
- } else {
\
- return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
- }
\
- }
\
- int bitset_container_##opname##_justcard(const bitset_container_t *src_1,
\
- const bitset_container_t *src_2) {
\
- int support = croaring_hardware_support();
\
- if ( support & ROARING_SUPPORTS_AVX512 ) {
\
- return _avx512_bitset_container_##opname##_justcard(src_1, src_2);
\
- }
\
- else if ( support & ROARING_SUPPORTS_AVX2 ) {
\
- return _avx2_bitset_container_##opname##_justcard(src_1, src_2);
\
- } else {
\
- return _scalar_bitset_container_##opname##_justcard(src_1, src_2);
\
- }
\
- }
-
-#else // CROARING_COMPILER_SUPPORTS_AVX512
-
-
-#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
- int bitset_container_##opname(const bitset_container_t *src_1,
\
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {
\
- return _avx2_bitset_container_##opname(src_1, src_2, dst);
\
- } else {
\
- return _scalar_bitset_container_##opname(src_1, src_2, dst);
\
- }
\
- }
\
- int bitset_container_##opname##_nocard(const bitset_container_t *src_1,
\
- const bitset_container_t *src_2,
\
- bitset_container_t *dst) {
\
- if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {
\
- return _avx2_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
- } else {
\
- return _scalar_bitset_container_##opname##_nocard(src_1, src_2, dst);
\
- }
\
- }
\
- int bitset_container_##opname##_justcard(const bitset_container_t *src_1,
\
- const bitset_container_t *src_2) {
\
- if ( croaring_hardware_support() & ROARING_SUPPORTS_AVX2 ) {
\
- return _avx2_bitset_container_##opname##_justcard(src_1, src_2);
\
- } else {
\
- return _scalar_bitset_container_##opname##_justcard(src_1, src_2);
\
- }
\
- }
-
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-
-#elif defined(CROARING_USENEON)
-
-#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
-int bitset_container_##opname(const bitset_container_t *src_1, \
- const bitset_container_t *src_2, \
- bitset_container_t *dst) { \
- const uint64_t * __restrict__ words_1 = src_1->words; \
- const uint64_t * __restrict__ words_2 = src_2->words; \
- uint64_t *out = dst->words; \
- uint16x8_t n0 = vdupq_n_u16(0); \
- uint16x8_t n1 = vdupq_n_u16(0); \
- uint16x8_t n2 = vdupq_n_u16(0); \
- uint16x8_t n3 = vdupq_n_u16(0); \
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
- uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]), \
- vld1q_u64(&words_2[i + 0])); \
- n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \
- vst1q_u64(&out[i + 0], c0); \
- uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]), \
- vld1q_u64(&words_2[i + 2])); \
- n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \
- vst1q_u64(&out[i + 2], c1); \
- uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]), \
- vld1q_u64(&words_2[i + 4])); \
- n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \
- vst1q_u64(&out[i + 4], c2); \
- uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]), \
- vld1q_u64(&words_2[i + 6])); \
- n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \
- vst1q_u64(&out[i + 6], c3); \
- } \
- uint64x2_t n = vdupq_n_u64(0); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \
- dst->cardinality = vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \
- return dst->cardinality; \
-} \
-int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
- const bitset_container_t *src_2, \
- bitset_container_t *dst) { \
- const uint64_t * __restrict__ words_1 = src_1->words; \
- const uint64_t * __restrict__ words_2 = src_2->words; \
- uint64_t *out = dst->words; \
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
- vst1q_u64(&out[i + 0], neon_intrinsic(vld1q_u64(&words_1[i + 0]), \
- vld1q_u64(&words_2[i + 0]))); \
- vst1q_u64(&out[i + 2], neon_intrinsic(vld1q_u64(&words_1[i + 2]), \
- vld1q_u64(&words_2[i + 2]))); \
- vst1q_u64(&out[i + 4], neon_intrinsic(vld1q_u64(&words_1[i + 4]), \
- vld1q_u64(&words_2[i + 4]))); \
- vst1q_u64(&out[i + 6], neon_intrinsic(vld1q_u64(&words_1[i + 6]), \
- vld1q_u64(&words_2[i + 6]))); \
- } \
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
- return dst->cardinality; \
-} \
-int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
- const bitset_container_t *src_2) { \
- const uint64_t * __restrict__ words_1 = src_1->words; \
- const uint64_t * __restrict__ words_2 = src_2->words; \
- uint16x8_t n0 = vdupq_n_u16(0); \
- uint16x8_t n1 = vdupq_n_u16(0); \
- uint16x8_t n2 = vdupq_n_u16(0); \
- uint16x8_t n3 = vdupq_n_u16(0); \
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
- uint64x2_t c0 = neon_intrinsic(vld1q_u64(&words_1[i + 0]), \
- vld1q_u64(&words_2[i + 0])); \
- n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \
- uint64x2_t c1 = neon_intrinsic(vld1q_u64(&words_1[i + 2]), \
- vld1q_u64(&words_2[i + 2])); \
- n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \
- uint64x2_t c2 = neon_intrinsic(vld1q_u64(&words_1[i + 4]), \
- vld1q_u64(&words_2[i + 4])); \
- n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \
- uint64x2_t c3 = neon_intrinsic(vld1q_u64(&words_1[i + 6]), \
- vld1q_u64(&words_2[i + 6])); \
- n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \
- } \
- uint64x2_t n = vdupq_n_u64(0); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \
- n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \
- return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \
-}
-
-#else
-
-#define CROARING_BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic,
neon_intrinsic) \
-int bitset_container_##opname(const bitset_container_t *src_1, \
- const bitset_container_t *src_2, \
- bitset_container_t *dst) { \
- const uint64_t * __restrict__ words_1 = src_1->words; \
- const uint64_t * __restrict__ words_2 = src_2->words; \
- uint64_t *out = dst->words; \
- int32_t sum = 0; \
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \
- const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \
- word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \
- out[i] = word_1; \
- out[i + 1] = word_2; \
- sum += roaring_hamming(word_1); \
- sum += roaring_hamming(word_2); \
- } \
- dst->cardinality = sum; \
- return dst->cardinality; \
-} \
-int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
- const bitset_container_t *src_2, \
- bitset_container_t *dst) { \
- const uint64_t * __restrict__ words_1 = src_1->words; \
- const uint64_t * __restrict__ words_2 = src_2->words; \
- uint64_t *out = dst->words; \
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { \
- out[i] = (words_1[i])opsymbol(words_2[i]); \
- } \
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
- return dst->cardinality; \
-} \
-int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
- const bitset_container_t *src_2) { \
- const uint64_t * __restrict__ words_1 = src_1->words; \
- const uint64_t * __restrict__ words_2 = src_2->words; \
- int32_t sum = 0; \
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \
- const uint64_t word_1 = (words_1[i])opsymbol(words_2[i]), \
- word_2 = (words_1[i + 1])opsymbol(words_2[i + 1]); \
- sum += roaring_hamming(word_1); \
- sum += roaring_hamming(word_2); \
- } \
- return sum; \
-}
-
-#endif // CROARING_IS_X64
-
-// we duplicate the function because other containers use the "or" term, makes
API more consistent
-CROARING_BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64)
-CROARING_BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
-
-// we duplicate the function because other containers use the "intersection"
term, makes API more consistent
-CROARING_BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64)
-CROARING_BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
-
-CROARING_BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64)
-CROARING_BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
-// clang-format On
-
-
-ALLOW_UNALIGNED
-int bitset_container_to_uint32_array(
- uint32_t *out,
- const bitset_container_t *bc,
- uint32_t base
-){
-#if CROARING_IS_X64
- int support = croaring_hardware_support();
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if(( support & ROARING_SUPPORTS_AVX512 ) && (bc->cardinality >= 8192)) //
heuristic
- return (int) bitset_extract_setbits_avx512(bc->words,
- BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base);
- else
-#endif
- if(( support & ROARING_SUPPORTS_AVX2 ) && (bc->cardinality >= 8192)) //
heuristic
- return (int) bitset_extract_setbits_avx2(bc->words,
- BITSET_CONTAINER_SIZE_IN_WORDS, out, bc->cardinality, base);
- else
- return (int) bitset_extract_setbits(bc->words,
- BITSET_CONTAINER_SIZE_IN_WORDS, out, base);
-#else
- return (int) bitset_extract_setbits(bc->words,
- BITSET_CONTAINER_SIZE_IN_WORDS, out, base);
-#endif
-}
-
-/*
- * Print this container using printf (useful for debugging).
- */
-void bitset_container_printf(const bitset_container_t * v) {
- printf("{");
- uint32_t base = 0;
- bool iamfirst = true;// TODO: rework so that this is not necessary yet
still readable
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
- uint64_t w = v->words[i];
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- if(iamfirst) {// predicted to be false
- printf("%u",base + r);
- iamfirst = false;
- } else {
- printf(",%u",base + r);
- }
- w ^= t;
- }
- base += 64;
- }
- printf("}");
-}
-
-
-/*
- * Print this container using printf as a comma-separated list of 32-bit
integers starting at base.
- */
-void bitset_container_printf_as_uint32_array(const bitset_container_t * v,
uint32_t base) {
- bool iamfirst = true;// TODO: rework so that this is not necessary yet
still readable
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
- uint64_t w = v->words[i];
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- if(iamfirst) {// predicted to be false
- printf("%u", r + base);
- iamfirst = false;
- } else {
- printf(",%u",r + base);
- }
- w ^= t;
- }
- base += 64;
- }
-}
-
-/*
- * Validate the container. Returns true if valid.
- */
-bool bitset_container_validate(const bitset_container_t *v, const char
**reason) {
- if (v->words == NULL) {
- *reason = "words is NULL";
- return false;
- }
- if (v->cardinality != bitset_container_compute_cardinality(v)) {
- *reason = "cardinality is incorrect";
- return false;
- }
- if (v->cardinality <= DEFAULT_MAX_SIZE) {
- *reason = "cardinality is too small for a bitmap container";
- return false;
- }
- // Attempt to forcibly load the first and last words, hopefully causing
- // a segfault or an address sanitizer error if words is not allocated.
- volatile uint64_t *words = v->words;
- (void) words[0];
- (void) words[BITSET_CONTAINER_SIZE_IN_WORDS - 1];
- return true;
-}
-
-
-// TODO: use the fast lower bound, also
-int bitset_container_number_of_runs(bitset_container_t *bc) {
- int num_runs = 0;
- uint64_t next_word = bc->words[0];
-
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) {
- uint64_t word = next_word;
- next_word = bc->words[i+1];
- num_runs += roaring_hamming((~word) & (word << 1)) + ( (word >> 63) &
~next_word);
- }
-
- uint64_t word = next_word;
- num_runs += roaring_hamming((~word) & (word << 1));
- if((word & 0x8000000000000000ULL) != 0)
- num_runs++;
- return num_runs;
-}
-
-
-int32_t bitset_container_write(const bitset_container_t *container,
- char *buf) {
- memcpy(buf, container->words, BITSET_CONTAINER_SIZE_IN_WORDS *
sizeof(uint64_t));
- return bitset_container_size_in_bytes(container);
-}
-
-
-int32_t bitset_container_read(int32_t cardinality, bitset_container_t
*container,
- const char *buf) {
- container->cardinality = cardinality;
- memcpy(container->words, buf, BITSET_CONTAINER_SIZE_IN_WORDS *
sizeof(uint64_t));
- return bitset_container_size_in_bytes(container);
-}
-
-bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base,
roaring_iterator iterator, void *ptr) {
- for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
- uint64_t w = cont->words[i];
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- if(!iterator(r + base, ptr)) return false;
- w ^= t;
- }
- base += 64;
- }
- return true;
-}
-
-bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base,
roaring_iterator64 iterator, uint64_t high_bits, void *ptr) {
- for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
- uint64_t w = cont->words[i];
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false;
- w ^= t;
- }
- base += 64;
- }
- return true;
-}
-
-#if CROARING_IS_X64
-#if CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX512
-ALLOW_UNALIGNED
-static inline bool _avx512_bitset_container_equals(const bitset_container_t
*container1, const bitset_container_t *container2) {
- const __m512i *ptr1 = (const __m512i*)container1->words;
- const __m512i *ptr2 = (const __m512i*)container2->words;
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/64;
i++) {
- __m512i r1 = _mm512_loadu_si512(ptr1+i);
- __m512i r2 = _mm512_loadu_si512(ptr2+i);
- __mmask64 mask = _mm512_cmpeq_epi8_mask(r1, r2);
- if ((uint64_t)mask != UINT64_MAX) {
- return false;
- }
- }
- return true;
-}
-CROARING_UNTARGET_AVX512
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-CROARING_TARGET_AVX2
-ALLOW_UNALIGNED
-static inline bool _avx2_bitset_container_equals(const bitset_container_t
*container1, const bitset_container_t *container2) {
- const __m256i *ptr1 = (const __m256i*)container1->words;
- const __m256i *ptr2 = (const __m256i*)container2->words;
- for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/32;
i++) {
- __m256i r1 = _mm256_loadu_si256(ptr1+i);
- __m256i r2 = _mm256_loadu_si256(ptr2+i);
- int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
- if ((uint32_t)mask != UINT32_MAX) {
- return false;
- }
- }
- return true;
-}
-CROARING_UNTARGET_AVX2
-#endif // CROARING_IS_X64
-
-ALLOW_UNALIGNED
-bool bitset_container_equals(const bitset_container_t *container1, const
bitset_container_t *container2) {
- if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) &&
(container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
- if(container1->cardinality != container2->cardinality) {
- return false;
- }
- if (container1->cardinality == INT32_C(0x10000)) {
- return true;
- }
- }
-#if CROARING_IS_X64
- int support = croaring_hardware_support();
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if( support & ROARING_SUPPORTS_AVX512 ) {
- return _avx512_bitset_container_equals(container1, container2);
- }
- else
-#endif
- if( support & ROARING_SUPPORTS_AVX2 ) {
- return _avx2_bitset_container_equals(container1, container2);
- }
-#endif
- return memcmp(container1->words,
- container2->words,
- BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)) == 0;
-}
-
-bool bitset_container_is_subset(const bitset_container_t *container1,
- const bitset_container_t *container2) {
- if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) &&
(container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
- if(container1->cardinality > container2->cardinality) {
- return false;
- }
- }
- for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
- if((container1->words[i] & container2->words[i]) !=
container1->words[i]) {
- return false;
- }
- }
- return true;
-}
-
-bool bitset_container_select(const bitset_container_t *container, uint32_t
*start_rank, uint32_t rank, uint32_t *element) {
- int card = bitset_container_cardinality(container);
- if(rank >= *start_rank + card) {
- *start_rank += card;
- return false;
- }
- const uint64_t *words = container->words;
- int32_t size;
- for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) {
- size = roaring_hamming(words[i]);
- if(rank <= *start_rank + size) {
- uint64_t w = container->words[i];
- uint16_t base = i*64;
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- if(*start_rank == rank) {
- *element = r+base;
- return true;
- }
- w ^= t;
- *start_rank += 1;
- }
- }
- else
- *start_rank += size;
- }
- assert(false);
- roaring_unreachable;
-}
-
-
-/* Returns the smallest value (assumes not empty) */
-uint16_t bitset_container_minimum(const bitset_container_t *container) {
- for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
- uint64_t w = container->words[i];
- if (w != 0) {
- int r = roaring_trailing_zeroes(w);
- return r + i * 64;
- }
- }
- return UINT16_MAX;
-}
-
-/* Returns the largest value (assumes not empty) */
-uint16_t bitset_container_maximum(const bitset_container_t *container) {
- for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) {
- uint64_t w = container->words[i];
- if (w != 0) {
- int r = roaring_leading_zeroes(w);
- return i * 64 + 63 - r;
- }
- }
- return 0;
-}
-
-/* Returns the number of values equal or smaller than x */
-int bitset_container_rank(const bitset_container_t *container, uint16_t x) {
- // credit: aqrit
- int sum = 0;
- int i = 0;
- for (int end = x / 64; i < end; i++){
- sum += roaring_hamming(container->words[i]);
- }
- uint64_t lastword = container->words[i];
- uint64_t lastpos = UINT64_C(1) << (x % 64);
- uint64_t mask = lastpos + lastpos - 1; // smear right
- sum += roaring_hamming(lastword & mask);
- return sum;
-}
-
-uint32_t bitset_container_rank_many(const bitset_container_t *container,
uint64_t start_rank, const uint32_t* begin, const uint32_t* end, uint64_t* ans){
- const uint16_t high = (uint16_t)((*begin) >> 16);
- int i = 0;
- int sum = 0;
- const uint32_t* iter = begin;
- for(; iter != end; iter++) {
- uint32_t x = *iter;
- uint16_t xhigh = (uint16_t)(x >> 16);
- if(xhigh != high) return iter - begin; // stop at next container
-
- uint16_t xlow = (uint16_t)x;
- for(int count = xlow / 64; i < count; i++){
- sum += roaring_hamming(container->words[i]);
- }
- uint64_t lastword = container->words[i];
- uint64_t lastpos = UINT64_C(1) << (xlow % 64);
- uint64_t mask = lastpos + lastpos - 1; // smear right
- *(ans++) = start_rank + sum + roaring_hamming(lastword & mask);
- }
- return iter - begin;
-}
-
-
-/* Returns the index of x , if not exsist return -1 */
-int bitset_container_get_index(const bitset_container_t *container, uint16_t
x) {
- if (bitset_container_get(container, x)) {
- // credit: aqrit
- int sum = 0;
- int i = 0;
- for (int end = x / 64; i < end; i++){
- sum += roaring_hamming(container->words[i]);
- }
- uint64_t lastword = container->words[i];
- uint64_t lastpos = UINT64_C(1) << (x % 64);
- uint64_t mask = lastpos + lastpos - 1; // smear right
- sum += roaring_hamming(lastword & mask);
- return sum - 1;
- } else {
- return -1;
- }
-}
-
-/* Returns the index of the first value equal or larger than x, or -1 */
-int bitset_container_index_equalorlarger(const bitset_container_t *container,
uint16_t x) {
- uint32_t x32 = x;
- uint32_t k = x32 / 64;
- uint64_t word = container->words[k];
- const int diff = x32 - k * 64; // in [0,64)
- word = (word >> diff) << diff; // a mask is faster, but we don't care
- while(word == 0) {
- k++;
- if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1;
- word = container->words[k];
- }
- return k * 64 + roaring_trailing_zeroes(word);
-}
-
-#ifdef __cplusplus
-} } } // extern "C" { namespace roaring { namespace internal {
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif/* end file src/containers/bitset.c */
-/* begin file src/containers/containers.c */
-
-
-#ifdef __cplusplus
-extern "C" {
-// In Windows MSVC C++ compiler, (type){init} does not compile,
-// it causes C4576: a parenthesized type followed by an initializer list is a
-// non-standard explicit type conversion syntax The correct syntax is
type{init}
-#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T roaring_container_iterator_t
-namespace roaring {
-namespace internal {
-#else
-#define ROARING_INIT_ROARING_CONTAINER_ITERATOR_T
(roaring_container_iterator_t)
-#endif
-
-static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) {
- return (a < b) ? a : b;
-}
-
-extern inline const container_t *container_unwrap_shared(
- const container_t *candidate_shared_container, uint8_t *type);
-
-extern inline container_t *container_mutable_unwrap_shared(
- container_t *candidate_shared_container, uint8_t *type);
-
-extern inline int container_get_cardinality(const container_t *c,
- uint8_t typecode);
-
-extern inline container_t *container_iand(container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_ior(container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_ixor(container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_iandnot(container_t *c1, uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type);
-
-void container_free(container_t *c, uint8_t type) {
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- bitset_container_free(CAST_bitset(c));
- break;
- case ARRAY_CONTAINER_TYPE:
- array_container_free(CAST_array(c));
- break;
- case RUN_CONTAINER_TYPE:
- run_container_free(CAST_run(c));
- break;
- case SHARED_CONTAINER_TYPE:
- shared_container_free(CAST_shared(c));
- break;
- default:
- assert(false);
- roaring_unreachable;
- }
-}
-
-void container_printf(const container_t *c, uint8_t type) {
- c = container_unwrap_shared(c, &type);
- switch (type) {
- case BITSET_CONTAINER_TYPE:
- bitset_container_printf(const_CAST_bitset(c));
- return;
- case ARRAY_CONTAINER_TYPE:
- array_container_printf(const_CAST_array(c));
- return;
- case RUN_CONTAINER_TYPE:
- run_container_printf(const_CAST_run(c));
- return;
- default:
- roaring_unreachable;
- }
-}
-
-void container_printf_as_uint32_array(const container_t *c, uint8_t typecode,
- uint32_t base) {
- c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- bitset_container_printf_as_uint32_array(const_CAST_bitset(c),
base);
- return;
- case ARRAY_CONTAINER_TYPE:
- array_container_printf_as_uint32_array(const_CAST_array(c), base);
- return;
- case RUN_CONTAINER_TYPE:
- run_container_printf_as_uint32_array(const_CAST_run(c), base);
- return;
- default:
- roaring_unreachable;
- }
-}
-
-bool container_internal_validate(const container_t *container, uint8_t
typecode,
- const char **reason) {
- if (container == NULL) {
- *reason = "container is NULL";
- return false;
- }
- // Not using container_unwrap_shared because it asserts if shared
containers
- // are nested
- if (typecode == SHARED_CONTAINER_TYPE) {
- const shared_container_t *shared_container =
- const_CAST_shared(container);
- if (croaring_refcount_get(&shared_container->counter) == 0) {
- *reason = "shared container has zero refcount";
- return false;
- }
- if (shared_container->typecode == SHARED_CONTAINER_TYPE) {
- *reason = "shared container is nested";
- return false;
- }
- if (shared_container->container == NULL) {
- *reason = "shared container has NULL container";
- return false;
- }
- container = shared_container->container;
- typecode = shared_container->typecode;
- }
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_validate(const_CAST_bitset(container),
- reason);
- case ARRAY_CONTAINER_TYPE:
- return array_container_validate(const_CAST_array(container),
- reason);
- case RUN_CONTAINER_TYPE:
- return run_container_validate(const_CAST_run(container), reason);
- default:
- *reason = "invalid typecode";
- return false;
- }
-}
-
-extern inline bool container_nonzero_cardinality(const container_t *c,
- uint8_t typecode);
-
-extern inline int container_to_uint32_array(uint32_t *output,
- const container_t *c,
- uint8_t typecode, uint32_t base);
-
-extern inline container_t *container_add(container_t *c, uint16_t val,
- uint8_t typecode, // !!! 2nd arg?
- uint8_t *new_typecode);
-
-extern inline bool container_contains(const container_t *c, uint16_t val,
- uint8_t typecode); // !!! 2nd arg?
-
-extern inline container_t *container_and(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_or(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_xor(const container_t *c1, uint8_t type1,
- const container_t *c2, uint8_t type2,
- uint8_t *result_type);
-
-container_t *get_copy_of_container(container_t *c, uint8_t *typecode,
- bool copy_on_write) {
- if (copy_on_write) {
- shared_container_t *shared_container;
- if (*typecode == SHARED_CONTAINER_TYPE) {
- shared_container = CAST_shared(c);
- croaring_refcount_inc(&shared_container->counter);
- return shared_container;
- }
- assert(*typecode != SHARED_CONTAINER_TYPE);
-
- if ((shared_container = (shared_container_t *)roaring_malloc(
- sizeof(shared_container_t))) == NULL) {
- return NULL;
- }
-
- shared_container->container = c;
- shared_container->typecode = *typecode;
- // At this point, we are creating new shared container
- // so there should be no other references, and setting
- // the counter to 2 - even non-atomically - is safe as
- // long as the value is set before the return statement.
- shared_container->counter = 2;
- *typecode = SHARED_CONTAINER_TYPE;
-
- return shared_container;
- } // copy_on_write
- // otherwise, no copy on write...
- const container_t *actual_container = container_unwrap_shared(c, typecode);
- assert(*typecode != SHARED_CONTAINER_TYPE);
- return container_clone(actual_container, *typecode);
-}
-
-/**
- * Copies a container, requires a typecode. This allocates new memory, caller
- * is responsible for deallocation.
- */
-container_t *container_clone(const container_t *c, uint8_t typecode) {
- // We do not want to allow cloning of shared containers.
- // c = container_unwrap_shared(c, &typecode);
- switch (typecode) {
- case BITSET_CONTAINER_TYPE:
- return bitset_container_clone(const_CAST_bitset(c));
- case ARRAY_CONTAINER_TYPE:
- return array_container_clone(const_CAST_array(c));
- case RUN_CONTAINER_TYPE:
- return run_container_clone(const_CAST_run(c));
- case SHARED_CONTAINER_TYPE:
- // Shared containers are not cloneable. Are you mixing COW and
- // non-COW bitmaps?
- return NULL;
- default:
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-container_t *shared_container_extract_copy(shared_container_t *sc,
- uint8_t *typecode) {
- assert(sc->typecode != SHARED_CONTAINER_TYPE);
- *typecode = sc->typecode;
- container_t *answer;
- if (croaring_refcount_dec(&sc->counter)) {
- answer = sc->container;
- sc->container = NULL; // paranoid
- roaring_free(sc);
- } else {
- answer = container_clone(sc->container, *typecode);
- }
- assert(*typecode != SHARED_CONTAINER_TYPE);
- return answer;
-}
-
-void shared_container_free(shared_container_t *container) {
- if (croaring_refcount_dec(&container->counter)) {
- assert(container->typecode != SHARED_CONTAINER_TYPE);
- container_free(container->container, container->typecode);
- container->container = NULL; // paranoid
- roaring_free(container);
- }
-}
-
-extern inline container_t *container_not(const container_t *c1, uint8_t type1,
- uint8_t *result_type);
-
-extern inline container_t *container_not_range(const container_t *c1,
- uint8_t type1,
- uint32_t range_start,
- uint32_t range_end,
- uint8_t *result_type);
-
-extern inline container_t *container_inot(container_t *c1, uint8_t type1,
- uint8_t *result_type);
-
-extern inline container_t *container_inot_range(container_t *c1, uint8_t type1,
- uint32_t range_start,
- uint32_t range_end,
- uint8_t *result_type);
-
-extern inline container_t *container_range_of_ones(uint32_t range_start,
- uint32_t range_end,
- uint8_t *result_type);
-
-// where are the correponding things for union and intersection??
-extern inline container_t *container_lazy_xor(const container_t *c1,
- uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_lazy_ixor(container_t *c1, uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type);
-
-extern inline container_t *container_andnot(const container_t *c1,
- uint8_t type1,
- const container_t *c2,
- uint8_t type2,
- uint8_t *result_type);
-
-roaring_container_iterator_t container_init_iterator(const container_t *c,
- uint8_t typecode,
- uint16_t *value) {
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc = const_CAST_bitset(c);
- uint32_t wordindex = 0;
- uint64_t word;
- while ((word = bc->words[wordindex]) == 0) {
- wordindex++;
- }
- // word is non-zero
- int32_t index = wordindex * 64 + roaring_trailing_zeroes(word);
- *value = index;
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
- .index = index,
- };
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac = const_CAST_array(c);
- *value = ac->array[0];
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
- .index = 0,
- };
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(c);
- *value = rc->runs[0].value;
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
- .index = 0,
- };
- }
- default:
- assert(false);
- roaring_unreachable;
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0};
- }
-}
-
-roaring_container_iterator_t container_init_iterator_last(const container_t *c,
- uint8_t typecode,
- uint16_t *value) {
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc = const_CAST_bitset(c);
- uint32_t wordindex = BITSET_CONTAINER_SIZE_IN_WORDS - 1;
- uint64_t word;
- while ((word = bc->words[wordindex]) == 0) {
- wordindex--;
- }
- // word is non-zero
- int32_t index =
- wordindex * 64 + (63 - roaring_leading_zeroes(word));
- *value = index;
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
- .index = index,
- };
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac = const_CAST_array(c);
- int32_t index = ac->cardinality - 1;
- *value = ac->array[index];
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
- .index = index,
- };
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(c);
- int32_t run_index = rc->n_runs - 1;
- const rle16_t *last_run = &rc->runs[run_index];
- *value = last_run->value + last_run->length;
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{
- .index = run_index,
- };
- }
- default:
- assert(false);
- roaring_unreachable;
- return ROARING_INIT_ROARING_CONTAINER_ITERATOR_T{0};
- }
-}
-
-bool container_iterator_next(const container_t *c, uint8_t typecode,
- roaring_container_iterator_t *it,
- uint16_t *value) {
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc = const_CAST_bitset(c);
- it->index++;
-
- uint32_t wordindex = it->index / 64;
- if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) {
- return false;
- }
-
- uint64_t word =
- bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
- // next part could be optimized/simplified
- while (word == 0 &&
- (wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) {
- wordindex++;
- word = bc->words[wordindex];
- }
- if (word != 0) {
- it->index = wordindex * 64 + roaring_trailing_zeroes(word);
- *value = it->index;
- return true;
- }
- return false;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac = const_CAST_array(c);
- it->index++;
- if (it->index < ac->cardinality) {
- *value = ac->array[it->index];
- return true;
- }
- return false;
- }
- case RUN_CONTAINER_TYPE: {
- if (*value == UINT16_MAX) { // Avoid overflow to zero
- return false;
- }
-
- const run_container_t *rc = const_CAST_run(c);
- uint32_t limit =
- rc->runs[it->index].value + rc->runs[it->index].length;
- if (*value < limit) {
- (*value)++;
- return true;
- }
-
- it->index++;
- if (it->index < rc->n_runs) {
- *value = rc->runs[it->index].value;
- return true;
- }
- return false;
- }
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-bool container_iterator_prev(const container_t *c, uint8_t typecode,
- roaring_container_iterator_t *it,
- uint16_t *value) {
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- if (--it->index < 0) {
- return false;
- }
-
- const bitset_container_t *bc = const_CAST_bitset(c);
- int32_t wordindex = it->index / 64;
- uint64_t word =
- bc->words[wordindex] & (UINT64_MAX >> (63 - (it->index % 64)));
-
- while (word == 0 && --wordindex >= 0) {
- word = bc->words[wordindex];
- }
- if (word == 0) {
- return false;
- }
-
- it->index = (wordindex * 64) + (63 - roaring_leading_zeroes(word));
- *value = it->index;
- return true;
- }
- case ARRAY_CONTAINER_TYPE: {
- if (--it->index < 0) {
- return false;
- }
- const array_container_t *ac = const_CAST_array(c);
- *value = ac->array[it->index];
- return true;
- }
- case RUN_CONTAINER_TYPE: {
- if (*value == 0) {
- return false;
- }
-
- const run_container_t *rc = const_CAST_run(c);
- (*value)--;
- if (*value >= rc->runs[it->index].value) {
- return true;
- }
-
- if (--it->index < 0) {
- return false;
- }
-
- *value = rc->runs[it->index].value + rc->runs[it->index].length;
- return true;
- }
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-bool container_iterator_lower_bound(const container_t *c, uint8_t typecode,
- roaring_container_iterator_t *it,
- uint16_t *value_out, uint16_t val) {
- if (val > container_maximum(c, typecode)) {
- return false;
- }
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc = const_CAST_bitset(c);
- it->index = bitset_container_index_equalorlarger(bc, val);
- *value_out = it->index;
- return true;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac = const_CAST_array(c);
- it->index = array_container_index_equalorlarger(ac, val);
- *value_out = ac->array[it->index];
- return true;
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(c);
- it->index = run_container_index_equalorlarger(rc, val);
- if (rc->runs[it->index].value <= val) {
- *value_out = val;
- } else {
- *value_out = rc->runs[it->index].value;
- }
- return true;
- }
- default:
- assert(false);
- roaring_unreachable;
- return false;
- }
-}
-
-bool container_iterator_read_into_uint32(const container_t *c, uint8_t
typecode,
- roaring_container_iterator_t *it,
- uint32_t high16, uint32_t *buf,
- uint32_t count, uint32_t *consumed,
- uint16_t *value_out) {
- *consumed = 0;
- if (count == 0) {
- return false;
- }
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc = const_CAST_bitset(c);
- uint32_t wordindex = it->index / 64;
- uint64_t word =
- bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
- do {
- // Read set bits.
- while (word != 0 && *consumed < count) {
- *buf = high16 |
- (wordindex * 64 + roaring_trailing_zeroes(word));
- word = word & (word - 1);
- buf++;
- (*consumed)++;
- }
- // Skip unset bits.
- while (word == 0 &&
- wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
- wordindex++;
- word = bc->words[wordindex];
- }
- } while (word != 0 && *consumed < count);
-
- if (word != 0) {
- it->index = wordindex * 64 + roaring_trailing_zeroes(word);
- *value_out = it->index;
- return true;
- }
- return false;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac = const_CAST_array(c);
- uint32_t num_values =
- minimum_uint32(ac->cardinality - it->index, count);
- for (uint32_t i = 0; i < num_values; i++) {
- buf[i] = high16 | ac->array[it->index + i];
- }
- *consumed += num_values;
- it->index += num_values;
- if (it->index < ac->cardinality) {
- *value_out = ac->array[it->index];
- return true;
- }
- return false;
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(c);
- do {
- uint32_t largest_run_value =
- rc->runs[it->index].value + rc->runs[it->index].length;
- uint32_t num_values = minimum_uint32(
- largest_run_value - *value_out + 1, count - *consumed);
- for (uint32_t i = 0; i < num_values; i++) {
- buf[i] = high16 | (*value_out + i);
- }
- *value_out += num_values;
- buf += num_values;
- *consumed += num_values;
-
- // We check for `value == 0` because `it->value += num_values`
- // can overflow when `value == UINT16_MAX`, and `count >
- // length`. In this case `value` will overflow to 0.
- if (*value_out > largest_run_value || *value_out == 0) {
- it->index++;
- if (it->index < rc->n_runs) {
- *value_out = rc->runs[it->index].value;
- } else {
- return false;
- }
- }
- } while (*consumed < count);
- return true;
- }
- default:
- assert(false);
- roaring_unreachable;
- return 0;
- }
-}
-
-bool container_iterator_read_into_uint64(const container_t *c, uint8_t
typecode,
- roaring_container_iterator_t *it,
- uint64_t high48, uint64_t *buf,
- uint32_t count, uint32_t *consumed,
- uint16_t *value_out) {
- *consumed = 0;
- if (count == 0) {
- return false;
- }
- switch (typecode) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc = const_CAST_bitset(c);
- uint32_t wordindex = it->index / 64;
- uint64_t word =
- bc->words[wordindex] & (UINT64_MAX << (it->index % 64));
- do {
- // Read set bits.
- while (word != 0 && *consumed < count) {
- *buf = high48 |
- (wordindex * 64 + roaring_trailing_zeroes(word));
- word = word & (word - 1);
- buf++;
- (*consumed)++;
- }
- // Skip unset bits.
- while (word == 0 &&
- wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
- wordindex++;
- word = bc->words[wordindex];
- }
- } while (word != 0 && *consumed < count);
-
- if (word != 0) {
- it->index = wordindex * 64 + roaring_trailing_zeroes(word);
- *value_out = it->index;
- return true;
- }
- return false;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac = const_CAST_array(c);
- uint32_t num_values =
- minimum_uint32(ac->cardinality - it->index, count);
- for (uint32_t i = 0; i < num_values; i++) {
- buf[i] = high48 | ac->array[it->index + i];
- }
- *consumed += num_values;
- it->index += num_values;
- if (it->index < ac->cardinality) {
- *value_out = ac->array[it->index];
- return true;
- }
- return false;
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(c);
- do {
- uint32_t largest_run_value =
- rc->runs[it->index].value + rc->runs[it->index].length;
- uint32_t num_values = minimum_uint32(
- largest_run_value - *value_out + 1, count - *consumed);
- for (uint32_t i = 0; i < num_values; i++) {
- buf[i] = high48 | (*value_out + i);
- }
- *value_out += num_values;
- buf += num_values;
- *consumed += num_values;
-
- // We check for `value == 0` because `it->value += num_values`
- // can overflow when `value == UINT16_MAX`, and `count >
- // length`. In this case `value` will overflow to 0.
- if (*value_out > largest_run_value || *value_out == 0) {
- it->index++;
- if (it->index < rc->n_runs) {
- *value_out = rc->runs[it->index].value;
- } else {
- return false;
- }
- }
- } while (*consumed < count);
- return true;
- }
- default:
- assert(false);
- roaring_unreachable;
- return 0;
- }
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-
-#undef ROARING_INIT_ROARING_CONTAINER_ITERATOR_T
-/* end file src/containers/containers.c */
-/* begin file src/containers/convert.c */
-#include <stdio.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-// file contains grubby stuff that must know impl. details of all container
-// types.
-bitset_container_t *bitset_container_from_array(const array_container_t *ac) {
- bitset_container_t *ans = bitset_container_create();
- int limit = array_container_cardinality(ac);
- for (int i = 0; i < limit; ++i) bitset_container_set(ans, ac->array[i]);
- return ans;
-}
-
-bitset_container_t *bitset_container_from_run(const run_container_t *arr) {
- int card = run_container_cardinality(arr);
- bitset_container_t *answer = bitset_container_create();
- for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
- rle16_t vl = arr->runs[rlepos];
- bitset_set_lenrange(answer->words, vl.value, vl.length);
- }
- answer->cardinality = card;
- return answer;
-}
-
-array_container_t *array_container_from_run(const run_container_t *arr) {
- array_container_t *answer =
- array_container_create_given_capacity(run_container_cardinality(arr));
- answer->cardinality = 0;
- for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
- int run_start = arr->runs[rlepos].value;
- int run_end = run_start + arr->runs[rlepos].length;
-
- for (int run_value = run_start; run_value <= run_end; ++run_value) {
- answer->array[answer->cardinality++] = (uint16_t)run_value;
- }
- }
- return answer;
-}
-
-array_container_t *array_container_from_bitset(const bitset_container_t *bits)
{
- array_container_t *result =
- array_container_create_given_capacity(bits->cardinality);
- result->cardinality = bits->cardinality;
-#if CROARING_IS_X64
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
- bitset_extract_setbits_avx512_uint16(
- bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array,
- bits->cardinality, 0);
- } else
-#endif
- {
- // sse version ends up being slower here
- // (bitset_extract_setbits_sse_uint16)
- // because of the sparsity of the data
- bitset_extract_setbits_uint16(
- bits->words, BITSET_CONTAINER_SIZE_IN_WORDS, result->array, 0);
- }
-#else
- // If the system is not x64, then we have no accelerated function.
- bitset_extract_setbits_uint16(bits->words, BITSET_CONTAINER_SIZE_IN_WORDS,
- result->array, 0);
-#endif
-
- return result;
-}
-
-/* assumes that container has adequate space. Run from [s,e] (inclusive) */
-static void add_run(run_container_t *rc, int s, int e) {
- rc->runs[rc->n_runs].value = s;
- rc->runs[rc->n_runs].length = e - s;
- rc->n_runs++;
-}
-
-run_container_t *run_container_from_array(const array_container_t *c) {
- int32_t n_runs = array_container_number_of_runs(c);
- run_container_t *answer = run_container_create_given_capacity(n_runs);
- int prev = -2;
- int run_start = -1;
- int32_t card = c->cardinality;
- if (card == 0) return answer;
- for (int i = 0; i < card; ++i) {
- const uint16_t cur_val = c->array[i];
- if (cur_val != prev + 1) {
- // new run starts; flush old one, if any
- if (run_start != -1) add_run(answer, run_start, prev);
- run_start = cur_val;
- }
- prev = c->array[i];
- }
- // now prev is the last seen value
- add_run(answer, run_start, prev);
- // assert(run_container_cardinality(answer) == c->cardinality);
- return answer;
-}
-
-/**
- * Convert the runcontainer to either a Bitmap or an Array Container, depending
- * on the cardinality. Frees the container.
- * Allocates and returns new container, which caller is responsible for
freeing.
- * It does not free the run container.
- */
-container_t *convert_to_bitset_or_array_container(run_container_t *rc,
- int32_t card,
- uint8_t *resulttype) {
- if (card <= DEFAULT_MAX_SIZE) {
- array_container_t *answer =
array_container_create_given_capacity(card);
- answer->cardinality = 0;
- for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) {
- uint16_t run_start = rc->runs[rlepos].value;
- uint16_t run_end = run_start + rc->runs[rlepos].length;
- for (uint16_t run_value = run_start; run_value < run_end;
- ++run_value) {
- answer->array[answer->cardinality++] = run_value;
- }
- answer->array[answer->cardinality++] = run_end;
- }
- assert(card == answer->cardinality);
- *resulttype = ARRAY_CONTAINER_TYPE;
- // run_container_free(r);
- return answer;
- }
- bitset_container_t *answer = bitset_container_create();
- for (int rlepos = 0; rlepos < rc->n_runs; ++rlepos) {
- uint16_t run_start = rc->runs[rlepos].value;
- bitset_set_lenrange(answer->words, run_start, rc->runs[rlepos].length);
- }
- answer->cardinality = card;
- *resulttype = BITSET_CONTAINER_TYPE;
- // run_container_free(r);
- return answer;
-}
-
-/* Converts a run container to either an array or a bitset, IF it saves space.
- */
-/* If a conversion occurs, the caller is responsible to free the original
- * container and
- * he becomes responsible to free the new one. */
-container_t *convert_run_to_efficient_container(run_container_t *c,
- uint8_t *typecode_after) {
- int32_t size_as_run_container =
- run_container_serialized_size_in_bytes(c->n_runs);
-
- int32_t size_as_bitset_container =
- bitset_container_serialized_size_in_bytes();
- int32_t card = run_container_cardinality(c);
- int32_t size_as_array_container =
- array_container_serialized_size_in_bytes(card);
-
- int32_t min_size_non_run =
- size_as_bitset_container < size_as_array_container
- ? size_as_bitset_container
- : size_as_array_container;
- if (size_as_run_container <= min_size_non_run) { // no conversion
- *typecode_after = RUN_CONTAINER_TYPE;
- return c;
- }
- if (card <= DEFAULT_MAX_SIZE) {
- // to array
- array_container_t *answer =
array_container_create_given_capacity(card);
- answer->cardinality = 0;
- for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
- int run_start = c->runs[rlepos].value;
- int run_end = run_start + c->runs[rlepos].length;
-
- for (int run_value = run_start; run_value <= run_end; ++run_value)
{
- answer->array[answer->cardinality++] = (uint16_t)run_value;
- }
- }
- *typecode_after = ARRAY_CONTAINER_TYPE;
- return answer;
- }
-
- // else to bitset
- bitset_container_t *answer = bitset_container_create();
-
- for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
- int start = c->runs[rlepos].value;
- int end = start + c->runs[rlepos].length;
- bitset_set_range(answer->words, start, end + 1);
- }
- answer->cardinality = card;
- *typecode_after = BITSET_CONTAINER_TYPE;
- return answer;
-}
-
-// like convert_run_to_efficient_container but frees the old result if needed
-container_t *convert_run_to_efficient_container_and_free(
- run_container_t *c, uint8_t *typecode_after) {
- container_t *answer = convert_run_to_efficient_container(c,
typecode_after);
- if (answer != c) run_container_free(c);
- return answer;
-}
-
-/* once converted, the original container is disposed here, rather than
- in roaring_array
-*/
-
-// TODO: split into run- array- and bitset- subfunctions for sanity;
-// a few function calls won't really matter.
-
-container_t *convert_run_optimize(container_t *c, uint8_t typecode_original,
- uint8_t *typecode_after) {
- if (typecode_original == RUN_CONTAINER_TYPE) {
- container_t *newc =
- convert_run_to_efficient_container(CAST_run(c), typecode_after);
- if (newc != c) {
- container_free(c, typecode_original);
- }
- return newc;
- } else if (typecode_original == ARRAY_CONTAINER_TYPE) {
- // it might need to be converted to a run container.
- array_container_t *c_qua_array = CAST_array(c);
- int32_t n_runs = array_container_number_of_runs(c_qua_array);
- int32_t size_as_run_container =
- run_container_serialized_size_in_bytes(n_runs);
- int32_t card = array_container_cardinality(c_qua_array);
- int32_t size_as_array_container =
- array_container_serialized_size_in_bytes(card);
-
- if (size_as_run_container >= size_as_array_container) {
- *typecode_after = ARRAY_CONTAINER_TYPE;
- return c;
- }
- // else convert array to run container
- run_container_t *answer = run_container_create_given_capacity(n_runs);
- int prev = -2;
- int run_start = -1;
-
- assert(card > 0);
- for (int i = 0; i < card; ++i) {
- uint16_t cur_val = c_qua_array->array[i];
- if (cur_val != prev + 1) {
- // new run starts; flush old one, if any
- if (run_start != -1) add_run(answer, run_start, prev);
- run_start = cur_val;
- }
- prev = c_qua_array->array[i];
- }
- assert(run_start >= 0);
- // now prev is the last seen value
- add_run(answer, run_start, prev);
- *typecode_after = RUN_CONTAINER_TYPE;
- array_container_free(c_qua_array);
- return answer;
- } else if (typecode_original ==
- BITSET_CONTAINER_TYPE) { // run conversions on bitset
- // does bitset need conversion to run?
- bitset_container_t *c_qua_bitset = CAST_bitset(c);
- int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset);
- int32_t size_as_run_container =
- run_container_serialized_size_in_bytes(n_runs);
- int32_t size_as_bitset_container =
- bitset_container_serialized_size_in_bytes();
-
- if (size_as_bitset_container <= size_as_run_container) {
- // no conversion needed.
- *typecode_after = BITSET_CONTAINER_TYPE;
- return c;
- }
- // bitset to runcontainer (ported from Java RunContainer(
- // BitmapContainer bc, int nbrRuns))
- assert(n_runs > 0); // no empty bitmaps
- run_container_t *answer = run_container_create_given_capacity(n_runs);
-
- int long_ctr = 0;
- uint64_t cur_word = c_qua_bitset->words[0];
- while (true) {
- while (cur_word == UINT64_C(0) &&
- long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
- cur_word = c_qua_bitset->words[++long_ctr];
-
- if (cur_word == UINT64_C(0)) {
- bitset_container_free(c_qua_bitset);
- *typecode_after = RUN_CONTAINER_TYPE;
- return answer;
- }
-
- int local_run_start = roaring_trailing_zeroes(cur_word);
- int run_start = local_run_start + 64 * long_ctr;
- uint64_t cur_word_with_1s = cur_word | (cur_word - 1);
-
- int run_end = 0;
- while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) &&
- long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
- cur_word_with_1s = c_qua_bitset->words[++long_ctr];
-
- if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) {
- run_end = 64 + long_ctr * 64; // exclusive, I guess
- add_run(answer, run_start, run_end - 1);
- bitset_container_free(c_qua_bitset);
- *typecode_after = RUN_CONTAINER_TYPE;
- return answer;
- }
- int local_run_end = roaring_trailing_zeroes(~cur_word_with_1s);
- run_end = local_run_end + long_ctr * 64;
- add_run(answer, run_start, run_end - 1);
- cur_word = cur_word_with_1s & (cur_word_with_1s + 1);
- }
- return answer;
- } else {
- assert(false);
- roaring_unreachable;
- return NULL;
- }
-}
-
-container_t *container_from_run_range(const run_container_t *run, uint32_t min,
- uint32_t max, uint8_t *typecode_after) {
- // We expect most of the time to end up with a bitset container
- bitset_container_t *bitset = bitset_container_create();
- *typecode_after = BITSET_CONTAINER_TYPE;
- int32_t union_cardinality = 0;
- for (int32_t i = 0; i < run->n_runs; ++i) {
- uint32_t rle_min = run->runs[i].value;
- uint32_t rle_max = rle_min + run->runs[i].length;
- bitset_set_lenrange(bitset->words, rle_min, rle_max - rle_min);
- union_cardinality += run->runs[i].length + 1;
- }
- union_cardinality += max - min + 1;
- union_cardinality -=
- bitset_lenrange_cardinality(bitset->words, min, max - min);
- bitset_set_lenrange(bitset->words, min, max - min);
- bitset->cardinality = union_cardinality;
- if (bitset->cardinality <= DEFAULT_MAX_SIZE) {
- // we need to convert to an array container
- array_container_t *array = array_container_from_bitset(bitset);
- *typecode_after = ARRAY_CONTAINER_TYPE;
- bitset_container_free(bitset);
- return array;
- }
- return bitset;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/convert.c */
-/* begin file src/containers/mixed_andnot.c */
-/*
- * mixed_andnot.c. More methods since operation is not symmetric,
- * except no "wide" andnot , so no lazy options motivated.
- */
-
-#include <assert.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst, a valid array container that could be the same as dst.*/
-void array_bitset_container_andnot(const array_container_t *src_1,
- const bitset_container_t *src_2,
- array_container_t *dst) {
- // follows Java implementation as of June 2016
- if (dst->capacity < src_1->cardinality) {
- array_container_grow(dst, src_1->cardinality, false);
- }
- int32_t newcard = 0;
- const int32_t origcard = src_1->cardinality;
- for (int i = 0; i < origcard; ++i) {
- uint16_t key = src_1->array[i];
- dst->array[newcard] = key;
- newcard += 1 - bitset_container_contains(src_2, key);
- }
- dst->cardinality = newcard;
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * src_1 */
-
-void array_bitset_container_iandnot(array_container_t *src_1,
- const bitset_container_t *src_2) {
- array_bitset_container_andnot(src_1, src_2, src_1);
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst, which does not initially have a valid container.
- * Return true for a bitset result; false for array
- */
-
-bool bitset_array_container_andnot(const bitset_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- // Java did this directly, but we have option of asm or avx
- bitset_container_t *result = bitset_container_create();
- bitset_container_copy(src_1, result);
- result->cardinality =
- (int32_t)bitset_clear_list(result->words,
(uint64_t)result->cardinality,
- src_2->array, (uint64_t)src_2->cardinality);
-
- // do required type conversions.
- if (result->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(result);
- bitset_container_free(result);
- return false;
- }
- *dst = result;
- return true;
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_array_container_iandnot(bitset_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- *dst = src_1;
- src_1->cardinality =
- (int32_t)bitset_clear_list(src_1->words, (uint64_t)src_1->cardinality,
- src_2->array, (uint64_t)src_2->cardinality);
-
- if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(src_1);
- bitset_container_free(src_1);
- return false; // not bitset
- } else
- return true;
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_andnot(const run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- // follows the Java implementation as of June 2016
- int card = run_container_cardinality(src_1);
- if (card <= DEFAULT_MAX_SIZE) {
- // must be an array
- array_container_t *answer =
array_container_create_given_capacity(card);
- answer->cardinality = 0;
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- for (int run_value = rle.value; run_value <= rle.value +
rle.length;
- ++run_value) {
- if (!bitset_container_get(src_2, (uint16_t)run_value)) {
- answer->array[answer->cardinality++] = (uint16_t)run_value;
- }
- }
- }
- *dst = answer;
- return false;
- } else { // we guess it will be a bitset, though have to check guess when
- // done
- bitset_container_t *answer = bitset_container_clone(src_2);
-
- uint32_t last_pos = 0;
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
-
- uint32_t start = rle.value;
- uint32_t end = start + rle.length + 1;
- bitset_reset_range(answer->words, last_pos, start);
- bitset_flip_range(answer->words, start, end);
- last_pos = end;
- }
- bitset_reset_range(answer->words, last_pos, (uint32_t)(1 << 16));
-
- answer->cardinality = bitset_container_compute_cardinality(answer);
-
- if (answer->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(answer);
- bitset_container_free(answer);
- return false; // not bitset
- }
- *dst = answer;
- return true; // bitset
- }
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_iandnot(run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- // dummy implementation
- bool ans = run_bitset_container_andnot(src_1, src_2, dst);
- run_container_free(src_1);
- return ans;
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool bitset_run_container_andnot(const bitset_container_t *src_1,
- const run_container_t *src_2,
- container_t **dst) {
- // follows Java implementation
- bitset_container_t *result = bitset_container_create();
-
- bitset_container_copy(src_1, result);
- for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
- rle16_t rle = src_2->runs[rlepos];
- bitset_reset_range(result->words, rle.value,
- rle.value + rle.length + UINT32_C(1));
- }
- result->cardinality = bitset_container_compute_cardinality(result);
-
- if (result->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(result);
- bitset_container_free(result);
- return false; // not bitset
- }
- *dst = result;
- return true; // bitset
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_run_container_iandnot(bitset_container_t *src_1,
- const run_container_t *src_2,
- container_t **dst) {
- *dst = src_1;
-
- for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
- rle16_t rle = src_2->runs[rlepos];
- bitset_reset_range(src_1->words, rle.value,
- rle.value + rle.length + UINT32_C(1));
- }
- src_1->cardinality = bitset_container_compute_cardinality(src_1);
-
- if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(src_1);
- bitset_container_free(src_1);
- return false; // not bitset
- } else
- return true;
-}
-
-/* helper. a_out must be a valid array container with adequate capacity.
- * Returns the cardinality of the output container. Partly Based on Java
- * implementation Util.unsignedDifference.
- *
- * TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper
- * to avoid advanceUntil?
- */
-
-static int run_array_array_subtract(const run_container_t *rc,
- const array_container_t *a_in,
- array_container_t *a_out) {
- int out_card = 0;
- int32_t in_array_pos =
- -1; // since advanceUntil always assumes we start the search AFTER
this
-
- for (int rlepos = 0; rlepos < rc->n_runs; rlepos++) {
- int32_t start = rc->runs[rlepos].value;
- int32_t end = start + rc->runs[rlepos].length + 1;
-
- in_array_pos = advanceUntil(a_in->array, in_array_pos,
- a_in->cardinality, (uint16_t)start);
-
- if (in_array_pos >= a_in->cardinality) { // run has no items
subtracted
- for (int32_t i = start; i < end; ++i)
- a_out->array[out_card++] = (uint16_t)i;
- } else {
- uint16_t next_nonincluded = a_in->array[in_array_pos];
- if (next_nonincluded >= end) {
- // another case when run goes unaltered
- for (int32_t i = start; i < end; ++i)
- a_out->array[out_card++] = (uint16_t)i;
- in_array_pos--; // ensure we see this item again if necessary
- } else {
- for (int32_t i = start; i < end; ++i)
- if (i != next_nonincluded)
- a_out->array[out_card++] = (uint16_t)i;
- else // 0 should ensure we don't match
- next_nonincluded =
- (in_array_pos + 1 >= a_in->cardinality)
- ? 0
- : a_in->array[++in_array_pos];
- in_array_pos--; // see again
- }
- }
- }
- return out_card;
-}
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any type of container.
- */
-
-int run_array_container_andnot(const run_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- // follows the Java impl as of June 2016
-
- int card = run_container_cardinality(src_1);
- const int arbitrary_threshold = 32;
-
- if (card <= arbitrary_threshold) {
- if (src_2->cardinality == 0) {
- *dst = run_container_clone(src_1);
- return RUN_CONTAINER_TYPE;
- }
- // Java's "lazyandNot.toEfficientContainer" thing
- run_container_t *answer = run_container_create_given_capacity(
- card + array_container_cardinality(src_2));
-
- int rlepos = 0;
- int xrlepos = 0; // "x" is src_2
- rle16_t rle = src_1->runs[rlepos];
- int32_t start = rle.value;
- int32_t end = start + rle.length + 1;
- int32_t xstart = src_2->array[xrlepos];
-
- while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) {
- if (end <= xstart) {
- // output the first run
- answer->runs[answer->n_runs++] =
- CROARING_MAKE_RLE16(start, end - start - 1);
- rlepos++;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- } else if (xstart + 1 <= start) {
- // exit the second run
- xrlepos++;
- if (xrlepos < src_2->cardinality) {
- xstart = src_2->array[xrlepos];
- }
- } else {
- if (start < xstart) {
- answer->runs[answer->n_runs++] =
- CROARING_MAKE_RLE16(start, xstart - start - 1);
- }
- if (xstart + 1 < end) {
- start = xstart + 1;
- } else {
- rlepos++;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- }
- }
- }
- if (rlepos < src_1->n_runs) {
- answer->runs[answer->n_runs++] =
- CROARING_MAKE_RLE16(start, end - start - 1);
- rlepos++;
- if (rlepos < src_1->n_runs) {
- memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos,
- (src_1->n_runs - rlepos) * sizeof(rle16_t));
- answer->n_runs += (src_1->n_runs - rlepos);
- }
- }
- uint8_t return_type;
- *dst = convert_run_to_efficient_container(answer, &return_type);
- if (answer != *dst) run_container_free(answer);
- return return_type;
- }
- // else it's a bitmap or array
-
- if (card <= DEFAULT_MAX_SIZE) {
- array_container_t *ac = array_container_create_given_capacity(card);
- // nb Java code used a generic iterator-based merge to compute
- // difference
- ac->cardinality = run_array_array_subtract(src_1, src_2, ac);
- *dst = ac;
- return ARRAY_CONTAINER_TYPE;
- }
- bitset_container_t *ans = bitset_container_from_run(src_1);
- bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst);
- return (result_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE);
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-int run_array_container_iandnot(run_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- // dummy implementation same as June 2016 Java
- int ans = run_array_container_andnot(src_1, src_2, dst);
- run_container_free(src_1);
- return ans;
-}
-
-/* dst must be a valid array container, allowed to be src_1 */
-
-void array_run_container_andnot(const array_container_t *src_1,
- const run_container_t *src_2,
- array_container_t *dst) {
- // basically following Java impl as of June 2016
- if (src_1->cardinality > dst->capacity) {
- array_container_grow(dst, src_1->cardinality, false);
- }
-
- if (src_2->n_runs == 0) {
- memmove(dst->array, src_1->array,
- sizeof(uint16_t) * src_1->cardinality);
- dst->cardinality = src_1->cardinality;
- return;
- }
- int32_t run_start = src_2->runs[0].value;
- int32_t run_end = run_start + src_2->runs[0].length;
- int which_run = 0;
-
- uint16_t val = 0;
- int dest_card = 0;
- for (int i = 0; i < src_1->cardinality; ++i) {
- val = src_1->array[i];
- if (val < run_start)
- dst->array[dest_card++] = val;
- else if (val <= run_end) {
- ; // omitted item
- } else {
- do {
- if (which_run + 1 < src_2->n_runs) {
- ++which_run;
- run_start = src_2->runs[which_run].value;
- run_end = run_start + src_2->runs[which_run].length;
-
- } else
- run_start = run_end = (1 << 16) + 1;
- } while (val > run_end);
- --i;
- }
- }
- dst->cardinality = dest_card;
-}
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-void array_run_container_iandnot(array_container_t *src_1,
- const run_container_t *src_2) {
- array_run_container_andnot(src_1, src_2, src_1);
-}
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int run_run_container_andnot(const run_container_t *src_1,
- const run_container_t *src_2, container_t **dst) {
- run_container_t *ans = run_container_create();
- run_container_andnot(src_1, src_2, ans);
- uint8_t typecode_after;
- *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
- return typecode_after;
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-int run_run_container_iandnot(run_container_t *src_1,
- const run_container_t *src_2, container_t **dst)
{
- // following Java impl as of June 2016 (dummy)
- int ans = run_run_container_andnot(src_1, src_2, dst);
- run_container_free(src_1);
- return ans;
-}
-
-/*
- * dst is a valid array container and may be the same as src_1
- */
-
-void array_array_container_andnot(const array_container_t *src_1,
- const array_container_t *src_2,
- array_container_t *dst) {
- array_container_andnot(src_1, src_2, dst);
-}
-
-/* inplace array-array andnot will always be able to reuse the space of
- * src_1 */
-void array_array_container_iandnot(array_container_t *src_1,
- const array_container_t *src_2) {
- array_container_andnot(src_1, src_2, src_1);
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). Return value is
- * "dst is a bitset"
- */
-
-bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- bitset_container_t *ans = bitset_container_create();
- int card = bitset_container_andnot(src_1, src_2, ans);
- if (card <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(ans);
- bitset_container_free(ans);
- return false; // not bitset
- } else {
- *dst = ans;
- return true;
- }
-}
-
-/* Compute the andnot of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- int card = bitset_container_andnot(src_1, src_2, src_1);
- if (card <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(src_1);
- bitset_container_free(src_1);
- return false; // not bitset
- } else {
- *dst = src_1;
- return true;
- }
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_andnot.c */
-/* begin file src/containers/mixed_equal.c */
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-bool array_container_equal_bitset(const array_container_t* container1,
- const bitset_container_t* container2) {
- if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
- if (container2->cardinality != container1->cardinality) {
- return false;
- }
- }
- int32_t pos = 0;
- for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
- uint64_t w = container2->words[i];
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- uint16_t r = i * 64 + roaring_trailing_zeroes(w);
- if (pos >= container1->cardinality) {
- return false;
- }
- if (container1->array[pos] != r) {
- return false;
- }
- ++pos;
- w ^= t;
- }
- }
- return (pos == container1->cardinality);
-}
-
-bool run_container_equals_array(const run_container_t* container1,
- const array_container_t* container2) {
- if (run_container_cardinality(container1) != container2->cardinality)
- return false;
- int32_t pos = 0;
- for (int i = 0; i < container1->n_runs; ++i) {
- const uint32_t run_start = container1->runs[i].value;
- const uint32_t le = container1->runs[i].length;
-
- if (container2->array[pos] != run_start) {
- return false;
- }
-
- if (container2->array[pos + le] != run_start + le) {
- return false;
- }
-
- pos += le + 1;
- }
- return true;
-}
-
-bool run_container_equals_bitset(const run_container_t* container1,
- const bitset_container_t* container2) {
- int run_card = run_container_cardinality(container1);
- int bitset_card = (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)
- ? container2->cardinality
- : bitset_container_compute_cardinality(container2);
- if (bitset_card != run_card) {
- return false;
- }
-
- for (int32_t i = 0; i < container1->n_runs; i++) {
- uint32_t begin = container1->runs[i].value;
- if (container1->runs[i].length) {
- uint32_t end = begin + container1->runs[i].length + 1;
- if (!bitset_container_contains_range(container2, begin, end)) {
- return false;
- }
- } else {
- if (!bitset_container_contains(container2, begin)) {
- return false;
- }
- }
- }
-
- return true;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_equal.c */
-/* begin file src/containers/mixed_intersection.c */
-/*
- * mixed_intersection.c
- *
- */
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the intersection of src_1 and src_2 and write the result to
- * dst. */
-void array_bitset_container_intersection(const array_container_t *src_1,
- const bitset_container_t *src_2,
- array_container_t *dst) {
- if (dst->capacity < src_1->cardinality) {
- array_container_grow(dst, src_1->cardinality, false);
- }
- int32_t newcard = 0; // dst could be src_1
- const int32_t origcard = src_1->cardinality;
- for (int i = 0; i < origcard; ++i) {
- uint16_t key = src_1->array[i];
- // this branchless approach is much faster...
- dst->array[newcard] = key;
- newcard += bitset_container_contains(src_2, key);
- /**
- * we could do it this way instead...
- * if (bitset_container_contains(src_2, key)) {
- * dst->array[newcard++] = key;
- * }
- * but if the result is unpredictible, the processor generates
- * many mispredicted branches.
- * Difference can be huge (from 3 cycles when predictible all the way
- * to 16 cycles when unpredictible.
- * See
- *
https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c
- */
- }
- dst->cardinality = newcard;
-}
-
-/* Compute the size of the intersection of src_1 and src_2. */
-int array_bitset_container_intersection_cardinality(
- const array_container_t *src_1, const bitset_container_t *src_2) {
- int32_t newcard = 0;
- const int32_t origcard = src_1->cardinality;
- for (int i = 0; i < origcard; ++i) {
- uint16_t key = src_1->array[i];
- newcard += bitset_container_contains(src_2, key);
- }
- return newcard;
-}
-
-bool array_bitset_container_intersect(const array_container_t *src_1,
- const bitset_container_t *src_2) {
- const int32_t origcard = src_1->cardinality;
- for (int i = 0; i < origcard; ++i) {
- uint16_t key = src_1->array[i];
- if (bitset_container_contains(src_2, key)) return true;
- }
- return false;
-}
-
-/* Compute the intersection of src_1 and src_2 and write the result to
- * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
- * valid container. */
-void array_run_container_intersection(const array_container_t *src_1,
- const run_container_t *src_2,
- array_container_t *dst) {
- if (run_container_is_full(src_2)) {
- if (dst != src_1) array_container_copy(src_1, dst);
- return;
- }
- if (dst->capacity < src_1->cardinality) {
- array_container_grow(dst, src_1->cardinality, false);
- }
- if (src_2->n_runs == 0) {
- return;
- }
- int32_t rlepos = 0;
- int32_t arraypos = 0;
- rle16_t rle = src_2->runs[rlepos];
- int32_t newcard = 0;
- while (arraypos < src_1->cardinality) {
- const uint16_t arrayval = src_1->array[arraypos];
- while (rle.value + rle.length <
- arrayval) { // this will frequently be false
- ++rlepos;
- if (rlepos == src_2->n_runs) {
- dst->cardinality = newcard;
- return; // we are done
- }
- rle = src_2->runs[rlepos];
- }
- if (rle.value > arrayval) {
- arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
- rle.value);
- } else {
- dst->array[newcard] = arrayval;
- newcard++;
- arraypos++;
- }
- }
- dst->cardinality = newcard;
-}
-
-/* Compute the intersection of src_1 and src_2 and write the result to
- * *dst. If the result is true then the result is a bitset_container_t
- * otherwise is a array_container_t. If *dst == src_2, an in-place processing
- * is attempted.*/
-bool run_bitset_container_intersection(const run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- if (run_container_is_full(src_1)) {
- if (*dst != src_2) *dst = bitset_container_clone(src_2);
- return true;
- }
- int32_t card = run_container_cardinality(src_1);
- if (card <= DEFAULT_MAX_SIZE) {
- // result can only be an array (assuming that we never make a
- // RunContainer)
- if (card > src_2->cardinality) {
- card = src_2->cardinality;
- }
- array_container_t *answer =
array_container_create_given_capacity(card);
- *dst = answer;
- if (*dst == NULL) {
- return false;
- }
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- uint32_t endofrun = (uint32_t)rle.value + rle.length;
- for (uint32_t runValue = rle.value; runValue <= endofrun;
- ++runValue) {
- answer->array[answer->cardinality] = (uint16_t)runValue;
- answer->cardinality +=
- bitset_container_contains(src_2, runValue);
- }
- }
- return false;
- }
- if (*dst == src_2) { // we attempt in-place
- bitset_container_t *answer = CAST_bitset(*dst);
- uint32_t start = 0;
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- const rle16_t rle = src_1->runs[rlepos];
- uint32_t end = rle.value;
- bitset_reset_range(src_2->words, start, end);
-
- start = end + rle.length + 1;
- }
- bitset_reset_range(src_2->words, start, UINT32_C(1) << 16);
- answer->cardinality = bitset_container_compute_cardinality(answer);
- if (src_2->cardinality > DEFAULT_MAX_SIZE) {
- return true;
- } else {
- array_container_t *newanswer = array_container_from_bitset(src_2);
- if (newanswer == NULL) {
- *dst = NULL;
- return false;
- }
- *dst = newanswer;
- return false;
- }
- } else { // no inplace
- // we expect the answer to be a bitmap (if we are lucky)
- bitset_container_t *answer = bitset_container_clone(src_2);
-
- *dst = answer;
- if (answer == NULL) {
- return true;
- }
- uint32_t start = 0;
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- const rle16_t rle = src_1->runs[rlepos];
- uint32_t end = rle.value;
- bitset_reset_range(answer->words, start, end);
- start = end + rle.length + 1;
- }
- bitset_reset_range(answer->words, start, UINT32_C(1) << 16);
- answer->cardinality = bitset_container_compute_cardinality(answer);
-
- if (answer->cardinality > DEFAULT_MAX_SIZE) {
- return true;
- } else {
- array_container_t *newanswer = array_container_from_bitset(answer);
- bitset_container_free(CAST_bitset(*dst));
- if (newanswer == NULL) {
- *dst = NULL;
- return false;
- }
- *dst = newanswer;
- return false;
- }
- }
-}
-
-/* Compute the size of the intersection between src_1 and src_2 . */
-int array_run_container_intersection_cardinality(const array_container_t
*src_1,
- const run_container_t *src_2)
{
- if (run_container_is_full(src_2)) {
- return src_1->cardinality;
- }
- if (src_2->n_runs == 0) {
- return 0;
- }
- int32_t rlepos = 0;
- int32_t arraypos = 0;
- rle16_t rle = src_2->runs[rlepos];
- int32_t newcard = 0;
- while (arraypos < src_1->cardinality) {
- const uint16_t arrayval = src_1->array[arraypos];
- while (rle.value + rle.length <
- arrayval) { // this will frequently be false
- ++rlepos;
- if (rlepos == src_2->n_runs) {
- return newcard; // we are done
- }
- rle = src_2->runs[rlepos];
- }
- if (rle.value > arrayval) {
- arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
- rle.value);
- } else {
- newcard++;
- arraypos++;
- }
- }
- return newcard;
-}
-
-/* Compute the intersection between src_1 and src_2
- **/
-int run_bitset_container_intersection_cardinality(
- const run_container_t *src_1, const bitset_container_t *src_2) {
- if (run_container_is_full(src_1)) {
- return bitset_container_cardinality(src_2);
- }
- int answer = 0;
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- answer +=
- bitset_lenrange_cardinality(src_2->words, rle.value, rle.length);
- }
- return answer;
-}
-
-bool array_run_container_intersect(const array_container_t *src_1,
- const run_container_t *src_2) {
- if (run_container_is_full(src_2)) {
- return !array_container_empty(src_1);
- }
- if (src_2->n_runs == 0) {
- return false;
- }
- int32_t rlepos = 0;
- int32_t arraypos = 0;
- rle16_t rle = src_2->runs[rlepos];
- while (arraypos < src_1->cardinality) {
- const uint16_t arrayval = src_1->array[arraypos];
- while (rle.value + rle.length <
- arrayval) { // this will frequently be false
- ++rlepos;
- if (rlepos == src_2->n_runs) {
- return false; // we are done
- }
- rle = src_2->runs[rlepos];
- }
- if (rle.value > arrayval) {
- arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
- rle.value);
- } else {
- return true;
- }
- }
- return false;
-}
-
-/* Compute the intersection between src_1 and src_2
- **/
-bool run_bitset_container_intersect(const run_container_t *src_1,
- const bitset_container_t *src_2) {
- if (run_container_is_full(src_1)) {
- return !bitset_container_empty(src_2);
- }
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- if (!bitset_lenrange_empty(src_2->words, rle.value, rle.length))
- return true;
- }
- return false;
-}
-
-/*
- * Compute the intersection between src_1 and src_2 and write the result
- * to *dst. If the return function is true, the result is a bitset_container_t
- * otherwise is a array_container_t.
- */
-bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- const int newCardinality = bitset_container_and_justcard(src_1, src_2);
- if (newCardinality > DEFAULT_MAX_SIZE) {
- *dst = bitset_container_create();
- if (*dst != NULL) {
- bitset_container_and_nocard(src_1, src_2, CAST_bitset(*dst));
- CAST_bitset(*dst)->cardinality = newCardinality;
- }
- return true; // it is a bitset
- }
- *dst = array_container_create_given_capacity(newCardinality);
- if (*dst != NULL) {
- CAST_array(*dst)->cardinality = newCardinality;
- bitset_extract_intersection_setbits_uint16(
- src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS,
- CAST_array(*dst)->array, 0);
- }
- return false; // not a bitset
-}
-
-bool bitset_bitset_container_intersection_inplace(
- bitset_container_t *src_1, const bitset_container_t *src_2,
- container_t **dst) {
- const int newCardinality = bitset_container_and_justcard(src_1, src_2);
- if (newCardinality > DEFAULT_MAX_SIZE) {
- *dst = src_1;
- bitset_container_and_nocard(src_1, src_2, src_1);
- CAST_bitset(*dst)->cardinality = newCardinality;
- return true; // it is a bitset
- }
- *dst = array_container_create_given_capacity(newCardinality);
- if (*dst != NULL) {
- CAST_array(*dst)->cardinality = newCardinality;
- bitset_extract_intersection_setbits_uint16(
- src_1->words, src_2->words, BITSET_CONTAINER_SIZE_IN_WORDS,
- CAST_array(*dst)->array, 0);
- }
- return false; // not a bitset
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_intersection.c */
-/* begin file src/containers/mixed_negation.c */
-/*
- * mixed_negation.c
- *
- */
-
-#include <assert.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-// TODO: make simplified and optimized negation code across
-// the full range.
-
-/* Negation across the entire range of the container.
- * Compute the negation of src and write the result
- * to *dst. The complement of a
- * sufficiently sparse set will always be dense and a hence a bitmap
-' * We assume that dst is pre-allocated and a valid bitset container
- * There can be no in-place version.
- */
-void array_container_negation(const array_container_t *src,
- bitset_container_t *dst) {
- uint64_t card = UINT64_C(1 << 16);
- bitset_container_set_all(dst);
-
- if (src->cardinality == 0) {
- return;
- }
-
- dst->cardinality = (int32_t)bitset_clear_list(dst->words, card, src->array,
- (uint64_t)src->cardinality);
-}
-
-/* Negation across the entire range of the container
- * Compute the negation of src and write the result
- * to *dst. A true return value indicates a bitset result,
- * otherwise the result is an array container.
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-bool bitset_container_negation(const bitset_container_t *src,
- container_t **dst) {
- return bitset_container_negation_range(src, 0, (1 << 16), dst);
-}
-
-/* inplace version */
-/*
- * Same as bitset_container_negation except that if the output is to
- * be a
- * bitset_container_t, then src is modified and no allocation is made.
- * If the output is to be an array_container_t, then caller is responsible
- * to free the container.
- * In all cases, the result is in *dst.
- */
-bool bitset_container_negation_inplace(bitset_container_t *src,
- container_t **dst) {
- return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst);
-}
-
-/* Negation across the entire range of container
- * Compute the negation of src and write the result
- * to *dst. Return values are the *_TYPECODES as defined * in containers.h
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-int run_container_negation(const run_container_t *src, container_t **dst) {
- return run_container_negation_range(src, 0, (1 << 16), dst);
-}
-
-/*
- * Same as run_container_negation except that if the output is to
- * be a
- * run_container_t, and has the capacity to hold the result,
- * then src is modified and no allocation is made.
- * In all cases, the result is in *dst.
- */
-int run_container_negation_inplace(run_container_t *src, container_t **dst) {
- return run_container_negation_range_inplace(src, 0, (1 << 16), dst);
-}
-
-/* Negation across a range of the container.
- * Compute the negation of src and write the result
- * to *dst. Returns true if the result is a bitset container
- * and false for an array container. *dst is not preallocated.
- */
-bool array_container_negation_range(const array_container_t *src,
- const int range_start, const int range_end,
- container_t **dst) {
- /* close port of the Java implementation */
- if (range_start >= range_end) {
- *dst = array_container_clone(src);
- return false;
- }
-
- int32_t start_index =
- binarySearch(src->array, src->cardinality, (uint16_t)range_start);
- if (start_index < 0) start_index = -start_index - 1;
-
- int32_t last_index =
- binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1));
- if (last_index < 0) last_index = -last_index - 2;
-
- const int32_t current_values_in_range = last_index - start_index + 1;
- const int32_t span_to_be_flipped = range_end - range_start;
- const int32_t new_values_in_range =
- span_to_be_flipped - current_values_in_range;
- const int32_t cardinality_change =
- new_values_in_range - current_values_in_range;
- const int32_t new_cardinality = src->cardinality + cardinality_change;
-
- if (new_cardinality > DEFAULT_MAX_SIZE) {
- bitset_container_t *temp = bitset_container_from_array(src);
- bitset_flip_range(temp->words, (uint32_t)range_start,
- (uint32_t)range_end);
- temp->cardinality = new_cardinality;
- *dst = temp;
- return true;
- }
-
- array_container_t *arr =
- array_container_create_given_capacity(new_cardinality);
- *dst = (container_t *)arr;
- if (new_cardinality == 0) {
- arr->cardinality = new_cardinality;
- return false; // we are done.
- }
- // copy stuff before the active area
- memcpy(arr->array, src->array, start_index * sizeof(uint16_t));
-
- // work on the range
- int32_t out_pos = start_index, in_pos = start_index;
- int32_t val_in_range = range_start;
- for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) {
- if ((uint16_t)val_in_range != src->array[in_pos]) {
- arr->array[out_pos++] = (uint16_t)val_in_range;
- } else {
- ++in_pos;
- }
- }
- for (; val_in_range < range_end; ++val_in_range)
- arr->array[out_pos++] = (uint16_t)val_in_range;
-
- // content after the active range
- memcpy(arr->array + out_pos, src->array + (last_index + 1),
- (src->cardinality - (last_index + 1)) * sizeof(uint16_t));
- arr->cardinality = new_cardinality;
- return false;
-}
-
-/* Even when the result would fit, it is unclear how to make an
- * inplace version without inefficient copying.
- */
-
-bool array_container_negation_range_inplace(array_container_t *src,
- const int range_start,
- const int range_end,
- container_t **dst) {
- bool ans = array_container_negation_range(src, range_start, range_end,
dst);
- // TODO : try a real inplace version
- array_container_free(src);
- return ans;
-}
-
-/* Negation across a range of the container
- * Compute the negation of src and write the result
- * to *dst. A true return value indicates a bitset result,
- * otherwise the result is an array container.
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-bool bitset_container_negation_range(const bitset_container_t *src,
- const int range_start, const int
range_end,
- container_t **dst) {
- // TODO maybe consider density-based estimate
- // and sometimes build result directly as array, with
- // conversion back to bitset if wrong. Or determine
- // actual result cardinality, then go directly for the known final cont.
-
- // keep computation using bitsets as long as possible.
- bitset_container_t *t = bitset_container_clone(src);
- bitset_flip_range(t->words, (uint32_t)range_start, (uint32_t)range_end);
- t->cardinality = bitset_container_compute_cardinality(t);
-
- if (t->cardinality > DEFAULT_MAX_SIZE) {
- *dst = t;
- return true;
- } else {
- *dst = array_container_from_bitset(t);
- bitset_container_free(t);
- return false;
- }
-}
-
-/* inplace version */
-/*
- * Same as bitset_container_negation except that if the output is to
- * be a
- * bitset_container_t, then src is modified and no allocation is made.
- * If the output is to be an array_container_t, then caller is responsible
- * to free the container.
- * In all cases, the result is in *dst.
- */
-bool bitset_container_negation_range_inplace(bitset_container_t *src,
- const int range_start,
- const int range_end,
- container_t **dst) {
- bitset_flip_range(src->words, (uint32_t)range_start, (uint32_t)range_end);
- src->cardinality = bitset_container_compute_cardinality(src);
- if (src->cardinality > DEFAULT_MAX_SIZE) {
- *dst = src;
- return true;
- }
- *dst = array_container_from_bitset(src);
- bitset_container_free(src);
- return false;
-}
-
-/* Negation across a range of container
- * Compute the negation of src and write the result
- * to *dst. Return values are the *_TYPECODES as defined * in containers.h
- * We assume that dst is not pre-allocated. In
- * case of failure, *dst will be NULL.
- */
-int run_container_negation_range(const run_container_t *src,
- const int range_start, const int range_end,
- container_t **dst) {
- uint8_t return_typecode;
-
- // follows the Java implementation
- if (range_end <= range_start) {
- *dst = run_container_clone(src);
- return RUN_CONTAINER_TYPE;
- }
-
- run_container_t *ans = run_container_create_given_capacity(
- src->n_runs + 1); // src->n_runs + 1);
- int k = 0;
- for (; k < src->n_runs && src->runs[k].value < range_start; ++k) {
- ans->runs[k] = src->runs[k];
- ans->n_runs++;
- }
-
- run_container_smart_append_exclusive(
- ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
-
- for (; k < src->n_runs; ++k) {
- run_container_smart_append_exclusive(ans, src->runs[k].value,
- src->runs[k].length);
- }
-
- *dst = convert_run_to_efficient_container(ans, &return_typecode);
- if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans);
-
- return return_typecode;
-}
-
-/*
- * Same as run_container_negation except that if the output is to
- * be a
- * run_container_t, and has the capacity to hold the result,
- * then src is modified and no allocation is made.
- * In all cases, the result is in *dst.
- */
-int run_container_negation_range_inplace(run_container_t *src,
- const int range_start,
- const int range_end,
- container_t **dst) {
- uint8_t return_typecode;
-
- if (range_end <= range_start) {
- *dst = src;
- return RUN_CONTAINER_TYPE;
- }
-
- // TODO: efficient special case when range is 0 to 65535 inclusive
-
- if (src->capacity == src->n_runs) {
- // no excess room. More checking to see if result can fit
- bool last_val_before_range = false;
- bool first_val_in_range = false;
- bool last_val_in_range = false;
- bool first_val_past_range = false;
-
- if (range_start > 0)
- last_val_before_range =
- run_container_contains(src, (uint16_t)(range_start - 1));
- first_val_in_range = run_container_contains(src,
(uint16_t)range_start);
-
- if (last_val_before_range == first_val_in_range) {
- last_val_in_range =
- run_container_contains(src, (uint16_t)(range_end - 1));
- if (range_end != 0x10000)
- first_val_past_range =
- run_container_contains(src, (uint16_t)range_end);
-
- if (last_val_in_range ==
- first_val_past_range) { // no space for inplace
- int ans = run_container_negation_range(src, range_start,
- range_end, dst);
- run_container_free(src);
- return ans;
- }
- }
- }
- // all other cases: result will fit
-
- run_container_t *ans = src;
- int my_nbr_runs = src->n_runs;
-
- ans->n_runs = 0;
- int k = 0;
- for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) {
- // ans->runs[k] = src->runs[k]; (would be self-copy)
- ans->n_runs++;
- }
-
- // as with Java implementation, use locals to give self a buffer of depth 1
- rle16_t buffered = CROARING_MAKE_RLE16(0, 0);
- rle16_t next = buffered;
- if (k < my_nbr_runs) buffered = src->runs[k];
-
- run_container_smart_append_exclusive(
- ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
-
- for (; k < my_nbr_runs; ++k) {
- if (k + 1 < my_nbr_runs) next = src->runs[k + 1];
-
- run_container_smart_append_exclusive(ans, buffered.value,
- buffered.length);
- buffered = next;
- }
-
- *dst = convert_run_to_efficient_container(ans, &return_typecode);
- if (return_typecode != RUN_CONTAINER_TYPE) run_container_free(ans);
-
- return return_typecode;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_negation.c */
-/* begin file src/containers/mixed_subset.c */
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-bool array_container_is_subset_bitset(const array_container_t* container1,
- const bitset_container_t* container2) {
- if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
- if (container2->cardinality < container1->cardinality) {
- return false;
- }
- }
- for (int i = 0; i < container1->cardinality; ++i) {
- if (!bitset_container_contains(container2, container1->array[i])) {
- return false;
- }
- }
- return true;
-}
-
-bool run_container_is_subset_array(const run_container_t* container1,
- const array_container_t* container2) {
- if (run_container_cardinality(container1) > container2->cardinality)
- return false;
- int32_t start_pos = -1, stop_pos = -1;
- for (int i = 0; i < container1->n_runs; ++i) {
- int32_t start = container1->runs[i].value;
- int32_t stop = start + container1->runs[i].length;
- start_pos = advanceUntil(container2->array, stop_pos,
- container2->cardinality, start);
- stop_pos = advanceUntil(container2->array, stop_pos,
- container2->cardinality, stop);
- if (stop_pos == container2->cardinality) {
- return false;
- } else if (stop_pos - start_pos != stop - start ||
- container2->array[start_pos] != start ||
- container2->array[stop_pos] != stop) {
- return false;
- }
- }
- return true;
-}
-
-bool array_container_is_subset_run(const array_container_t* container1,
- const run_container_t* container2) {
- if (container1->cardinality > run_container_cardinality(container2))
- return false;
- int i_array = 0, i_run = 0;
- while (i_array < container1->cardinality && i_run < container2->n_runs) {
- uint32_t start = container2->runs[i_run].value;
- uint32_t stop = start + container2->runs[i_run].length;
- if (container1->array[i_array] < start) {
- return false;
- } else if (container1->array[i_array] > stop) {
- i_run++;
- } else { // the value of the array is in the run
- i_array++;
- }
- }
- if (i_array == container1->cardinality) {
- return true;
- } else {
- return false;
- }
-}
-
-bool run_container_is_subset_bitset(const run_container_t* container1,
- const bitset_container_t* container2) {
- // todo: this code could be much faster
- if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
- if (container2->cardinality < run_container_cardinality(container1)) {
- return false;
- }
- } else {
- int32_t card = bitset_container_compute_cardinality(
- container2); // modify container2?
- if (card < run_container_cardinality(container1)) {
- return false;
- }
- }
- for (int i = 0; i < container1->n_runs; ++i) {
- uint32_t run_start = container1->runs[i].value;
- uint32_t le = container1->runs[i].length;
- for (uint32_t j = run_start; j <= run_start + le; ++j) {
- if (!bitset_container_contains(container2, j)) {
- return false;
- }
- }
- }
- return true;
-}
-
-bool bitset_container_is_subset_run(const bitset_container_t* container1,
- const run_container_t* container2) {
- // todo: this code could be much faster
- if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) {
- if (container1->cardinality > run_container_cardinality(container2)) {
- return false;
- }
- }
- int32_t i_bitset = 0, i_run = 0;
- while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS &&
- i_run < container2->n_runs) {
- uint64_t w = container1->words[i_bitset];
- while (w != 0 && i_run < container2->n_runs) {
- uint32_t start = container2->runs[i_run].value;
- uint32_t stop = start + container2->runs[i_run].length;
- uint64_t t = w & (~w + 1);
- uint16_t r = i_bitset * 64 + roaring_trailing_zeroes(w);
- if (r < start) {
- return false;
- } else if (r > stop) {
- i_run++;
- continue;
- } else {
- w ^= t;
- }
- }
- if (w == 0) {
- i_bitset++;
- } else {
- return false;
- }
- }
- if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) {
- // terminated iterating on the run containers, check that rest of
bitset
- // is empty
- for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) {
- if (container1->words[i_bitset] != 0) {
- return false;
- }
- }
- }
- return true;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_subset.c */
-/* begin file src/containers/mixed_union.c */
-/*
- * mixed_union.c
- *
- */
-
-#include <assert.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. */
-void array_bitset_container_union(const array_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst) {
- if (src_2 != dst) bitset_container_copy(src_2, dst);
- dst->cardinality = (int32_t)bitset_set_list_withcard(
- dst->words, dst->cardinality, src_1->array, src_1->cardinality);
-}
-
-/* Compute the union of src_1 and src_2 and write the result to
- * dst. It is allowed for src_2 to be dst. This version does not
- * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
-void array_bitset_container_lazy_union(const array_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst) {
- if (src_2 != dst) bitset_container_copy(src_2, dst);
- bitset_set_list(dst->words, src_1->array, src_1->cardinality);
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
-}
-
-void run_bitset_container_union(const run_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst) {
- assert(!run_container_is_full(src_1)); // catch this case upstream
- if (src_2 != dst) bitset_container_copy(src_2, dst);
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- bitset_set_lenrange(dst->words, rle.value, rle.length);
- }
- dst->cardinality = bitset_container_compute_cardinality(dst);
-}
-
-void run_bitset_container_lazy_union(const run_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst) {
- assert(!run_container_is_full(src_1)); // catch this case upstream
- if (src_2 != dst) bitset_container_copy(src_2, dst);
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- bitset_set_lenrange(dst->words, rle.value, rle.length);
- }
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
-}
-
-// why do we leave the result as a run container??
-void array_run_container_union(const array_container_t *src_1,
- const run_container_t *src_2,
- run_container_t *dst) {
- if (run_container_is_full(src_2)) {
- run_container_copy(src_2, dst);
- return;
- }
- // TODO: see whether the "2*" is spurious
- run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false);
- int32_t rlepos = 0;
- int32_t arraypos = 0;
- rle16_t previousrle;
- if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
- previousrle = run_container_append_first(dst, src_2->runs[rlepos]);
- rlepos++;
- } else {
- previousrle =
- run_container_append_value_first(dst, src_1->array[arraypos]);
- arraypos++;
- }
- while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
- if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
- run_container_append(dst, src_2->runs[rlepos], &previousrle);
- rlepos++;
- } else {
- run_container_append_value(dst, src_1->array[arraypos],
- &previousrle);
- arraypos++;
- }
- }
- if (arraypos < src_1->cardinality) {
- while (arraypos < src_1->cardinality) {
- run_container_append_value(dst, src_1->array[arraypos],
- &previousrle);
- arraypos++;
- }
- } else {
- while (rlepos < src_2->n_runs) {
- run_container_append(dst, src_2->runs[rlepos], &previousrle);
- rlepos++;
- }
- }
-}
-
-void array_run_container_inplace_union(const array_container_t *src_1,
- run_container_t *src_2) {
- if (run_container_is_full(src_2)) {
- return;
- }
- const int32_t maxoutput = src_1->cardinality + src_2->n_runs;
- const int32_t neededcapacity = maxoutput + src_2->n_runs;
- if (src_2->capacity < neededcapacity)
- run_container_grow(src_2, neededcapacity, true);
- memmove(src_2->runs + maxoutput, src_2->runs,
- src_2->n_runs * sizeof(rle16_t));
- rle16_t *inputsrc2 = src_2->runs + maxoutput;
- int32_t rlepos = 0;
- int32_t arraypos = 0;
- int src2nruns = src_2->n_runs;
- src_2->n_runs = 0;
-
- rle16_t previousrle;
-
- if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
- previousrle = run_container_append_first(src_2, inputsrc2[rlepos]);
- rlepos++;
- } else {
- previousrle =
- run_container_append_value_first(src_2, src_1->array[arraypos]);
- arraypos++;
- }
-
- while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) {
- if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
- run_container_append(src_2, inputsrc2[rlepos], &previousrle);
- rlepos++;
- } else {
- run_container_append_value(src_2, src_1->array[arraypos],
- &previousrle);
- arraypos++;
- }
- }
- if (arraypos < src_1->cardinality) {
- while (arraypos < src_1->cardinality) {
- run_container_append_value(src_2, src_1->array[arraypos],
- &previousrle);
- arraypos++;
- }
- } else {
- while (rlepos < src2nruns) {
- run_container_append(src_2, inputsrc2[rlepos], &previousrle);
- rlepos++;
- }
- }
-}
-
-bool array_array_container_union(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int totalCardinality = src_1->cardinality + src_2->cardinality;
- if (totalCardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_create_given_capacity(totalCardinality);
- if (*dst != NULL) {
- array_container_union(src_1, src_2, CAST_array(*dst));
- } else {
- return true; // otherwise failure won't be caught
- }
- return false; // not a bitset
- }
- *dst = bitset_container_create();
- bool returnval = true; // expect a bitset
- if (*dst != NULL) {
- bitset_container_t *ourbitset = CAST_bitset(*dst);
- bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
- ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
- ourbitset->words, src_1->cardinality, src_2->array,
- src_2->cardinality);
- if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
- // need to convert!
- *dst = array_container_from_bitset(ourbitset);
- bitset_container_free(ourbitset);
- returnval = false; // not going to be a bitset
- }
- }
- return returnval;
-}
-
-bool array_array_container_inplace_union(array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int totalCardinality = src_1->cardinality + src_2->cardinality;
- *dst = NULL;
- if (totalCardinality <= DEFAULT_MAX_SIZE) {
- if (src_1->capacity < totalCardinality) {
- *dst = array_container_create_given_capacity(
- 2 * totalCardinality); // be purposefully generous
- if (*dst != NULL) {
- array_container_union(src_1, src_2, CAST_array(*dst));
- } else {
- return true; // otherwise failure won't be caught
- }
- return false; // not a bitset
- } else {
- memmove(src_1->array + src_2->cardinality, src_1->array,
- src_1->cardinality * sizeof(uint16_t));
- // In theory, we could use fast_union_uint16, but it is unsafe. It
- // fails with Intel compilers in particular.
- // https://github.com/RoaringBitmap/CRoaring/pull/452
- // See report https://github.com/RoaringBitmap/CRoaring/issues/476
- src_1->cardinality = (int32_t)union_uint16(
- src_1->array + src_2->cardinality, src_1->cardinality,
- src_2->array, src_2->cardinality, src_1->array);
- return false; // not a bitset
- }
- }
- *dst = bitset_container_create();
- bool returnval = true; // expect a bitset
- if (*dst != NULL) {
- bitset_container_t *ourbitset = CAST_bitset(*dst);
- bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
- ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
- ourbitset->words, src_1->cardinality, src_2->array,
- src_2->cardinality);
- if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
- // need to convert!
- if (src_1->capacity < ourbitset->cardinality) {
- array_container_grow(src_1, ourbitset->cardinality, false);
- }
-
- bitset_extract_setbits_uint16(ourbitset->words,
- BITSET_CONTAINER_SIZE_IN_WORDS,
- src_1->array, 0);
- src_1->cardinality = ourbitset->cardinality;
- *dst = src_1;
- bitset_container_free(ourbitset);
- returnval = false; // not going to be a bitset
- }
- }
- return returnval;
-}
-
-bool array_array_container_lazy_union(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int totalCardinality = src_1->cardinality + src_2->cardinality;
- //
- // We assume that operations involving bitset containers will be faster
than
- // operations involving solely array containers, except maybe when array
- // containers are small. Indeed, for example, it is cheap to compute the
- // union between an array and a bitset container, generally more so than
- // between a large array and another array. So it is advantageous to favour
- // bitset containers during the computation. Of course, if we convert array
- // containers eagerly to bitset containers, we may later need to revert the
- // bitset containers to array containerr to satisfy the Roaring format
- // requirements, but such one-time conversions at the end may not be overly
- // expensive. We arrived to this design based on extensive benchmarking.
- //
- if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
- *dst = array_container_create_given_capacity(totalCardinality);
- if (*dst != NULL) {
- array_container_union(src_1, src_2, CAST_array(*dst));
- } else {
- return true; // otherwise failure won't be caught
- }
- return false; // not a bitset
- }
- *dst = bitset_container_create();
- bool returnval = true; // expect a bitset
- if (*dst != NULL) {
- bitset_container_t *ourbitset = CAST_bitset(*dst);
- bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
- bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
- ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
- }
- return returnval;
-}
-
-bool array_array_container_lazy_inplace_union(array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int totalCardinality = src_1->cardinality + src_2->cardinality;
- *dst = NULL;
- //
- // We assume that operations involving bitset containers will be faster
than
- // operations involving solely array containers, except maybe when array
- // containers are small. Indeed, for example, it is cheap to compute the
- // union between an array and a bitset container, generally more so than
- // between a large array and another array. So it is advantageous to favour
- // bitset containers during the computation. Of course, if we convert array
- // containers eagerly to bitset containers, we may later need to revert the
- // bitset containers to array containerr to satisfy the Roaring format
- // requirements, but such one-time conversions at the end may not be overly
- // expensive. We arrived to this design based on extensive benchmarking.
- //
- if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
- if (src_1->capacity < totalCardinality) {
- *dst = array_container_create_given_capacity(
- 2 * totalCardinality); // be purposefully generous
- if (*dst != NULL) {
- array_container_union(src_1, src_2, CAST_array(*dst));
- } else {
- return true; // otherwise failure won't be caught
- }
- return false; // not a bitset
- } else {
- memmove(src_1->array + src_2->cardinality, src_1->array,
- src_1->cardinality * sizeof(uint16_t));
- /*
- Next line is safe:
-
- We just need to focus on the reading and writing performed on
- array1. In `union_vector16`, both vectorized and scalar code
still
- obey the basic rule: read from two inputs, do the union, and then
- write the output.
-
- Let's say the length(cardinality) of input2 is L2:
- ```
- |<- L2 ->|
- array1: [output--- |input 1---|---]
- array2: [input 2---]
- ```
- Let's define 3 __m128i pointers, `pos1` starts from `input1`,
- `pos2` starts from `input2`, these 2 point at the next byte to
- read, `out` starts from `output`, pointing at the next byte to
- overwrite.
- ```
- array1: [output--- |input 1---|---]
- ^ ^
- out pos1
- array2: [input 2---]
- ^
- pos2
- ```
- The union output always contains less or equal number of elements
- than all inputs added, so we have:
- ```
- out <= pos1 + pos2
- ```
- therefore:
- ```
- out <= pos1 + L2
- ```
- which means you will not overwrite data beyond pos1, so the data
- haven't read is safe, and we don't care the data already read.
- */
- src_1->cardinality = (int32_t)fast_union_uint16(
- src_1->array + src_2->cardinality, src_1->cardinality,
- src_2->array, src_2->cardinality, src_1->array);
- return false; // not a bitset
- }
- }
- *dst = bitset_container_create();
- bool returnval = true; // expect a bitset
- if (*dst != NULL) {
- bitset_container_t *ourbitset = CAST_bitset(*dst);
- bitset_set_list(ourbitset->words, src_1->array, src_1->cardinality);
- bitset_set_list(ourbitset->words, src_2->array, src_2->cardinality);
- ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
- }
- return returnval;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_union.c */
-/* begin file src/containers/mixed_xor.c */
-/*
- * mixed_xor.c
- */
-
-#include <assert.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst (which has no container initially).
- * Result is true iff dst is a bitset */
-bool array_bitset_container_xor(const array_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- bitset_container_t *result = bitset_container_create();
- bitset_container_copy(src_2, result);
- result->cardinality = (int32_t)bitset_flip_list_withcard(
- result->words, result->cardinality, src_1->array, src_1->cardinality);
-
- // do required type conversions.
- if (result->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(result);
- bitset_container_free(result);
- return false; // not bitset
- }
- *dst = result;
- return true; // bitset
-}
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst. It is allowed for src_2 to be dst. This version does not
- * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
- */
-
-void array_bitset_container_lazy_xor(const array_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst) {
- if (src_2 != dst) bitset_container_copy(src_2, dst);
- bitset_flip_list(dst->words, src_1->array, src_1->cardinality);
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
-}
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_xor(const run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- bitset_container_t *result = bitset_container_create();
-
- bitset_container_copy(src_2, result);
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- bitset_flip_range(result->words, rle.value,
- rle.value + rle.length + UINT32_C(1));
- }
- result->cardinality = bitset_container_compute_cardinality(result);
-
- if (result->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(result);
- bitset_container_free(result);
- return false; // not bitset
- }
- *dst = result;
- return true; // bitset
-}
-
-/* lazy xor. Dst is initialized and may be equal to src_2.
- * Result is left as a bitset container, even if actual
- * cardinality would dictate an array container.
- */
-
-void run_bitset_container_lazy_xor(const run_container_t *src_1,
- const bitset_container_t *src_2,
- bitset_container_t *dst) {
- if (src_2 != dst) bitset_container_copy(src_2, dst);
- for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
- rle16_t rle = src_1->runs[rlepos];
- bitset_flip_range(dst->words, rle.value,
- rle.value + rle.length + UINT32_C(1));
- }
- dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
-}
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int array_run_container_xor(const array_container_t *src_1,
- const run_container_t *src_2, container_t **dst) {
- // semi following Java XOR implementation as of May 2016
- // the C OR implementation works quite differently and can return a run
- // container
- // TODO could optimize for full run containers.
-
- // use of lazy following Java impl.
- const int arbitrary_threshold = 32;
- if (src_1->cardinality < arbitrary_threshold) {
- run_container_t *ans = run_container_create();
- array_run_container_lazy_xor(src_1, src_2, ans); // keeps runs.
- uint8_t typecode_after;
- *dst =
- convert_run_to_efficient_container_and_free(ans, &typecode_after);
- return typecode_after;
- }
-
- int card = run_container_cardinality(src_2);
- if (card <= DEFAULT_MAX_SIZE) {
- // Java implementation works with the array, xoring the run elements
via
- // iterator
- array_container_t *temp = array_container_from_run(src_2);
- bool ret_is_bitset = array_array_container_xor(temp, src_1, dst);
- array_container_free(temp);
- return ret_is_bitset ? BITSET_CONTAINER_TYPE : ARRAY_CONTAINER_TYPE;
-
- } else { // guess that it will end up as a bitset
- bitset_container_t *result = bitset_container_from_run(src_2);
- bool is_bitset = bitset_array_container_ixor(result, src_1, dst);
- // any necessary type conversion has been done by the ixor
- int retval = (is_bitset ? BITSET_CONTAINER_TYPE :
ARRAY_CONTAINER_TYPE);
- return retval;
- }
-}
-
-/* Dst is a valid run container. (Can it be src_2? Let's say not.)
- * Leaves result as run container, even if other options are
- * smaller.
- */
-
-void array_run_container_lazy_xor(const array_container_t *src_1,
- const run_container_t *src_2,
- run_container_t *dst) {
- run_container_grow(dst, src_1->cardinality + src_2->n_runs, false);
- int32_t rlepos = 0;
- int32_t arraypos = 0;
- dst->n_runs = 0;
-
- while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
- if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
- run_container_smart_append_exclusive(dst,
src_2->runs[rlepos].value,
- src_2->runs[rlepos].length);
- rlepos++;
- } else {
- run_container_smart_append_exclusive(dst, src_1->array[arraypos],
- 0);
- arraypos++;
- }
- }
- while (arraypos < src_1->cardinality) {
- run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0);
- arraypos++;
- }
- while (rlepos < src_2->n_runs) {
- run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
- src_2->runs[rlepos].length);
- rlepos++;
- }
-}
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int run_run_container_xor(const run_container_t *src_1,
- const run_container_t *src_2, container_t **dst) {
- run_container_t *ans = run_container_create();
- run_container_xor(src_1, src_2, ans);
- uint8_t typecode_after;
- *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
- return typecode_after;
-}
-
-/*
- * Java implementation (as of May 2016) for array_run, run_run
- * and bitset_run don't do anything different for inplace.
- * Could adopt the mixed_union.c approach instead (ie, using
- * smart_append_exclusive)
- *
- */
-
-bool array_array_container_xor(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int totalCardinality =
- src_1->cardinality + src_2->cardinality; // upper bound
- if (totalCardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_create_given_capacity(totalCardinality);
- array_container_xor(src_1, src_2, CAST_array(*dst));
- return false; // not a bitset
- }
- *dst = bitset_container_from_array(src_1);
- bool returnval = true; // expect a bitset
- bitset_container_t *ourbitset = CAST_bitset(*dst);
- ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard(
- ourbitset->words, src_1->cardinality, src_2->array,
src_2->cardinality);
- if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
- // need to convert!
- *dst = array_container_from_bitset(ourbitset);
- bitset_container_free(ourbitset);
- returnval = false; // not going to be a bitset
- }
-
- return returnval;
-}
-
-bool array_array_container_lazy_xor(const array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int totalCardinality = src_1->cardinality + src_2->cardinality;
- //
- // We assume that operations involving bitset containers will be faster
than
- // operations involving solely array containers, except maybe when array
- // containers are small. Indeed, for example, it is cheap to compute the
- // exclusive union between an array and a bitset container, generally more
- // so than between a large array and another array. So it is advantageous
to
- // favour bitset containers during the computation. Of course, if we
convert
- // array containers eagerly to bitset containers, we may later need to
- // revert the bitset containers to array containerr to satisfy the Roaring
- // format requirements, but such one-time conversions at the end may not be
- // overly expensive. We arrived to this design based on extensive
- // benchmarking on unions. For XOR/exclusive union, we simply followed the
- // heuristic used by the unions (see mixed_union.c). Further tuning is
- // possible.
- //
- if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
- *dst = array_container_create_given_capacity(totalCardinality);
- if (*dst != NULL) array_container_xor(src_1, src_2, CAST_array(*dst));
- return false; // not a bitset
- }
- *dst = bitset_container_from_array(src_1);
- bool returnval = true; // expect a bitset (maybe, for XOR??)
- if (*dst != NULL) {
- bitset_container_t *ourbitset = CAST_bitset(*dst);
- bitset_flip_list(ourbitset->words, src_2->array, src_2->cardinality);
- ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
- }
- return returnval;
-}
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst (which has no container initially). Return value is
- * "dst is a bitset"
- */
-
-bool bitset_bitset_container_xor(const bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- bitset_container_t *ans = bitset_container_create();
- int card = bitset_container_xor(src_1, src_2, ans);
- if (card <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(ans);
- bitset_container_free(ans);
- return false; // not bitset
- } else {
- *dst = ans;
- return true;
- }
-}
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst (which has no container initially). It will modify src_1
- * to be dst if the result is a bitset. Otherwise, it will
- * free src_1 and dst will be a new array container. In both
- * cases, the caller is responsible for deallocating dst.
- * Returns true iff dst is a bitset */
-
-bool bitset_array_container_ixor(bitset_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- *dst = src_1;
- src_1->cardinality = (uint32_t)bitset_flip_list_withcard(
- src_1->words, src_1->cardinality, src_2->array, src_2->cardinality);
-
- if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(src_1);
- bitset_container_free(src_1);
- return false; // not bitset
- } else
- return true;
-}
-
-/* a bunch of in-place, some of which may not *really* be inplace.
- * TODO: write actual inplace routine if efficiency warrants it
- * Anything inplace with a bitset is a good candidate
- */
-
-bool bitset_bitset_container_ixor(bitset_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- int card = bitset_container_xor(src_1, src_2, src_1);
- if (card <= DEFAULT_MAX_SIZE) {
- *dst = array_container_from_bitset(src_1);
- bitset_container_free(src_1);
- return false; // not bitset
- } else {
- *dst = src_1;
- return true;
- }
-}
-
-bool array_bitset_container_ixor(array_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- bool ans = array_bitset_container_xor(src_1, src_2, dst);
- array_container_free(src_1);
- return ans;
-}
-
-/* Compute the xor of src_1 and src_2 and write the result to
- * dst. Result may be either a bitset or an array container
- * (returns "result is bitset"). dst does not initially have
- * any container, but becomes either a bitset container (return
- * result true) or an array container.
- */
-
-bool run_bitset_container_ixor(run_container_t *src_1,
- const bitset_container_t *src_2,
- container_t **dst) {
- bool ans = run_bitset_container_xor(src_1, src_2, dst);
- run_container_free(src_1);
- return ans;
-}
-
-bool bitset_run_container_ixor(bitset_container_t *src_1,
- const run_container_t *src_2,
- container_t **dst) {
- bool ans = run_bitset_container_xor(src_2, src_1, dst);
- bitset_container_free(src_1);
- return ans;
-}
-
-/* dst does not indicate a valid container initially. Eventually it
- * can become any kind of container.
- */
-
-int array_run_container_ixor(array_container_t *src_1,
- const run_container_t *src_2, container_t **dst) {
- int ans = array_run_container_xor(src_1, src_2, dst);
- array_container_free(src_1);
- return ans;
-}
-
-int run_array_container_ixor(run_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- int ans = array_run_container_xor(src_2, src_1, dst);
- run_container_free(src_1);
- return ans;
-}
-
-bool array_array_container_ixor(array_container_t *src_1,
- const array_container_t *src_2,
- container_t **dst) {
- bool ans = array_array_container_xor(src_1, src_2, dst);
- array_container_free(src_1);
- return ans;
-}
-
-int run_run_container_ixor(run_container_t *src_1, const run_container_t
*src_2,
- container_t **dst) {
- int ans = run_run_container_xor(src_1, src_2, dst);
- run_container_free(src_1);
- return ans;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/containers/mixed_xor.c */
-/* begin file src/containers/run.c */
-#include <stdio.h>
-#include <stdlib.h>
-
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wuninitialized"
-#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
-#endif
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-extern inline uint16_t run_container_minimum(const run_container_t *run);
-extern inline uint16_t run_container_maximum(const run_container_t *run);
-extern inline int32_t interleavedBinarySearch(const rle16_t *array,
- int32_t lenarray, uint16_t ikey);
-extern inline bool run_container_contains(const run_container_t *run,
- uint16_t pos);
-extern inline int run_container_index_equalorlarger(const run_container_t *arr,
- uint16_t x);
-extern inline bool run_container_is_full(const run_container_t *run);
-extern inline bool run_container_nonzero_cardinality(const run_container_t
*rc);
-extern inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs);
-extern inline run_container_t *run_container_create_range(uint32_t start,
- uint32_t stop);
-extern inline int run_container_cardinality(const run_container_t *run);
-
-bool run_container_add(run_container_t *run, uint16_t pos) {
- int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
- if (index >= 0) return false; // already there
- index = -index - 2; // points to preceding value, possibly -1
- if (index >= 0) { // possible match
- int32_t offset = pos - run->runs[index].value;
- int32_t le = run->runs[index].length;
- if (offset <= le) return false; // already there
- if (offset == le + 1) {
- // we may need to fuse
- if (index + 1 < run->n_runs) {
- if (run->runs[index + 1].value == pos + 1) {
- // indeed fusion is needed
- run->runs[index].length = run->runs[index + 1].value +
- run->runs[index + 1].length -
- run->runs[index].value;
- recoverRoomAtIndex(run, (uint16_t)(index + 1));
- return true;
- }
- }
- run->runs[index].length++;
- return true;
- }
- if (index + 1 < run->n_runs) {
- // we may need to fuse
- if (run->runs[index + 1].value == pos + 1) {
- // indeed fusion is needed
- run->runs[index + 1].value = pos;
- run->runs[index + 1].length = run->runs[index + 1].length + 1;
- return true;
- }
- }
- }
- if (index == -1) {
- // we may need to extend the first run
- if (0 < run->n_runs) {
- if (run->runs[0].value == pos + 1) {
- run->runs[0].length++;
- run->runs[0].value--;
- return true;
- }
- }
- }
- makeRoomAtIndex(run, (uint16_t)(index + 1));
- run->runs[index + 1].value = pos;
- run->runs[index + 1].length = 0;
- return true;
-}
-
-/* Create a new run container. Return NULL in case of failure. */
-run_container_t *run_container_create_given_capacity(int32_t size) {
- run_container_t *run;
- /* Allocate the run container itself. */
- if ((run = (run_container_t *)roaring_malloc(sizeof(run_container_t))) ==
- NULL) {
- return NULL;
- }
- if (size <= 0) { // we don't want to rely on malloc(0)
- run->runs = NULL;
- } else if ((run->runs = (rle16_t *)roaring_malloc(sizeof(rle16_t) *
- size)) == NULL) {
- roaring_free(run);
- return NULL;
- }
- run->capacity = size;
- run->n_runs = 0;
- return run;
-}
-
-int run_container_shrink_to_fit(run_container_t *src) {
- if (src->n_runs == src->capacity) return 0; // nothing to do
- int savings = src->capacity - src->n_runs;
- src->capacity = src->n_runs;
- rle16_t *oldruns = src->runs;
- src->runs =
- (rle16_t *)roaring_realloc(oldruns, src->capacity * sizeof(rle16_t));
- if (src->runs == NULL) roaring_free(oldruns); // should never happen?
- return savings;
-}
-/* Create a new run container. Return NULL in case of failure. */
-run_container_t *run_container_create(void) {
- return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE);
-}
-
-ALLOW_UNALIGNED
-run_container_t *run_container_clone(const run_container_t *src) {
- run_container_t *run = run_container_create_given_capacity(src->capacity);
- if (run == NULL) return NULL;
- run->capacity = src->capacity;
- run->n_runs = src->n_runs;
- memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t));
- return run;
-}
-
-void run_container_offset(const run_container_t *c, container_t **loc,
- container_t **hic, uint16_t offset) {
- run_container_t *lo = NULL, *hi = NULL;
-
- bool split;
- int lo_cap, hi_cap;
- int top, pivot;
-
- top = (1 << 16) - offset;
- pivot = run_container_index_equalorlarger(c, top);
-
- if (pivot == -1) {
- split = false;
- lo_cap = c->n_runs;
- hi_cap = 0;
- } else {
- split = c->runs[pivot].value < top;
- lo_cap = pivot + (split ? 1 : 0);
- hi_cap = c->n_runs - pivot;
- }
-
- if (loc && lo_cap) {
- lo = run_container_create_given_capacity(lo_cap);
- memcpy(lo->runs, c->runs, lo_cap * sizeof(rle16_t));
- lo->n_runs = lo_cap;
- for (int i = 0; i < lo_cap; ++i) {
- lo->runs[i].value += offset;
- }
- *loc = (container_t *)lo;
- }
-
- if (hic && hi_cap) {
- hi = run_container_create_given_capacity(hi_cap);
- memcpy(hi->runs, c->runs + pivot, hi_cap * sizeof(rle16_t));
- hi->n_runs = hi_cap;
- for (int i = 0; i < hi_cap; ++i) {
- hi->runs[i].value += offset;
- }
- *hic = (container_t *)hi;
- }
-
- // Fix the split.
- if (split) {
- if (lo != NULL) {
- // Add the missing run to 'lo', exhausting length.
- lo->runs[lo->n_runs - 1].length =
- (1 << 16) - lo->runs[lo->n_runs - 1].value - 1;
- }
-
- if (hi != NULL) {
- // Fix the first run in 'hi'.
- hi->runs[0].length -= UINT16_MAX - hi->runs[0].value + 1;
- hi->runs[0].value = 0;
- }
- }
-}
-
-/* Free memory. */
-void run_container_free(run_container_t *run) {
- if (run == NULL) return;
- roaring_free(run->runs);
- roaring_free(run);
-}
-
-void run_container_grow(run_container_t *run, int32_t min, bool copy) {
- int32_t newCapacity = (run->capacity == 0) ? RUN_DEFAULT_INIT_SIZE
- : run->capacity < 64 ? run->capacity * 2
- : run->capacity < 1024 ? run->capacity * 3 / 2
- : run->capacity * 5 / 4;
- if (newCapacity < min) newCapacity = min;
- run->capacity = newCapacity;
- assert(run->capacity >= min);
- if (copy) {
- rle16_t *oldruns = run->runs;
- run->runs = (rle16_t *)roaring_realloc(oldruns,
- run->capacity *
sizeof(rle16_t));
- if (run->runs == NULL) roaring_free(oldruns);
- } else {
- roaring_free(run->runs);
- run->runs = (rle16_t *)roaring_malloc(run->capacity * sizeof(rle16_t));
- }
- // We may have run->runs == NULL.
-}
-
-/* copy one container into another */
-void run_container_copy(const run_container_t *src, run_container_t *dst) {
- const int32_t n_runs = src->n_runs;
- if (src->n_runs > dst->capacity) {
- run_container_grow(dst, n_runs, false);
- }
- dst->n_runs = n_runs;
- memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs);
-}
-
-/* Compute the union of `src_1' and `src_2' and write the result to `dst'
- * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
-void run_container_union(const run_container_t *src_1,
- const run_container_t *src_2, run_container_t *dst) {
- // TODO: this could be a lot more efficient
-
- // we start out with inexpensive checks
- const bool if1 = run_container_is_full(src_1);
- const bool if2 = run_container_is_full(src_2);
- if (if1 || if2) {
- if (if1) {
- run_container_copy(src_1, dst);
- return;
- }
- if (if2) {
- run_container_copy(src_2, dst);
- return;
- }
- }
- const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
- if (dst->capacity < neededcapacity)
- run_container_grow(dst, neededcapacity, false);
- dst->n_runs = 0;
- int32_t rlepos = 0;
- int32_t xrlepos = 0;
-
- rle16_t previousrle;
- if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
- previousrle = run_container_append_first(dst, src_1->runs[rlepos]);
- rlepos++;
- } else {
- previousrle = run_container_append_first(dst, src_2->runs[xrlepos]);
- xrlepos++;
- }
-
- while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) {
- rle16_t newrl;
- if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
- newrl = src_1->runs[rlepos];
- rlepos++;
- } else {
- newrl = src_2->runs[xrlepos];
- xrlepos++;
- }
- run_container_append(dst, newrl, &previousrle);
- }
- while (xrlepos < src_2->n_runs) {
- run_container_append(dst, src_2->runs[xrlepos], &previousrle);
- xrlepos++;
- }
- while (rlepos < src_1->n_runs) {
- run_container_append(dst, src_1->runs[rlepos], &previousrle);
- rlepos++;
- }
-}
-
-/* Compute the union of `src_1' and `src_2' and write the result to `src_1'
- */
-void run_container_union_inplace(run_container_t *src_1,
- const run_container_t *src_2) {
- // TODO: this could be a lot more efficient
-
- // we start out with inexpensive checks
- const bool if1 = run_container_is_full(src_1);
- const bool if2 = run_container_is_full(src_2);
- if (if1 || if2) {
- if (if1) {
- return;
- }
- if (if2) {
- run_container_copy(src_2, src_1);
- return;
- }
- }
- // we move the data to the end of the current array
- const int32_t maxoutput = src_1->n_runs + src_2->n_runs;
- const int32_t neededcapacity = maxoutput + src_1->n_runs;
- if (src_1->capacity < neededcapacity)
- run_container_grow(src_1, neededcapacity, true);
- memmove(src_1->runs + maxoutput, src_1->runs,
- src_1->n_runs * sizeof(rle16_t));
- rle16_t *inputsrc1 = src_1->runs + maxoutput;
- const int32_t input1nruns = src_1->n_runs;
- src_1->n_runs = 0;
- int32_t rlepos = 0;
- int32_t xrlepos = 0;
-
- rle16_t previousrle;
- if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
- previousrle = run_container_append_first(src_1, inputsrc1[rlepos]);
- rlepos++;
- } else {
- previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]);
- xrlepos++;
- }
- while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) {
- rle16_t newrl;
- if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
- newrl = inputsrc1[rlepos];
- rlepos++;
- } else {
- newrl = src_2->runs[xrlepos];
- xrlepos++;
- }
- run_container_append(src_1, newrl, &previousrle);
- }
- while (xrlepos < src_2->n_runs) {
- run_container_append(src_1, src_2->runs[xrlepos], &previousrle);
- xrlepos++;
- }
- while (rlepos < input1nruns) {
- run_container_append(src_1, inputsrc1[rlepos], &previousrle);
- rlepos++;
- }
-}
-
-/* Compute the symmetric difference of `src_1' and `src_2' and write the result
- * to `dst'
- * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
-void run_container_xor(const run_container_t *src_1,
- const run_container_t *src_2, run_container_t *dst) {
- // don't bother to convert xor with full range into negation
- // since negation is implemented similarly
-
- const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
- if (dst->capacity < neededcapacity)
- run_container_grow(dst, neededcapacity, false);
-
- int32_t pos1 = 0;
- int32_t pos2 = 0;
- dst->n_runs = 0;
-
- while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) {
- if (src_1->runs[pos1].value <= src_2->runs[pos2].value) {
- run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
- src_1->runs[pos1].length);
- pos1++;
- } else {
- run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
- src_2->runs[pos2].length);
- pos2++;
- }
- }
- while (pos1 < src_1->n_runs) {
- run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
- src_1->runs[pos1].length);
- pos1++;
- }
-
- while (pos2 < src_2->n_runs) {
- run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
- src_2->runs[pos2].length);
- pos2++;
- }
-}
-
-/* Compute the intersection of src_1 and src_2 and write the result to
- * dst. It is assumed that dst is distinct from both src_1 and src_2. */
-void run_container_intersection(const run_container_t *src_1,
- const run_container_t *src_2,
- run_container_t *dst) {
- const bool if1 = run_container_is_full(src_1);
- const bool if2 = run_container_is_full(src_2);
- if (if1 || if2) {
- if (if1) {
- run_container_copy(src_2, dst);
- return;
- }
- if (if2) {
- run_container_copy(src_1, dst);
- return;
- }
- }
- // TODO: this could be a lot more efficient, could use SIMD optimizations
- const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
- if (dst->capacity < neededcapacity)
- run_container_grow(dst, neededcapacity, false);
- dst->n_runs = 0;
- int32_t rlepos = 0;
- int32_t xrlepos = 0;
- int32_t start = src_1->runs[rlepos].value;
- int32_t end = start + src_1->runs[rlepos].length + 1;
- int32_t xstart = src_2->runs[xrlepos].value;
- int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
- while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
- if (end <= xstart) {
- ++rlepos;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- } else if (xend <= start) {
- ++xrlepos;
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- } else { // they overlap
- const int32_t lateststart = start > xstart ? start : xstart;
- int32_t earliestend;
- if (end == xend) { // improbable
- earliestend = end;
- rlepos++;
- xrlepos++;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- } else if (end < xend) {
- earliestend = end;
- rlepos++;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
-
- } else { // end > xend
- earliestend = xend;
- xrlepos++;
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- }
- dst->runs[dst->n_runs].value = (uint16_t)lateststart;
- dst->runs[dst->n_runs].length =
- (uint16_t)(earliestend - lateststart - 1);
- dst->n_runs++;
- }
- }
-}
-
-/* Compute the size of the intersection of src_1 and src_2 . */
-int run_container_intersection_cardinality(const run_container_t *src_1,
- const run_container_t *src_2) {
- const bool if1 = run_container_is_full(src_1);
- const bool if2 = run_container_is_full(src_2);
- if (if1 || if2) {
- if (if1) {
- return run_container_cardinality(src_2);
- }
- if (if2) {
- return run_container_cardinality(src_1);
- }
- }
- int answer = 0;
- int32_t rlepos = 0;
- int32_t xrlepos = 0;
- int32_t start = src_1->runs[rlepos].value;
- int32_t end = start + src_1->runs[rlepos].length + 1;
- int32_t xstart = src_2->runs[xrlepos].value;
- int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
- while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
- if (end <= xstart) {
- ++rlepos;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- } else if (xend <= start) {
- ++xrlepos;
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- } else { // they overlap
- const int32_t lateststart = start > xstart ? start : xstart;
- int32_t earliestend;
- if (end == xend) { // improbable
- earliestend = end;
- rlepos++;
- xrlepos++;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- } else if (end < xend) {
- earliestend = end;
- rlepos++;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
-
- } else { // end > xend
- earliestend = xend;
- xrlepos++;
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- }
- answer += earliestend - lateststart;
- }
- }
- return answer;
-}
-
-bool run_container_intersect(const run_container_t *src_1,
- const run_container_t *src_2) {
- const bool if1 = run_container_is_full(src_1);
- const bool if2 = run_container_is_full(src_2);
- if (if1 || if2) {
- if (if1) {
- return !run_container_empty(src_2);
- }
- if (if2) {
- return !run_container_empty(src_1);
- }
- }
- int32_t rlepos = 0;
- int32_t xrlepos = 0;
- int32_t start = src_1->runs[rlepos].value;
- int32_t end = start + src_1->runs[rlepos].length + 1;
- int32_t xstart = src_2->runs[xrlepos].value;
- int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
- while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
- if (end <= xstart) {
- ++rlepos;
- if (rlepos < src_1->n_runs) {
- start = src_1->runs[rlepos].value;
- end = start + src_1->runs[rlepos].length + 1;
- }
- } else if (xend <= start) {
- ++xrlepos;
- if (xrlepos < src_2->n_runs) {
- xstart = src_2->runs[xrlepos].value;
- xend = xstart + src_2->runs[xrlepos].length + 1;
- }
- } else { // they overlap
- return true;
- }
- }
- return false;
-}
-
-/* Compute the difference of src_1 and src_2 and write the result to
- * dst. It is assumed that dst is distinct from both src_1 and src_2. */
-void run_container_andnot(const run_container_t *src_1,
- const run_container_t *src_2, run_container_t *dst) {
- // following Java implementation as of June 2016
-
- if (dst->capacity < src_1->n_runs + src_2->n_runs)
- run_container_grow(dst, src_1->n_runs + src_2->n_runs, false);
-
- dst->n_runs = 0;
-
- int rlepos1 = 0;
- int rlepos2 = 0;
- int32_t start = src_1->runs[rlepos1].value;
- int32_t end = start + src_1->runs[rlepos1].length + 1;
- int32_t start2 = src_2->runs[rlepos2].value;
- int32_t end2 = start2 + src_2->runs[rlepos2].length + 1;
-
- while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) {
- if (end <= start2) {
- // output the first run
- dst->runs[dst->n_runs++] =
- CROARING_MAKE_RLE16(start, end - start - 1);
- rlepos1++;
- if (rlepos1 < src_1->n_runs) {
- start = src_1->runs[rlepos1].value;
- end = start + src_1->runs[rlepos1].length + 1;
- }
- } else if (end2 <= start) {
- // exit the second run
- rlepos2++;
- if (rlepos2 < src_2->n_runs) {
- start2 = src_2->runs[rlepos2].value;
- end2 = start2 + src_2->runs[rlepos2].length + 1;
- }
- } else {
- if (start < start2) {
- dst->runs[dst->n_runs++] =
- CROARING_MAKE_RLE16(start, start2 - start - 1);
- }
- if (end2 < end) {
- start = end2;
- } else {
- rlepos1++;
- if (rlepos1 < src_1->n_runs) {
- start = src_1->runs[rlepos1].value;
- end = start + src_1->runs[rlepos1].length + 1;
- }
- }
- }
- }
- if (rlepos1 < src_1->n_runs) {
- dst->runs[dst->n_runs++] = CROARING_MAKE_RLE16(start, end - start - 1);
- rlepos1++;
- if (rlepos1 < src_1->n_runs) {
- memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1,
- sizeof(rle16_t) * (src_1->n_runs - rlepos1));
- dst->n_runs += src_1->n_runs - rlepos1;
- }
- }
-}
-
-/*
- * Print this container using printf (useful for debugging).
- */
-void run_container_printf(const run_container_t *cont) {
- for (int i = 0; i < cont->n_runs; ++i) {
- uint16_t run_start = cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
- printf("[%d,%d]", run_start, run_start + le);
- }
-}
-
-/*
- * Print this container using printf as a comma-separated list of 32-bit
- * integers starting at base.
- */
-void run_container_printf_as_uint32_array(const run_container_t *cont,
- uint32_t base) {
- if (cont->n_runs == 0) return;
- {
- uint32_t run_start = base + cont->runs[0].value;
- uint16_t le = cont->runs[0].length;
- printf("%u", run_start);
- for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j);
- }
- for (int32_t i = 1; i < cont->n_runs; ++i) {
- uint32_t run_start = base + cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
- for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j);
- }
-}
-
-/*
- * Validate the container. Returns true if valid.
- */
-bool run_container_validate(const run_container_t *run, const char **reason) {
- if (run->n_runs < 0) {
- *reason = "negative run count";
- return false;
- }
- if (run->capacity < 0) {
- *reason = "negative run capacity";
- return false;
- }
- if (run->capacity < run->n_runs) {
- *reason = "capacity less than run count";
- return false;
- }
-
- if (run->n_runs == 0) {
- *reason = "zero run count";
- return false;
- }
- if (run->runs == NULL) {
- *reason = "NULL runs";
- return false;
- }
-
- // Use uint32_t to avoid overflow issues on ranges that contain UINT16_MAX.
- uint32_t last_end = 0;
- for (int i = 0; i < run->n_runs; ++i) {
- uint32_t start = run->runs[i].value;
- uint32_t end = start + run->runs[i].length + 1;
- if (end <= start) {
- *reason = "run start + length overflow";
- return false;
- }
- if (end > (1 << 16)) {
- *reason = "run start + length too large";
- return false;
- }
- if (start < last_end) {
- *reason = "run start less than last end";
- return false;
- }
- if (start == last_end && last_end != 0) {
- *reason = "run start equal to last end, should have combined";
- return false;
- }
- last_end = end;
- }
- return true;
-}
-
-int32_t run_container_write(const run_container_t *container, char *buf) {
- uint16_t cast_16 = container->n_runs;
- memcpy(buf, &cast_16, sizeof(uint16_t));
- memcpy(buf + sizeof(uint16_t), container->runs,
- container->n_runs * sizeof(rle16_t));
- return run_container_size_in_bytes(container);
-}
-
-int32_t run_container_read(int32_t cardinality, run_container_t *container,
- const char *buf) {
- (void)cardinality;
- uint16_t cast_16;
- memcpy(&cast_16, buf, sizeof(uint16_t));
- container->n_runs = cast_16;
- if (container->n_runs > container->capacity)
- run_container_grow(container, container->n_runs, false);
- if (container->n_runs > 0) {
- memcpy(container->runs, buf + sizeof(uint16_t),
- container->n_runs * sizeof(rle16_t));
- }
- return run_container_size_in_bytes(container);
-}
-
-bool run_container_iterate(const run_container_t *cont, uint32_t base,
- roaring_iterator iterator, void *ptr) {
- for (int i = 0; i < cont->n_runs; ++i) {
- uint32_t run_start = base + cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
-
- for (int j = 0; j <= le; ++j)
- if (!iterator(run_start + j, ptr)) return false;
- }
- return true;
-}
-
-bool run_container_iterate64(const run_container_t *cont, uint32_t base,
- roaring_iterator64 iterator, uint64_t high_bits,
- void *ptr) {
- for (int i = 0; i < cont->n_runs; ++i) {
- uint32_t run_start = base + cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
-
- for (int j = 0; j <= le; ++j)
- if (!iterator(high_bits | (uint64_t)(run_start + j), ptr))
- return false;
- }
- return true;
-}
-
-bool run_container_is_subset(const run_container_t *container1,
- const run_container_t *container2) {
- int i1 = 0, i2 = 0;
- while (i1 < container1->n_runs && i2 < container2->n_runs) {
- int start1 = container1->runs[i1].value;
- int stop1 = start1 + container1->runs[i1].length;
- int start2 = container2->runs[i2].value;
- int stop2 = start2 + container2->runs[i2].length;
- if (start1 < start2) {
- return false;
- } else { // start1 >= start2
- if (stop1 < stop2) {
- i1++;
- } else if (stop1 == stop2) {
- i1++;
- i2++;
- } else { // stop1 > stop2
- i2++;
- }
- }
- }
- if (i1 == container1->n_runs) {
- return true;
- } else {
- return false;
- }
-}
-
-// TODO: write smart_append_exclusive version to match the overloaded 1 param
-// Java version (or is it even used?)
-
-// follows the Java implementation closely
-// length is the rle-value. Ie, run [10,12) uses a length value 1.
-void run_container_smart_append_exclusive(run_container_t *src,
- const uint16_t start,
- const uint16_t length) {
- int old_end;
- rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL;
- rle16_t *appended_last_run = src->runs + src->n_runs;
-
- if (!src->n_runs ||
- (start > (old_end = last_run->value + last_run->length + 1))) {
- *appended_last_run = CROARING_MAKE_RLE16(start, length);
- src->n_runs++;
- return;
- }
- if (old_end == start) {
- // we merge
- last_run->length += (length + 1);
- return;
- }
- int new_end = start + length + 1;
-
- if (start == last_run->value) {
- // wipe out previous
- if (new_end < old_end) {
- *last_run = CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
- return;
- } else if (new_end > old_end) {
- *last_run = CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
- return;
- } else {
- src->n_runs--;
- return;
- }
- }
- last_run->length = start - last_run->value - 1;
- if (new_end < old_end) {
- *appended_last_run =
- CROARING_MAKE_RLE16(new_end, old_end - new_end - 1);
- src->n_runs++;
- } else if (new_end > old_end) {
- *appended_last_run =
- CROARING_MAKE_RLE16(old_end, new_end - old_end - 1);
- src->n_runs++;
- }
-}
-
-bool run_container_select(const run_container_t *container,
- uint32_t *start_rank, uint32_t rank,
- uint32_t *element) {
- for (int i = 0; i < container->n_runs; i++) {
- uint16_t length = container->runs[i].length;
- if (rank <= *start_rank + length) {
- uint16_t value = container->runs[i].value;
- *element = value + rank - (*start_rank);
- return true;
- } else
- *start_rank += length + 1;
- }
- return false;
-}
-
-int run_container_rank(const run_container_t *container, uint16_t x) {
- int sum = 0;
- uint32_t x32 = x;
- for (int i = 0; i < container->n_runs; i++) {
- uint32_t startpoint = container->runs[i].value;
- uint32_t length = container->runs[i].length;
- uint32_t endpoint = length + startpoint;
- if (x <= endpoint) {
- if (x < startpoint) break;
- return sum + (x32 - startpoint) + 1;
- } else {
- sum += length + 1;
- }
- }
- return sum;
-}
-uint32_t run_container_rank_many(const run_container_t *container,
- uint64_t start_rank, const uint32_t *begin,
- const uint32_t *end, uint64_t *ans) {
- const uint16_t high = (uint16_t)((*begin) >> 16);
- const uint32_t *iter = begin;
- int sum = 0;
- int i = 0;
- for (; iter != end; iter++) {
- uint32_t x = *iter;
- uint16_t xhigh = (uint16_t)(x >> 16);
- if (xhigh != high) return iter - begin; // stop at next container
-
- uint32_t x32 = x & 0xFFFF;
- while (i < container->n_runs) {
- uint32_t startpoint = container->runs[i].value;
- uint32_t length = container->runs[i].length;
- uint32_t endpoint = length + startpoint;
- if (x32 <= endpoint) {
- if (x32 < startpoint) {
- *(ans++) = start_rank + sum;
- } else {
- *(ans++) = start_rank + sum + (x32 - startpoint) + 1;
- }
- break;
- } else {
- sum += length + 1;
- i++;
- }
- }
- if (i >= container->n_runs) *(ans++) = start_rank + sum;
- }
-
- return iter - begin;
-}
-
-int run_container_get_index(const run_container_t *container, uint16_t x) {
- if (run_container_contains(container, x)) {
- int sum = 0;
- uint32_t x32 = x;
- for (int i = 0; i < container->n_runs; i++) {
- uint32_t startpoint = container->runs[i].value;
- uint32_t length = container->runs[i].length;
- uint32_t endpoint = length + startpoint;
- if (x <= endpoint) {
- if (x < startpoint) break;
- return sum + (x32 - startpoint);
- } else {
- sum += length + 1;
- }
- }
- return sum - 1;
- } else {
- return -1;
- }
-}
-
-#if defined(CROARING_IS_X64) && CROARING_COMPILER_SUPPORTS_AVX512
-
-CROARING_TARGET_AVX512
-ALLOW_UNALIGNED
-/* Get the cardinality of `run'. Requires an actual computation. */
-static inline int _avx512_run_container_cardinality(
- const run_container_t *run) {
- const int32_t n_runs = run->n_runs;
- const rle16_t *runs = run->runs;
-
- /* by initializing with n_runs, we omit counting the +1 for each pair. */
- int sum = n_runs;
- int32_t k = 0;
- const int32_t step = sizeof(__m512i) / sizeof(rle16_t);
- if (n_runs > step) {
- __m512i total = _mm512_setzero_si512();
- for (; k + step <= n_runs; k += step) {
- __m512i ymm1 = _mm512_loadu_si512((const __m512i *)(runs + k));
- __m512i justlengths = _mm512_srli_epi32(ymm1, 16);
- total = _mm512_add_epi32(total, justlengths);
- }
-
- __m256i lo = _mm512_extracti32x8_epi32(total, 0);
- __m256i hi = _mm512_extracti32x8_epi32(total, 1);
-
- // a store might be faster than extract?
- uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
- _mm256_storeu_si256((__m256i *)buffer, lo);
- sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
- (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
-
- _mm256_storeu_si256((__m256i *)buffer, hi);
- sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
- (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
- }
- for (; k < n_runs; ++k) {
- sum += runs[k].length;
- }
-
- return sum;
-}
-
-CROARING_UNTARGET_AVX512
-
-CROARING_TARGET_AVX2
-ALLOW_UNALIGNED
-/* Get the cardinality of `run'. Requires an actual computation. */
-static inline int _avx2_run_container_cardinality(const run_container_t *run) {
- const int32_t n_runs = run->n_runs;
- const rle16_t *runs = run->runs;
-
- /* by initializing with n_runs, we omit counting the +1 for each pair. */
- int sum = n_runs;
- int32_t k = 0;
- const int32_t step = sizeof(__m256i) / sizeof(rle16_t);
- if (n_runs > step) {
- __m256i total = _mm256_setzero_si256();
- for (; k + step <= n_runs; k += step) {
- __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k));
- __m256i justlengths = _mm256_srli_epi32(ymm1, 16);
- total = _mm256_add_epi32(total, justlengths);
- }
- // a store might be faster than extract?
- uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
- _mm256_storeu_si256((__m256i *)buffer, total);
- sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
- (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
- }
- for (; k < n_runs; ++k) {
- sum += runs[k].length;
- }
-
- return sum;
-}
-
-ALLOW_UNALIGNED
-int _avx2_run_container_to_uint32_array(void *vout, const run_container_t
*cont,
- uint32_t base) {
- int outpos = 0;
- uint32_t *out = (uint32_t *)vout;
-
- for (int i = 0; i < cont->n_runs; ++i) {
- uint32_t run_start = base + cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
- if (le < 8) {
- for (int j = 0; j <= le; ++j) {
- uint32_t val = run_start + j;
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on
x64
- outpos++;
- }
- } else {
- int j = 0;
- __m256i run_start_v = _mm256_set1_epi32(run_start);
- // [8,8,8,8....]
- __m256i inc = _mm256_set1_epi32(8);
- // used for generate sequence:
- // [0, 1, 2, 3...], [8, 9, 10,...]
- __m256i delta = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
- for (j = 0; j + 8 <= le; j += 8) {
- __m256i val_v = _mm256_add_epi32(run_start_v, delta);
- _mm256_storeu_si256((__m256i *)(out + outpos), val_v);
- delta = _mm256_add_epi32(inc, delta);
- outpos += 8;
- }
- for (; j <= le; ++j) {
- uint32_t val = run_start + j;
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on
x64
- outpos++;
- }
- }
- }
- return outpos;
-}
-
-CROARING_UNTARGET_AVX2
-
-/* Get the cardinality of `run'. Requires an actual computation. */
-static inline int _scalar_run_container_cardinality(
- const run_container_t *run) {
- const int32_t n_runs = run->n_runs;
- const rle16_t *runs = run->runs;
-
- /* by initializing with n_runs, we omit counting the +1 for each pair. */
- int sum = n_runs;
- for (int k = 0; k < n_runs; ++k) {
- sum += runs[k].length;
- }
-
- return sum;
-}
-
-int run_container_cardinality(const run_container_t *run) {
-#if CROARING_COMPILER_SUPPORTS_AVX512
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX512) {
- return _avx512_run_container_cardinality(run);
- } else
-#endif
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- return _avx2_run_container_cardinality(run);
- } else {
- return _scalar_run_container_cardinality(run);
- }
-}
-
-int _scalar_run_container_to_uint32_array(void *vout,
- const run_container_t *cont,
- uint32_t base) {
- int outpos = 0;
- uint32_t *out = (uint32_t *)vout;
- for (int i = 0; i < cont->n_runs; ++i) {
- uint32_t run_start = base + cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
- for (int j = 0; j <= le; ++j) {
- uint32_t val = run_start + j;
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- outpos++;
- }
- }
- return outpos;
-}
-
-int run_container_to_uint32_array(void *vout, const run_container_t *cont,
- uint32_t base) {
- if (croaring_hardware_support() & ROARING_SUPPORTS_AVX2) {
- return _avx2_run_container_to_uint32_array(vout, cont, base);
- } else {
- return _scalar_run_container_to_uint32_array(vout, cont, base);
- }
-}
-
-#else
-
-/* Get the cardinality of `run'. Requires an actual computation. */
-ALLOW_UNALIGNED
-int run_container_cardinality(const run_container_t *run) {
- const int32_t n_runs = run->n_runs;
- const rle16_t *runs = run->runs;
-
- /* by initializing with n_runs, we omit counting the +1 for each pair. */
- int sum = n_runs;
- for (int k = 0; k < n_runs; ++k) {
- sum += runs[k].length;
- }
-
- return sum;
-}
-
-ALLOW_UNALIGNED
-int run_container_to_uint32_array(void *vout, const run_container_t *cont,
- uint32_t base) {
- int outpos = 0;
- uint32_t *out = (uint32_t *)vout;
- for (int i = 0; i < cont->n_runs; ++i) {
- uint32_t run_start = base + cont->runs[i].value;
- uint16_t le = cont->runs[i].length;
- for (int j = 0; j <= le; ++j) {
- uint32_t val = run_start + j;
- memcpy(out + outpos, &val,
- sizeof(uint32_t)); // should be compiled as a MOV on x64
- outpos++;
- }
- }
- return outpos;
-}
-
-#endif
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-#if defined(__GNUC__) && !defined(__clang__)
-#pragma GCC diagnostic pop
-#endif/* end file src/containers/run.c */
-/* begin file src/isadetection.c */
-
-/* From
-https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
-Highly modified.
-
-Copyright (c) 2016- Facebook, Inc (Adam Paszke)
-Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
-Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
-Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
-Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
-Copyright (c) 2011-2013 NYU (Clement Farabet)
-Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
-Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute
-(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan
Collobert,
-Samy Bengio, Johnny Mariethoz)
-
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
-2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
-3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
-America and IDIAP Research Institute nor the names of its contributors may be
- used to endorse or promote products derived from this software without
- specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
-*/
-
-#include <stdbool.h>
-#include <stdint.h>
-#include <stdlib.h>
-
-// Binaries produced by Visual Studio 19.38 with solely AVX2 routines
-// can compile to AVX-512 thus causing crashes on non-AVX-512 systems.
-// This appears to affect VS 17.8 and 17.9. We disable AVX-512 and AVX2
-// on these systems. It seems that ClangCL is not affected.
-// https://github.com/RoaringBitmap/CRoaring/pull/603
-#ifndef __clang__
-#if _MSC_VER == 1938
-#define ROARING_DISABLE_AVX 1
-#endif // _MSC_VER == 1938
-#endif // __clang__
-
-// We need portability.h to be included first, see
-// https://github.com/RoaringBitmap/CRoaring/issues/394
-#if CROARING_REGULAR_VISUAL_STUDIO
-#include <intrin.h>
-#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
-#include <cpuid.h>
-#endif // CROARING_REGULAR_VISUAL_STUDIO
-
-#if CROARING_IS_X64
-#ifndef CROARING_COMPILER_SUPPORTS_AVX512
-#error "CROARING_COMPILER_SUPPORTS_AVX512 needs to be defined."
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-enum croaring_instruction_set {
- CROARING_DEFAULT = 0x0,
- CROARING_NEON = 0x1,
- CROARING_AVX2 = 0x4,
- CROARING_SSE42 = 0x8,
- CROARING_PCLMULQDQ = 0x10,
- CROARING_BMI1 = 0x20,
- CROARING_BMI2 = 0x40,
- CROARING_ALTIVEC = 0x80,
- CROARING_AVX512F = 0x100,
- CROARING_AVX512DQ = 0x200,
- CROARING_AVX512BW = 0x400,
- CROARING_AVX512VBMI2 = 0x800,
- CROARING_AVX512BITALG = 0x1000,
- CROARING_AVX512VPOPCNTDQ = 0x2000,
- CROARING_UNINITIALIZED = 0x8000
-};
-
-#if CROARING_COMPILER_SUPPORTS_AVX512
-unsigned int CROARING_AVX512_REQUIRED =
- (CROARING_AVX512F | CROARING_AVX512DQ | CROARING_AVX512BW |
- CROARING_AVX512VBMI2 | CROARING_AVX512BITALG | CROARING_AVX512VPOPCNTDQ);
-#endif
-
-#if defined(__x86_64__) || defined(_M_AMD64) // x64
-
-static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
- uint32_t *edx) {
-#if CROARING_REGULAR_VISUAL_STUDIO
- int cpu_info[4];
- __cpuidex(cpu_info, *eax, *ecx);
- *eax = cpu_info[0];
- *ebx = cpu_info[1];
- *ecx = cpu_info[2];
- *edx = cpu_info[3];
-#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
- uint32_t level = *eax;
- __get_cpuid(level, eax, ebx, ecx, edx);
-#else
- uint32_t a = *eax, b, c = *ecx, d;
- __asm__("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
- *eax = a;
- *ebx = b;
- *ecx = c;
- *edx = d;
-#endif
-}
-
-static inline uint64_t xgetbv(void) {
-#if defined(_MSC_VER)
- return _xgetbv(0);
-#else
- uint32_t xcr0_lo, xcr0_hi;
- __asm__("xgetbv\n\t" : "=a"(xcr0_lo), "=d"(xcr0_hi) : "c"(0));
- return xcr0_lo | ((uint64_t)xcr0_hi << 32);
-#endif
-}
-
-/**
- * This is a relatively expensive function but it will get called at most
- * *once* per compilation units. Normally, the CRoaring library is built
- * as one compilation unit.
- */
-static inline uint32_t dynamic_croaring_detect_supported_architectures(void) {
- uint32_t eax, ebx, ecx, edx;
- uint32_t host_isa = 0x0;
- // Can be found on Intel ISA Reference for CPUID
- static uint32_t cpuid_avx2_bit =
- 1 << 5; ///< @private Bit 5 of EBX for EAX=0x7
- static uint32_t cpuid_bmi1_bit =
- 1 << 3; ///< @private bit 3 of EBX for EAX=0x7
- static uint32_t cpuid_bmi2_bit =
- 1 << 8; ///< @private bit 8 of EBX for EAX=0x7
- static uint32_t cpuid_avx512f_bit =
- 1 << 16; ///< @private bit 16 of EBX for EAX=0x7
- static uint32_t cpuid_avx512dq_bit =
- 1 << 17; ///< @private bit 17 of EBX for EAX=0x7
- static uint32_t cpuid_avx512bw_bit =
- 1 << 30; ///< @private bit 30 of EBX for EAX=0x7
- static uint32_t cpuid_avx512vbmi2_bit =
- 1 << 6; ///< @private bit 6 of ECX for EAX=0x7
- static uint32_t cpuid_avx512bitalg_bit =
- 1 << 12; ///< @private bit 12 of ECX for EAX=0x7
- static uint32_t cpuid_avx512vpopcntdq_bit =
- 1 << 14; ///< @private bit 14 of ECX for EAX=0x7
- static uint64_t cpuid_avx256_saved = 1 << 2; ///< @private bit 2 = AVX
- static uint64_t cpuid_avx512_saved =
- 7 << 5; ///< @private bits 5,6,7 = opmask, ZMM_hi256, hi16_ZMM
- static uint32_t cpuid_sse42_bit =
- 1 << 20; ///< @private bit 20 of ECX for EAX=0x1
- static uint32_t cpuid_osxsave =
- (1 << 26) | (1 << 27); ///< @private bits 26+27 of ECX for EAX=0x1
- static uint32_t cpuid_pclmulqdq_bit =
- 1 << 1; ///< @private bit 1 of ECX for EAX=0x1
-
- // EBX for EAX=0x1
- eax = 0x1;
- ecx = 0x0;
- cpuid(&eax, &ebx, &ecx, &edx);
-
- if (ecx & cpuid_sse42_bit) {
- host_isa |= CROARING_SSE42;
- } else {
- return host_isa; // everything after is redundant
- }
-
- if (ecx & cpuid_pclmulqdq_bit) {
- host_isa |= CROARING_PCLMULQDQ;
- }
-
- if ((ecx & cpuid_osxsave) != cpuid_osxsave) {
- return host_isa;
- }
-
- // xgetbv for checking if the OS saves registers
- uint64_t xcr0 = xgetbv();
-
- if ((xcr0 & cpuid_avx256_saved) == 0) {
- return host_isa;
- }
-
- // ECX for EAX=0x7
- eax = 0x7;
- ecx = 0x0;
- cpuid(&eax, &ebx, &ecx, &edx);
- if (ebx & cpuid_avx2_bit) {
- host_isa |= CROARING_AVX2;
- }
- if (ebx & cpuid_bmi1_bit) {
- host_isa |= CROARING_BMI1;
- }
-
- if (ebx & cpuid_bmi2_bit) {
- host_isa |= CROARING_BMI2;
- }
-
- if (!((xcr0 & cpuid_avx512_saved) == cpuid_avx512_saved)) {
- return host_isa;
- }
-
- if (ebx & cpuid_avx512f_bit) {
- host_isa |= CROARING_AVX512F;
- }
-
- if (ebx & cpuid_avx512bw_bit) {
- host_isa |= CROARING_AVX512BW;
- }
-
- if (ebx & cpuid_avx512dq_bit) {
- host_isa |= CROARING_AVX512DQ;
- }
-
- if (ecx & cpuid_avx512vbmi2_bit) {
- host_isa |= CROARING_AVX512VBMI2;
- }
-
- if (ecx & cpuid_avx512bitalg_bit) {
- host_isa |= CROARING_AVX512BITALG;
- }
-
- if (ecx & cpuid_avx512vpopcntdq_bit) {
- host_isa |= CROARING_AVX512VPOPCNTDQ;
- }
-
- return host_isa;
-}
-
-#endif // end SIMD extension detection code
-
-#if defined(__x86_64__) || defined(_M_AMD64) // x64
-
-#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP
-static inline uint32_t croaring_detect_supported_architectures(void) {
- // thread-safe as per the C++11 standard.
- static uint32_t buffer = dynamic_croaring_detect_supported_architectures();
- return buffer;
-}
-#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
-static uint32_t croaring_detect_supported_architectures(void) {
- // we use an atomic for thread safety
- static _Atomic uint32_t buffer = CROARING_UNINITIALIZED;
- if (buffer == CROARING_UNINITIALIZED) {
- // atomicity is sufficient
- buffer = dynamic_croaring_detect_supported_architectures();
- }
- return buffer;
-}
-#else
-// If we do not have atomics, we do the best we can.
-static inline uint32_t croaring_detect_supported_architectures(void) {
- static uint32_t buffer = CROARING_UNINITIALIZED;
- if (buffer == CROARING_UNINITIALIZED) {
- buffer = dynamic_croaring_detect_supported_architectures();
- }
- return buffer;
-}
-#endif // CROARING_C_ATOMIC
-
-#ifdef ROARING_DISABLE_AVX
-
-int croaring_hardware_support(void) { return 0; }
-
-#elif defined(__AVX512F__) && defined(__AVX512DQ__) && \
- defined(__AVX512BW__) && defined(__AVX512VBMI2__) && \
- defined(__AVX512BITALG__) && defined(__AVX512VPOPCNTDQ__)
-int croaring_hardware_support(void) {
- return ROARING_SUPPORTS_AVX2 | ROARING_SUPPORTS_AVX512;
-}
-#elif defined(__AVX2__)
-
-int croaring_hardware_support(void) {
- static
-#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
- _Atomic
-#endif
- int support = 0xFFFFFFF;
- if (support == 0xFFFFFFF) {
- bool avx512_support = false;
-#if CROARING_COMPILER_SUPPORTS_AVX512
- avx512_support =
- ((croaring_detect_supported_architectures() &
- CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED);
-#endif
- support = ROARING_SUPPORTS_AVX2 |
- (avx512_support ? ROARING_SUPPORTS_AVX512 : 0);
- }
- return support;
-}
-#else
-
-int croaring_hardware_support(void) {
- static
-#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
- _Atomic
-#endif
- int support = 0xFFFFFFF;
- if (support == 0xFFFFFFF) {
- bool has_avx2 = (croaring_detect_supported_architectures() &
- CROARING_AVX2) == CROARING_AVX2;
- bool has_avx512 = false;
-#if CROARING_COMPILER_SUPPORTS_AVX512
- has_avx512 = (croaring_detect_supported_architectures() &
- CROARING_AVX512_REQUIRED) == CROARING_AVX512_REQUIRED;
-#endif // CROARING_COMPILER_SUPPORTS_AVX512
- support = (has_avx2 ? ROARING_SUPPORTS_AVX2 : 0) |
- (has_avx512 ? ROARING_SUPPORTS_AVX512 : 0);
- }
- return support;
-}
-#endif
-
-#endif // defined(__x86_64__) || defined(_M_AMD64) // x64
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/isadetection.c */
-/* begin file src/memory.c */
-#include <stdlib.h>
-
-
-// without the following, we get lots of warnings about posix_memalign
-#ifndef __cplusplus
-extern int posix_memalign(void** __memptr, size_t __alignment, size_t __size);
-#endif //__cplusplus // C++ does not have a well defined signature
-
-// portable version of posix_memalign
-static void* roaring_bitmap_aligned_malloc(size_t alignment, size_t size) {
- void* p;
-#ifdef _MSC_VER
- p = _aligned_malloc(size, alignment);
-#elif defined(__MINGW32__) || defined(__MINGW64__)
- p = __mingw_aligned_malloc(size, alignment);
-#else
- // somehow, if this is used before including "x86intrin.h", it creates an
- // implicit defined warning.
- if (posix_memalign(&p, alignment, size) != 0) return NULL;
-#endif
- return p;
-}
-
-static void roaring_bitmap_aligned_free(void* memblock) {
-#ifdef _MSC_VER
- _aligned_free(memblock);
-#elif defined(__MINGW32__) || defined(__MINGW64__)
- __mingw_aligned_free(memblock);
-#else
- free(memblock);
-#endif
-}
-
-static roaring_memory_t global_memory_hook = {
- .malloc = malloc,
- .realloc = realloc,
- .calloc = calloc,
- .free = free,
- .aligned_malloc = roaring_bitmap_aligned_malloc,
- .aligned_free = roaring_bitmap_aligned_free,
-};
-
-void roaring_init_memory_hook(roaring_memory_t memory_hook) {
- global_memory_hook = memory_hook;
-}
-
-void* roaring_malloc(size_t n) { return global_memory_hook.malloc(n); }
-
-void* roaring_realloc(void* p, size_t new_sz) {
- return global_memory_hook.realloc(p, new_sz);
-}
-
-void* roaring_calloc(size_t n_elements, size_t element_size) {
- return global_memory_hook.calloc(n_elements, element_size);
-}
-
-void roaring_free(void* p) { global_memory_hook.free(p); }
-
-void* roaring_aligned_malloc(size_t alignment, size_t size) {
- return global_memory_hook.aligned_malloc(alignment, size);
-}
-
-void roaring_aligned_free(void* p) { global_memory_hook.aligned_free(p); }
-/* end file src/memory.c */
-/* begin file src/roaring.c */
-#include <assert.h>
-#include <inttypes.h>
-#include <limits.h>
-#include <stdarg.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <string.h>
-
-
-// Include after roaring.h
-
-#ifdef __cplusplus
-using namespace ::roaring::internal;
-
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-#define CROARING_SERIALIZATION_ARRAY_UINT32 1
-#define CROARING_SERIALIZATION_CONTAINER 2
-extern inline int roaring_trailing_zeroes(unsigned long long input_num);
-extern inline int roaring_leading_zeroes(unsigned long long input_num);
-extern inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r);
-extern inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r);
-extern inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r,
- bool cow);
-extern inline roaring_bitmap_t *roaring_bitmap_create(void);
-extern inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min,
- uint64_t max);
-extern inline void roaring_bitmap_remove_range(roaring_bitmap_t *r,
- uint64_t min, uint64_t max);
-
-static inline bool is_cow(const roaring_bitmap_t *r) {
- return r->high_low_container.flags & ROARING_FLAG_COW;
-}
-static inline bool is_frozen(const roaring_bitmap_t *r) {
- return r->high_low_container.flags & ROARING_FLAG_FROZEN;
-}
-
-// this is like roaring_bitmap_add, but it populates pointer arguments in such
a
-// way
-// that we can recover the container touched, which, in turn can be used to
-// accelerate some functions (when you repeatedly need to add to the same
-// container)
-static inline container_t *containerptr_roaring_bitmap_add(roaring_bitmap_t *r,
- uint32_t val,
- uint8_t *type,
- int *index) {
- roaring_array_t *ra = &r->high_low_container;
-
- uint16_t hb = val >> 16;
- const int i = ra_get_index(ra, hb);
- if (i >= 0) {
- ra_unshare_container_at_index(ra, (uint16_t)i);
- container_t *c = ra_get_container_at_index(ra, (uint16_t)i, type);
- uint8_t new_type = *type;
- container_t *c2 = container_add(c, val & 0xFFFF, *type, &new_type);
- *index = i;
- if (c2 != c) {
- container_free(c, *type);
- ra_set_container_at_index(ra, i, c2, new_type);
- *type = new_type;
- return c2;
- } else {
- return c;
- }
- } else {
- array_container_t *new_ac = array_container_create();
- container_t *c =
- container_add(new_ac, val & 0xFFFF, ARRAY_CONTAINER_TYPE, type);
- // we could just assume that it stays an array container
- ra_insert_new_key_value_at(ra, -i - 1, hb, c, *type);
- *index = -i - 1;
- return c;
- }
-}
-
-roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) {
- roaring_bitmap_t *ans =
- (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
- if (!ans) {
- return NULL;
- }
- bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap);
- if (!is_ok) {
- roaring_free(ans);
- return NULL;
- }
- return ans;
-}
-
-bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap) {
- return ra_init_with_capacity(&r->high_low_container, cap);
-}
-
-static inline void add_bulk_impl(roaring_bitmap_t *r,
- roaring_bulk_context_t *context,
- uint32_t val) {
- uint16_t key = val >> 16;
- if (context->container == NULL || context->key != key) {
- uint8_t typecode;
- int idx;
- context->container =
- containerptr_roaring_bitmap_add(r, val, &typecode, &idx);
- context->typecode = typecode;
- context->idx = idx;
- context->key = key;
- } else {
- // no need to seek the container, it is at hand
- // because we already have the container at hand, we can do the
- // insertion directly, bypassing the roaring_bitmap_add call
- uint8_t new_typecode;
- container_t *container2 = container_add(
- context->container, val & 0xFFFF, context->typecode,
&new_typecode);
- if (container2 != context->container) {
- // rare instance when we need to change the container type
- container_free(context->container, context->typecode);
- ra_set_container_at_index(&r->high_low_container, context->idx,
- container2, new_typecode);
- context->typecode = new_typecode;
- context->container = container2;
- }
- }
-}
-
-void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
- const uint32_t *vals) {
- uint32_t val;
- const uint32_t *start = vals;
- const uint32_t *end = vals + n_args;
- const uint32_t *current_val = start;
-
- if (n_args == 0) {
- return;
- }
-
- uint8_t typecode;
- int idx;
- container_t *container;
- val = *current_val;
- container = containerptr_roaring_bitmap_add(r, val, &typecode, &idx);
- roaring_bulk_context_t context = {container, idx, (uint16_t)(val >> 16),
- typecode};
-
- for (; current_val != end; current_val++) {
- memcpy(&val, current_val, sizeof(val));
- add_bulk_impl(r, &context, val);
- }
-}
-
-void roaring_bitmap_add_bulk(roaring_bitmap_t *r,
- roaring_bulk_context_t *context, uint32_t val) {
- add_bulk_impl(r, context, val);
-}
-
-bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r,
- roaring_bulk_context_t *context,
- uint32_t val) {
- uint16_t key = val >> 16;
- if (context->container == NULL || context->key != key) {
- int32_t start_idx = -1;
- if (context->container != NULL && context->key < key) {
- start_idx = context->idx;
- }
- int idx = ra_advance_until(&r->high_low_container, key, start_idx);
- if (idx == ra_get_size(&r->high_low_container)) {
- return false;
- }
- uint8_t typecode;
- context->container = ra_get_container_at_index(
- &r->high_low_container, (uint16_t)idx, &typecode);
- context->typecode = typecode;
- context->idx = idx;
- context->key =
- ra_get_key_at_index(&r->high_low_container, (uint16_t)idx);
- // ra_advance_until finds the next key >= the target, we found a later
- // container.
- if (context->key != key) {
- return false;
- }
- }
- // context is now set up
- return container_contains(context->container, val & 0xFFFF,
- context->typecode);
-}
-
-roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) {
- roaring_bitmap_t *answer = roaring_bitmap_create();
- roaring_bitmap_add_many(answer, n_args, vals);
- return answer;
-}
-
-roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) {
- // todo: could be greatly optimized but we do not expect this call to ever
- // include long lists
- roaring_bitmap_t *answer = roaring_bitmap_create();
- roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
- va_list ap;
- va_start(ap, n_args);
- for (size_t i = 0; i < n_args; i++) {
- uint32_t val = va_arg(ap, uint32_t);
- roaring_bitmap_add_bulk(answer, &context, val);
- }
- va_end(ap);
- return answer;
-}
-
-static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) {
- return (a < b) ? a : b;
-}
-
-roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
- uint32_t step) {
- if (max >= UINT64_C(0x100000000)) {
- max = UINT64_C(0x100000000);
- }
- if (step == 0) return NULL;
- if (max <= min) return NULL;
- roaring_bitmap_t *answer = roaring_bitmap_create();
- if (step >= (1 << 16)) {
- for (uint32_t value = (uint32_t)min; value < max; value += step) {
- roaring_bitmap_add(answer, value);
- }
- return answer;
- }
- uint64_t min_tmp = min;
- do {
- uint32_t key = (uint32_t)min_tmp >> 16;
- uint32_t container_min = min_tmp & 0xFFFF;
- uint32_t container_max =
- (uint32_t)minimum_uint64(max - (key << 16), 1 << 16);
- uint8_t type;
- container_t *container = container_from_range(
- &type, container_min, container_max, (uint16_t)step);
- ra_append(&answer->high_low_container, (uint16_t)key, container, type);
- uint32_t gap = container_max - container_min + step - 1;
- min_tmp += gap - (gap % step);
- } while (min_tmp < max);
- // cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step
- return answer;
-}
-
-void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min,
- uint32_t max) {
- if (min > max) {
- return;
- }
-
- roaring_array_t *ra = &r->high_low_container;
-
- uint32_t min_key = min >> 16;
- uint32_t max_key = max >> 16;
-
- int32_t num_required_containers = max_key - min_key + 1;
- int32_t suffix_length =
- count_greater(ra->keys, ra->size, (uint16_t)max_key);
- int32_t prefix_length =
- count_less(ra->keys, ra->size - suffix_length, (uint16_t)min_key);
- int32_t common_length = ra->size - prefix_length - suffix_length;
-
- if (num_required_containers > common_length) {
- ra_shift_tail(ra, suffix_length,
- num_required_containers - common_length);
- }
-
- int32_t src = prefix_length + common_length - 1;
- int32_t dst = ra->size - suffix_length - 1;
- for (uint32_t key = max_key; key != min_key - 1;
- key--) { // beware of min_key==0
- uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0;
- uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff;
- container_t *new_container;
- uint8_t new_type;
-
- if (src >= 0 && ra->keys[src] == key) {
- ra_unshare_container_at_index(ra, (uint16_t)src);
- new_container =
- container_add_range(ra->containers[src], ra->typecodes[src],
- container_min, container_max, &new_type);
- if (new_container != ra->containers[src]) {
- container_free(ra->containers[src], ra->typecodes[src]);
- }
- src--;
- } else {
- new_container = container_from_range(&new_type, container_min,
- container_max + 1, 1);
- }
- ra_replace_key_and_container_at_index(ra, dst, (uint16_t)key,
- new_container, new_type);
- dst--;
- }
-}
-
-void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min,
- uint32_t max) {
- if (min > max) {
- return;
- }
-
- roaring_array_t *ra = &r->high_low_container;
-
- uint32_t min_key = min >> 16;
- uint32_t max_key = max >> 16;
-
- int32_t src = count_less(ra->keys, ra->size, (uint16_t)min_key);
- int32_t dst = src;
- while (src < ra->size && ra->keys[src] <= max_key) {
- uint32_t container_min =
- (min_key == ra->keys[src]) ? (min & 0xffff) : 0;
- uint32_t container_max =
- (max_key == ra->keys[src]) ? (max & 0xffff) : 0xffff;
- ra_unshare_container_at_index(ra, (uint16_t)src);
- container_t *new_container;
- uint8_t new_type;
- new_container =
- container_remove_range(ra->containers[src], ra->typecodes[src],
- container_min, container_max, &new_type);
- if (new_container != ra->containers[src]) {
- container_free(ra->containers[src], ra->typecodes[src]);
- }
- if (new_container) {
- ra_replace_key_and_container_at_index(ra, dst, ra->keys[src],
- new_container, new_type);
- dst++;
- }
- src++;
- }
- if (src > dst) {
- ra_shift_tail(ra, ra->size - src, dst - src);
- }
-}
-
-void roaring_bitmap_printf(const roaring_bitmap_t *r) {
- const roaring_array_t *ra = &r->high_low_container;
-
- printf("{");
- for (int i = 0; i < ra->size; ++i) {
- container_printf_as_uint32_array(ra->containers[i], ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16);
-
- if (i + 1 < ra->size) {
- printf(",");
- }
- }
- printf("}");
-}
-
-void roaring_bitmap_printf_describe(const roaring_bitmap_t *r) {
- const roaring_array_t *ra = &r->high_low_container;
-
- printf("{");
- for (int i = 0; i < ra->size; ++i) {
- printf("%d: %s (%d)", ra->keys[i],
- get_full_container_name(ra->containers[i], ra->typecodes[i]),
- container_get_cardinality(ra->containers[i], ra->typecodes[i]));
- if (ra->typecodes[i] == SHARED_CONTAINER_TYPE) {
- printf("(shared count = %" PRIu32 " )",
- croaring_refcount_get(
- &(CAST_shared(ra->containers[i])->counter)));
- }
-
- if (i + 1 < ra->size) {
- printf(", ");
- }
- }
- printf("}");
-}
-
-/**
- * (For advanced users.)
- * Collect statistics about the bitmap
- */
-void roaring_bitmap_statistics(const roaring_bitmap_t *r,
- roaring_statistics_t *stat) {
- const roaring_array_t *ra = &r->high_low_container;
-
- memset(stat, 0, sizeof(*stat));
- stat->n_containers = ra->size;
- stat->min_value = roaring_bitmap_minimum(r);
- stat->max_value = roaring_bitmap_maximum(r);
-
- for (int i = 0; i < ra->size; ++i) {
- uint8_t truetype =
- get_container_type(ra->containers[i], ra->typecodes[i]);
- uint32_t card =
- container_get_cardinality(ra->containers[i], ra->typecodes[i]);
- uint32_t sbytes =
- container_size_in_bytes(ra->containers[i], ra->typecodes[i]);
- stat->cardinality += card;
- switch (truetype) {
- case BITSET_CONTAINER_TYPE:
- stat->n_bitset_containers++;
- stat->n_values_bitset_containers += card;
- stat->n_bytes_bitset_containers += sbytes;
- break;
- case ARRAY_CONTAINER_TYPE:
- stat->n_array_containers++;
- stat->n_values_array_containers += card;
- stat->n_bytes_array_containers += sbytes;
- break;
- case RUN_CONTAINER_TYPE:
- stat->n_run_containers++;
- stat->n_values_run_containers += card;
- stat->n_bytes_run_containers += sbytes;
- break;
- default:
- assert(false);
- roaring_unreachable;
- }
- }
-}
-
-/*
- * Checks that:
- * - Array containers are sorted and contain no duplicates
- * - Range containers are sorted and contain no overlapping ranges
- * - Roaring containers are sorted by key and there are no duplicate keys
- * - The correct container type is use for each container (e.g. bitmaps aren't
- * used for small containers)
- */
-bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r,
- const char **reason) {
- const char *reason_local;
- if (reason == NULL) {
- // Always allow assigning through *reason
- reason = &reason_local;
- }
- *reason = NULL;
- const roaring_array_t *ra = &r->high_low_container;
- if (ra->size < 0) {
- *reason = "negative size";
- return false;
- }
- if (ra->allocation_size < 0) {
- *reason = "negative allocation size";
- return false;
- }
- if (ra->size > ra->allocation_size) {
- *reason = "more containers than allocated space";
- return false;
- }
- if (ra->flags & ~(ROARING_FLAG_COW | ROARING_FLAG_FROZEN)) {
- *reason = "invalid flags";
- return false;
- }
- if (ra->size == 0) {
- return true;
- }
-
- if (ra->keys == NULL) {
- *reason = "keys is NULL";
- return false;
- }
- if (ra->typecodes == NULL) {
- *reason = "typecodes is NULL";
- return false;
- }
- if (ra->containers == NULL) {
- *reason = "containers is NULL";
- return false;
- }
-
- uint32_t prev_key = ra->keys[0];
- for (int32_t i = 1; i < ra->size; ++i) {
- if (ra->keys[i] <= prev_key) {
- *reason = "keys not strictly increasing";
- return false;
- }
- prev_key = ra->keys[i];
- }
-
- for (int32_t i = 0; i < ra->size; ++i) {
- if (!container_internal_validate(ra->containers[i], ra->typecodes[i],
- reason)) {
- // reason should already be set
- if (*reason == NULL) {
- *reason = "container failed to validate but no reason given";
- }
- return false;
- }
- }
-
- return true;
-}
-
-roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) {
- roaring_bitmap_t *ans =
- (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
- if (!ans) {
- return NULL;
- }
- if (!ra_init_with_capacity( // allocation of list of containers can fail
- &ans->high_low_container, r->high_low_container.size)) {
- roaring_free(ans);
- return NULL;
- }
- if (!ra_overwrite( // memory allocation of individual containers may fail
- &r->high_low_container, &ans->high_low_container, is_cow(r))) {
- roaring_bitmap_free(ans); // overwrite should leave in freeable state
- return NULL;
- }
- roaring_bitmap_set_copy_on_write(ans, is_cow(r));
- return ans;
-}
-
-bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
- const roaring_bitmap_t *src) {
- roaring_bitmap_set_copy_on_write(dest, is_cow(src));
- return ra_overwrite(&src->high_low_container, &dest->high_low_container,
- is_cow(src));
-}
-
-void roaring_bitmap_free(const roaring_bitmap_t *r) {
- if (r == NULL) {
- return;
- }
- if (!is_frozen(r)) {
- ra_clear((roaring_array_t *)&r->high_low_container);
- }
- roaring_free((roaring_bitmap_t *)r);
-}
-
-void roaring_bitmap_clear(roaring_bitmap_t *r) {
- ra_reset(&r->high_low_container);
-}
-
-void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) {
- roaring_array_t *ra = &r->high_low_container;
-
- const uint16_t hb = val >> 16;
- const int i = ra_get_index(ra, hb);
- uint8_t typecode;
- if (i >= 0) {
- ra_unshare_container_at_index(ra, (uint16_t)i);
- container_t *container =
- ra_get_container_at_index(ra, (uint16_t)i, &typecode);
- uint8_t newtypecode = typecode;
- container_t *container2 =
- container_add(container, val & 0xFFFF, typecode, &newtypecode);
- if (container2 != container) {
- container_free(container, typecode);
- ra_set_container_at_index(&r->high_low_container, i, container2,
- newtypecode);
- }
- } else {
- array_container_t *newac = array_container_create();
- container_t *container =
- container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE,
&typecode);
- // we could just assume that it stays an array container
- ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
- container, typecode);
- }
-}
-
-bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) {
- const uint16_t hb = val >> 16;
- const int i = ra_get_index(&r->high_low_container, hb);
- uint8_t typecode;
- bool result = false;
- if (i >= 0) {
- ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
- container_t *container = ra_get_container_at_index(
- &r->high_low_container, (uint16_t)i, &typecode);
-
- const int oldCardinality =
- container_get_cardinality(container, typecode);
-
- uint8_t newtypecode = typecode;
- container_t *container2 =
- container_add(container, val & 0xFFFF, typecode, &newtypecode);
- if (container2 != container) {
- container_free(container, typecode);
- ra_set_container_at_index(&r->high_low_container, i, container2,
- newtypecode);
- result = true;
- } else {
- const int newCardinality =
- container_get_cardinality(container, newtypecode);
-
- result = oldCardinality != newCardinality;
- }
- } else {
- array_container_t *newac = array_container_create();
- container_t *container =
- container_add(newac, val & 0xFFFF, ARRAY_CONTAINER_TYPE,
&typecode);
- // we could just assume that it stays an array container
- ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
- container, typecode);
- result = true;
- }
-
- return result;
-}
-
-void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) {
- const uint16_t hb = val >> 16;
- const int i = ra_get_index(&r->high_low_container, hb);
- uint8_t typecode;
- if (i >= 0) {
- ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
- container_t *container = ra_get_container_at_index(
- &r->high_low_container, (uint16_t)i, &typecode);
- uint8_t newtypecode = typecode;
- container_t *container2 =
- container_remove(container, val & 0xFFFF, typecode, &newtypecode);
- if (container2 != container) {
- container_free(container, typecode);
- ra_set_container_at_index(&r->high_low_container, i, container2,
- newtypecode);
- }
- if (container_get_cardinality(container2, newtypecode) != 0) {
- ra_set_container_at_index(&r->high_low_container, i, container2,
- newtypecode);
- } else {
- ra_remove_at_index_and_free(&r->high_low_container, i);
- }
- }
-}
-
-bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) {
- const uint16_t hb = val >> 16;
- const int i = ra_get_index(&r->high_low_container, hb);
- uint8_t typecode;
- bool result = false;
- if (i >= 0) {
- ra_unshare_container_at_index(&r->high_low_container, (uint16_t)i);
- container_t *container = ra_get_container_at_index(
- &r->high_low_container, (uint16_t)i, &typecode);
-
- const int oldCardinality =
- container_get_cardinality(container, typecode);
-
- uint8_t newtypecode = typecode;
- container_t *container2 =
- container_remove(container, val & 0xFFFF, typecode, &newtypecode);
- if (container2 != container) {
- container_free(container, typecode);
- ra_set_container_at_index(&r->high_low_container, i, container2,
- newtypecode);
- }
-
- const int newCardinality =
- container_get_cardinality(container2, newtypecode);
-
- if (newCardinality != 0) {
- ra_set_container_at_index(&r->high_low_container, i, container2,
- newtypecode);
- } else {
- ra_remove_at_index_and_free(&r->high_low_container, i);
- }
-
- result = oldCardinality != newCardinality;
- }
- return result;
-}
-
-void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
- const uint32_t *vals) {
- if (n_args == 0 || r->high_low_container.size == 0) {
- return;
- }
- int32_t pos =
- -1; // position of the container used in the previous iteration
- for (size_t i = 0; i < n_args; i++) {
- uint16_t key = (uint16_t)(vals[i] >> 16);
- if (pos < 0 || key != r->high_low_container.keys[pos]) {
- pos = ra_get_index(&r->high_low_container, key);
- }
- if (pos >= 0) {
- uint8_t new_typecode;
- container_t *new_container;
- new_container = container_remove(
- r->high_low_container.containers[pos], vals[i] & 0xffff,
- r->high_low_container.typecodes[pos], &new_typecode);
- if (new_container != r->high_low_container.containers[pos]) {
- container_free(r->high_low_container.containers[pos],
- r->high_low_container.typecodes[pos]);
- ra_replace_key_and_container_at_index(&r->high_low_container,
- pos, key, new_container,
- new_typecode);
- }
- if (!container_nonzero_cardinality(new_container, new_typecode)) {
- container_free(new_container, new_typecode);
- ra_remove_at_index(&r->high_low_container, pos);
- pos = -1;
- }
- }
- }
-}
-
-// there should be some SIMD optimizations possible here
-roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- uint32_t neededcap = length1 > length2 ? length2 : length1;
- roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
- roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
-
- int pos1 = 0, pos2 = 0;
-
- while (pos1 < length1 && pos2 < length2) {
- const uint16_t s1 =
- ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- const uint16_t s2 =
- ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- if (s1 == s2) {
- uint8_t type1, type2;
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- container_t *c = container_and(c1, type1, c2, type2, &result_type);
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_append(&answer->high_low_container, s1, c, result_type);
- } else {
- container_free(c, result_type); // otherwise: memory leak!
- }
- ++pos1;
- ++pos2;
- } else if (s1 < s2) { // s1 < s2
- pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
- } else { // s1 > s2
- pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
- }
- }
- return answer;
-}
-
-/**
- * Compute the union of 'number' bitmaps.
- */
-roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
- const roaring_bitmap_t **x) {
- if (number == 0) {
- return roaring_bitmap_create();
- }
- if (number == 1) {
- return roaring_bitmap_copy(x[0]);
- }
- roaring_bitmap_t *answer =
- roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION);
- for (size_t i = 2; i < number; i++) {
- roaring_bitmap_lazy_or_inplace(answer, x[i],
LAZY_OR_BITSET_CONVERSION);
- }
- roaring_bitmap_repair_after_lazy(answer);
- return answer;
-}
-
-/**
- * Compute the xor of 'number' bitmaps.
- */
-roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
- const roaring_bitmap_t **x) {
- if (number == 0) {
- return roaring_bitmap_create();
- }
- if (number == 1) {
- return roaring_bitmap_copy(x[0]);
- }
- roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]);
- for (size_t i = 2; i < number; i++) {
- roaring_bitmap_lazy_xor_inplace(answer, x[i]);
- }
- roaring_bitmap_repair_after_lazy(answer);
- return answer;
-}
-
-// inplace and (modifies its first argument).
-void roaring_bitmap_and_inplace(roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- if (x1 == x2) return;
- int pos1 = 0, pos2 = 0, intersection_size = 0;
- const int length1 = ra_get_size(&x1->high_low_container);
- const int length2 = ra_get_size(&x2->high_low_container);
-
- // any skipped-over or newly emptied containers in x1
- // have to be freed.
- while (pos1 < length1 && pos2 < length2) {
- const uint16_t s1 =
- ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- const uint16_t s2 =
- ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- if (s1 == s2) {
- uint8_t type1, type2, result_type;
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
-
- // We do the computation "in place" only when c1 is not a shared
- // container. Rationale: using a shared container safely with in
- // place computation would require making a copy and then doing the
- // computation in place which is likely less efficient than
avoiding
- // in place entirely and always generating a new container.
- container_t *c =
- (type1 == SHARED_CONTAINER_TYPE)
- ? container_and(c1, type1, c2, type2, &result_type)
- : container_iand(c1, type1, c2, type2, &result_type);
-
- if (c != c1) { // in this instance a new container was created,
and
- // we need to free the old one
- container_free(c1, type1);
- }
- if (container_nonzero_cardinality(c, result_type)) {
- ra_replace_key_and_container_at_index(&x1->high_low_container,
- intersection_size, s1, c,
- result_type);
- intersection_size++;
- } else {
- container_free(c, result_type);
- }
- ++pos1;
- ++pos2;
- } else if (s1 < s2) {
- pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1);
- } else { // s1 > s2
- pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
- }
- }
-
- // if we ended early because x2 ran out, then all remaining in x1 should be
- // freed
- while (pos1 < length1) {
- container_free(x1->high_low_container.containers[pos1],
- x1->high_low_container.typecodes[pos1]);
- ++pos1;
- }
-
- // all containers after this have either been copied or freed
- ra_downsize(&x1->high_low_container, intersection_size);
-}
-
-roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- if (0 == length1) {
- return roaring_bitmap_copy(x2);
- }
- if (0 == length2) {
- return roaring_bitmap_copy(x1);
- }
- roaring_bitmap_t *answer =
- roaring_bitmap_create_with_capacity(length1 + length2);
- roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- container_t *c = container_or(c1, type1, c2, type2, &result_type);
-
- // since we assume that the initial containers are non-empty, the
- // result here
- // can only be non-empty
- ra_append(&answer->high_low_container, s1, c, result_type);
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- // c1 = container_clone(c1, type1);
- c1 = get_copy_of_container(c1, &type1, is_cow(x1));
- if (is_cow(x1)) {
- ra_set_container_at_index(&x1->high_low_container, pos1, c1,
- type1);
- }
- ra_append(&answer->high_low_container, s1, c1, type1);
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- // c2 = container_clone(c2, type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
- ra_append(&answer->high_low_container, s2, c2, type2);
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&answer->high_low_container,
- &x2->high_low_container, pos2, length2,
- is_cow(x2));
- } else if (pos2 == length2) {
- ra_append_copy_range(&answer->high_low_container,
- &x1->high_low_container, pos1, length1,
- is_cow(x1));
- }
- return answer;
-}
-
-// inplace or (modifies its first argument).
-void roaring_bitmap_or_inplace(roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- int length1 = x1->high_low_container.size;
- const int length2 = x2->high_low_container.size;
-
- if (0 == length2) return;
-
- if (0 == length1) {
- roaring_bitmap_overwrite(x1, x2);
- return;
- }
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- if (!container_is_full(c1, type1)) {
- container_t *c2 = ra_get_container_at_index(
- &x2->high_low_container, (uint16_t)pos2, &type2);
- container_t *c =
- (type1 == SHARED_CONTAINER_TYPE)
- ? container_or(c1, type1, c2, type2, &result_type)
- : container_ior(c1, type1, c2, type2, &result_type);
-
- if (c != c1) { // in this instance a new container was
created,
- // and we need to free the old one
- container_free(c1, type1);
- }
- ra_set_container_at_index(&x1->high_low_container, pos1, c,
- result_type);
- }
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
-
- // container_t *c2_clone = container_clone(c2, type2);
- ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
- type2);
- pos1++;
- length1++;
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
- pos2, length2, is_cow(x2));
- }
-}
-
-roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- if (0 == length1) {
- return roaring_bitmap_copy(x2);
- }
- if (0 == length2) {
- return roaring_bitmap_copy(x1);
- }
- roaring_bitmap_t *answer =
- roaring_bitmap_create_with_capacity(length1 + length2);
- roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- container_t *c = container_xor(c1, type1, c2, type2, &result_type);
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_append(&answer->high_low_container, s1, c, result_type);
- } else {
- container_free(c, result_type);
- }
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- c1 = get_copy_of_container(c1, &type1, is_cow(x1));
- if (is_cow(x1)) {
- ra_set_container_at_index(&x1->high_low_container, pos1, c1,
- type1);
- }
- ra_append(&answer->high_low_container, s1, c1, type1);
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
- ra_append(&answer->high_low_container, s2, c2, type2);
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&answer->high_low_container,
- &x2->high_low_container, pos2, length2,
- is_cow(x2));
- } else if (pos2 == length2) {
- ra_append_copy_range(&answer->high_low_container,
- &x1->high_low_container, pos1, length1,
- is_cow(x1));
- }
- return answer;
-}
-
-// inplace xor (modifies its first argument).
-
-void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- assert(x1 != x2);
- uint8_t result_type = 0;
- int length1 = x1->high_low_container.size;
- const int length2 = x2->high_low_container.size;
-
- if (0 == length2) return;
-
- if (0 == length1) {
- roaring_bitmap_overwrite(x1, x2);
- return;
- }
-
- // XOR can have new containers inserted from x2, but can also
- // lose containers when x1 and x2 are nonempty and identical.
-
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
-
- // We do the computation "in place" only when c1 is not a shared
- // container. Rationale: using a shared container safely with in
- // place computation would require making a copy and then doing the
- // computation in place which is likely less efficient than
avoiding
- // in place entirely and always generating a new container.
-
- container_t *c;
- if (type1 == SHARED_CONTAINER_TYPE) {
- c = container_xor(c1, type1, c2, type2, &result_type);
- shared_container_free(CAST_shared(c1)); // so release
- } else {
- c = container_ixor(c1, type1, c2, type2, &result_type);
- }
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_set_container_at_index(&x1->high_low_container, pos1, c,
- result_type);
- ++pos1;
- } else {
- container_free(c, result_type);
- ra_remove_at_index(&x1->high_low_container, pos1);
- --length1;
- }
-
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
-
- ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
- type2);
- pos1++;
- length1++;
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
- pos2, length2, is_cow(x2));
- }
-}
-
-roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- if (0 == length1) {
- roaring_bitmap_t *empty_bitmap = roaring_bitmap_create();
- roaring_bitmap_set_copy_on_write(empty_bitmap,
- is_cow(x1) || is_cow(x2));
- return empty_bitmap;
- }
- if (0 == length2) {
- return roaring_bitmap_copy(x1);
- }
- roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1);
- roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
-
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = 0;
- uint16_t s2 = 0;
- while (true) {
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- container_t *c =
- container_andnot(c1, type1, c2, type2, &result_type);
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_append(&answer->high_low_container, s1, c, result_type);
- } else {
- container_free(c, result_type);
- }
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- } else if (s1 < s2) { // s1 < s2
- const int next_pos1 =
- ra_advance_until(&x1->high_low_container, s2, pos1);
- ra_append_copy_range(&answer->high_low_container,
- &x1->high_low_container, pos1, next_pos1,
- is_cow(x1));
- // TODO : perhaps some of the copy_on_write should be based on
- // answer rather than x1 (more stringent?). Many similar cases
- pos1 = next_pos1;
- if (pos1 == length1) break;
- } else { // s1 > s2
- pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
- if (pos2 == length2) break;
- }
- }
- if (pos2 == length2) {
- ra_append_copy_range(&answer->high_low_container,
- &x1->high_low_container, pos1, length1,
- is_cow(x1));
- }
- return answer;
-}
-
-// inplace andnot (modifies its first argument).
-
-void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- assert(x1 != x2);
-
- uint8_t result_type = 0;
- int length1 = x1->high_low_container.size;
- const int length2 = x2->high_low_container.size;
- int intersection_size = 0;
-
- if (0 == length2) return;
-
- if (0 == length1) {
- roaring_bitmap_clear(x1);
- return;
- }
-
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
-
- // We do the computation "in place" only when c1 is not a shared
- // container. Rationale: using a shared container safely with in
- // place computation would require making a copy and then doing the
- // computation in place which is likely less efficient than
avoiding
- // in place entirely and always generating a new container.
-
- container_t *c;
- if (type1 == SHARED_CONTAINER_TYPE) {
- c = container_andnot(c1, type1, c2, type2, &result_type);
- shared_container_free(CAST_shared(c1)); // release
- } else {
- c = container_iandnot(c1, type1, c2, type2, &result_type);
- }
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_replace_key_and_container_at_index(&x1->high_low_container,
- intersection_size++, s1,
- c, result_type);
- } else {
- container_free(c, result_type);
- }
-
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- if (pos1 != intersection_size) {
- container_t *c1 = ra_get_container_at_index(
- &x1->high_low_container, (uint16_t)pos1, &type1);
-
- ra_replace_key_and_container_at_index(
- &x1->high_low_container, intersection_size, s1, c1, type1);
- }
- intersection_size++;
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
-
- if (pos1 < length1) {
- // all containers between intersection_size and
- // pos1 are junk. However, they have either been moved
- // (thus still referenced) or involved in an iandnot
- // that will clean up all containers that could not be reused.
- // Thus we should not free the junk containers between
- // intersection_size and pos1.
- if (pos1 > intersection_size) {
- // left slide of remaining items
- ra_copy_range(&x1->high_low_container, pos1, length1,
- intersection_size);
- }
- // else current placement is fine
- intersection_size += (length1 - pos1);
- }
- ra_downsize(&x1->high_low_container, intersection_size);
-}
-
-uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r) {
- const roaring_array_t *ra = &r->high_low_container;
-
- uint64_t card = 0;
- for (int i = 0; i < ra->size; ++i)
- card += container_get_cardinality(ra->containers[i], ra->typecodes[i]);
- return card;
-}
-
-uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r,
- uint64_t range_start,
- uint64_t range_end) {
- if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
- return 0;
- }
- return roaring_bitmap_range_cardinality_closed(r, (uint32_t)range_start,
- (uint32_t)(range_end - 1));
-}
-
-uint64_t roaring_bitmap_range_cardinality_closed(const roaring_bitmap_t *r,
- uint32_t range_start,
- uint32_t range_end) {
- const roaring_array_t *ra = &r->high_low_container;
-
- if (range_start > range_end) {
- return 0;
- }
-
- // now we have: 0 <= range_start <= range_end <= UINT32_MAX
-
- uint16_t minhb = (uint16_t)(range_start >> 16);
- uint16_t maxhb = (uint16_t)(range_end >> 16);
-
- uint64_t card = 0;
-
- int i = ra_get_index(ra, minhb);
- if (i >= 0) {
- if (minhb == maxhb) {
- card += container_rank(ra->containers[i], ra->typecodes[i],
- range_end & 0xffff);
- } else {
- card +=
- container_get_cardinality(ra->containers[i], ra->typecodes[i]);
- }
- if ((range_start & 0xffff) != 0) {
- card -= container_rank(ra->containers[i], ra->typecodes[i],
- (range_start & 0xffff) - 1);
- }
- i++;
- } else {
- i = -i - 1;
- }
-
- for (; i < ra->size; i++) {
- uint16_t key = ra->keys[i];
- if (key < maxhb) {
- card +=
- container_get_cardinality(ra->containers[i], ra->typecodes[i]);
- } else if (key == maxhb) {
- card += container_rank(ra->containers[i], ra->typecodes[i],
- range_end & 0xffff);
- break;
- } else {
- break;
- }
- }
-
- return card;
-}
-
-bool roaring_bitmap_is_empty(const roaring_bitmap_t *r) {
- return r->high_low_container.size == 0;
-}
-
-void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans) {
- ra_to_uint32_array(&r->high_low_container, ans);
-}
-
-bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t
offset,
- size_t limit, uint32_t *ans) {
- return ra_range_uint32_array(&r->high_low_container, offset, limit, ans);
-}
-
-/** convert array and bitmap containers to run containers when it is more
- * efficient;
- * also convert from run containers when more space efficient. Returns
- * true if the result has at least one run container.
- */
-bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) {
- bool answer = false;
- for (int i = 0; i < r->high_low_container.size; i++) {
- uint8_t type_original, type_after;
- ra_unshare_container_at_index(
- &r->high_low_container,
- (uint16_t)i); // TODO: this introduces extra cloning!
- container_t *c = ra_get_container_at_index(&r->high_low_container,
- (uint16_t)i,
&type_original);
- container_t *c1 = convert_run_optimize(c, type_original, &type_after);
- if (type_after == RUN_CONTAINER_TYPE) {
- answer = true;
- }
- ra_set_container_at_index(&r->high_low_container, i, c1, type_after);
- }
- return answer;
-}
-
-size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) {
- size_t answer = 0;
- for (int i = 0; i < r->high_low_container.size; i++) {
- uint8_t type_original;
- container_t *c = ra_get_container_at_index(&r->high_low_container,
- (uint16_t)i,
&type_original);
- answer += container_shrink_to_fit(c, type_original);
- }
- answer += ra_shrink_to_fit(&r->high_low_container);
- return answer;
-}
-
-/**
- * Remove run-length encoding even when it is more space efficient
- * return whether a change was applied
- */
-bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) {
- bool answer = false;
- for (int i = 0; i < r->high_low_container.size; i++) {
- uint8_t type_original, type_after;
- container_t *c = ra_get_container_at_index(&r->high_low_container,
- (uint16_t)i,
&type_original);
- if (get_container_type(c, type_original) == RUN_CONTAINER_TYPE) {
- answer = true;
- if (type_original == SHARED_CONTAINER_TYPE) {
- run_container_t *truec = CAST_run(CAST_shared(c)->container);
- int32_t card = run_container_cardinality(truec);
- container_t *c1 = convert_to_bitset_or_array_container(
- truec, card, &type_after);
- shared_container_free(CAST_shared(c)); // frees run as needed
- ra_set_container_at_index(&r->high_low_container, i, c1,
- type_after);
-
- } else {
- int32_t card = run_container_cardinality(CAST_run(c));
- container_t *c1 = convert_to_bitset_or_array_container(
- CAST_run(c), card, &type_after);
- run_container_free(CAST_run(c));
- ra_set_container_at_index(&r->high_low_container, i, c1,
- type_after);
- }
- }
- }
- return answer;
-}
-
-size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf) {
- size_t portablesize = roaring_bitmap_portable_size_in_bytes(r);
- uint64_t cardinality = roaring_bitmap_get_cardinality(r);
- uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t);
- if (portablesize < sizeasarray) {
- buf[0] = CROARING_SERIALIZATION_CONTAINER;
- return roaring_bitmap_portable_serialize(r, buf + 1) + 1;
- } else {
- buf[0] = CROARING_SERIALIZATION_ARRAY_UINT32;
- memcpy(buf + 1, &cardinality, sizeof(uint32_t));
- roaring_bitmap_to_uint32_array(
- r, (uint32_t *)(buf + 1 + sizeof(uint32_t)));
- return 1 + (size_t)sizeasarray;
- }
-}
-
-size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r) {
- size_t portablesize = roaring_bitmap_portable_size_in_bytes(r);
- uint64_t sizeasarray =
- roaring_bitmap_get_cardinality(r) * sizeof(uint32_t) +
sizeof(uint32_t);
- return portablesize < sizeasarray ? portablesize + 1
- : (size_t)sizeasarray + 1;
-}
-
-size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r) {
- return ra_portable_size_in_bytes(&r->high_low_container);
-}
-
-roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf,
- size_t maxbytes) {
- roaring_bitmap_t *ans =
- (roaring_bitmap_t *)roaring_malloc(sizeof(roaring_bitmap_t));
- if (ans == NULL) {
- return NULL;
- }
- size_t bytesread;
- bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf,
- maxbytes, &bytesread);
- if (!is_ok) {
- roaring_free(ans);
- return NULL;
- }
- roaring_bitmap_set_copy_on_write(ans, false);
- if (!is_ok) {
- roaring_free(ans);
- return NULL;
- }
- return ans;
-}
-
-roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) {
- return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX);
-}
-
-size_t roaring_bitmap_portable_deserialize_size(const char *buf,
- size_t maxbytes) {
- return ra_portable_deserialize_size(buf, maxbytes);
-}
-
-size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf)
{
- return ra_portable_serialize(&r->high_low_container, buf);
-}
-
-roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) {
- const char *bufaschar = (const char *)buf;
- if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) {
- /* This looks like a compressed set of uint32_t elements */
- uint32_t card;
-
- memcpy(&card, bufaschar + 1, sizeof(uint32_t));
-
- const uint32_t *elems =
- (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
-
- roaring_bitmap_t *bitmap = roaring_bitmap_create();
- if (bitmap == NULL) {
- return NULL;
- }
- roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
- for (uint32_t i = 0; i < card; i++) {
- // elems may not be aligned, read with memcpy
- uint32_t elem;
- memcpy(&elem, elems + i, sizeof(elem));
- roaring_bitmap_add_bulk(bitmap, &context, elem);
- }
- return bitmap;
-
- } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) {
- return roaring_bitmap_portable_deserialize(bufaschar + 1);
- } else
- return (NULL);
-}
-
-roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf,
- size_t maxbytes) {
- if (maxbytes < 1) {
- return NULL;
- }
-
- const char *bufaschar = (const char *)buf;
- if (bufaschar[0] == CROARING_SERIALIZATION_ARRAY_UINT32) {
- if (maxbytes < 1 + sizeof(uint32_t)) {
- return NULL;
- }
-
- /* This looks like a compressed set of uint32_t elements */
- uint32_t card;
- memcpy(&card, bufaschar + 1, sizeof(uint32_t));
-
- // Check the buffer is big enough to contain card uint32_t elements
- if (maxbytes < 1 + sizeof(uint32_t) + card * sizeof(uint32_t)) {
- return NULL;
- }
-
- const uint32_t *elems =
- (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
-
- roaring_bitmap_t *bitmap = roaring_bitmap_create();
- if (bitmap == NULL) {
- return NULL;
- }
- roaring_bulk_context_t context = CROARING_ZERO_INITIALIZER;
- for (uint32_t i = 0; i < card; i++) {
- // elems may not be aligned, read with memcpy
- uint32_t elem;
- memcpy(&elem, elems + i, sizeof(elem));
- roaring_bitmap_add_bulk(bitmap, &context, elem);
- }
- return bitmap;
-
- } else if (bufaschar[0] == CROARING_SERIALIZATION_CONTAINER) {
- return roaring_bitmap_portable_deserialize_safe(bufaschar + 1,
- maxbytes - 1);
- } else
- return (NULL);
-}
-
-bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator,
- void *ptr) {
- const roaring_array_t *ra = &r->high_low_container;
-
- for (int i = 0; i < ra->size; ++i)
- if (!container_iterate(ra->containers[i], ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16, iterator, ptr)) {
- return false;
- }
- return true;
-}
-
-bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator,
- uint64_t high_bits, void *ptr) {
- const roaring_array_t *ra = &r->high_low_container;
-
- for (int i = 0; i < ra->size; ++i)
- if (!container_iterate64(ra->containers[i], ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16, iterator,
- high_bits, ptr)) {
- return false;
- }
- return true;
-}
-
-/****
- * begin roaring_uint32_iterator_t
- *****/
-
-/**
- * Partially initializes the iterator. Leaves it in either state:
- * 1. Invalid due to `has_value = false`, or
- * 2. At a container, with the high bits set, `has_value = true`.
- */
-CROARING_WARN_UNUSED static bool iter_new_container_partial_init(
- roaring_uint32_iterator_t *newit) {
- newit->current_value = 0;
- if (newit->container_index >= newit->parent->high_low_container.size ||
- newit->container_index < 0) {
- newit->current_value = UINT32_MAX;
- return (newit->has_value = false);
- }
- newit->has_value = true;
- // we precompute container, typecode and highbits so that successive
- // iterators do not have to grab them from odd memory locations
- // and have to worry about the (easily predicted) container_unwrap_shared
- // call.
- newit->container =
- newit->parent->high_low_container.containers[newit->container_index];
- newit->typecode =
- newit->parent->high_low_container.typecodes[newit->container_index];
- newit->highbits =
- ((uint32_t)
- newit->parent->high_low_container.keys[newit->container_index])
- << 16;
- newit->container =
- container_unwrap_shared(newit->container, &(newit->typecode));
- return true;
-}
-
-/**
- * Positions the iterator at the first value of the current container that the
- * iterator points at, if available.
- */
-CROARING_WARN_UNUSED static bool loadfirstvalue(
- roaring_uint32_iterator_t *newit) {
- if (iter_new_container_partial_init(newit)) {
- uint16_t value = 0;
- newit->container_it =
- container_init_iterator(newit->container, newit->typecode, &value);
- newit->current_value = newit->highbits | value;
- }
- return newit->has_value;
-}
-
-/**
- * Positions the iterator at the last value of the current container that the
- * iterator points at, if available.
- */
-CROARING_WARN_UNUSED static bool loadlastvalue(
- roaring_uint32_iterator_t *newit) {
- if (iter_new_container_partial_init(newit)) {
- uint16_t value = 0;
- newit->container_it = container_init_iterator_last(
- newit->container, newit->typecode, &value);
- newit->current_value = newit->highbits | value;
- }
- return newit->has_value;
-}
-
-/**
- * Positions the iterator at the smallest value that is larger than or equal to
- * `val` within the current container that the iterator points at. Assumes such
- * a value exists within the current container.
- */
-CROARING_WARN_UNUSED static bool loadfirstvalue_largeorequal(
- roaring_uint32_iterator_t *newit, uint32_t val) {
- bool partial_init = iter_new_container_partial_init(newit);
- assert(partial_init);
- if (!partial_init) {
- return false;
- }
- uint16_t value = 0;
- newit->container_it =
- container_init_iterator(newit->container, newit->typecode, &value);
- bool found = container_iterator_lower_bound(
- newit->container, newit->typecode, &newit->container_it, &value,
- val & 0xFFFF);
- assert(found);
- if (!found) {
- return false;
- }
- newit->current_value = newit->highbits | value;
- return true;
-}
-
-void roaring_iterator_init(const roaring_bitmap_t *r,
- roaring_uint32_iterator_t *newit) {
- newit->parent = r;
- newit->container_index = 0;
- newit->has_value = loadfirstvalue(newit);
-}
-
-void roaring_iterator_init_last(const roaring_bitmap_t *r,
- roaring_uint32_iterator_t *newit) {
- newit->parent = r;
- newit->container_index = newit->parent->high_low_container.size - 1;
- newit->has_value = loadlastvalue(newit);
-}
-
-roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r) {
- roaring_uint32_iterator_t *newit =
- (roaring_uint32_iterator_t *)roaring_malloc(
- sizeof(roaring_uint32_iterator_t));
- if (newit == NULL) return NULL;
- roaring_iterator_init(r, newit);
- return newit;
-}
-
-roaring_uint32_iterator_t *roaring_uint32_iterator_copy(
- const roaring_uint32_iterator_t *it) {
- roaring_uint32_iterator_t *newit =
- (roaring_uint32_iterator_t *)roaring_malloc(
- sizeof(roaring_uint32_iterator_t));
- memcpy(newit, it, sizeof(roaring_uint32_iterator_t));
- return newit;
-}
-
-bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it,
- uint32_t val) {
- uint16_t hb = val >> 16;
- const int i = ra_get_index(&it->parent->high_low_container, hb);
- if (i >= 0) {
- uint32_t lowvalue =
- container_maximum(it->parent->high_low_container.containers[i],
- it->parent->high_low_container.typecodes[i]);
- uint16_t lb = val & 0xFFFF;
- if (lowvalue < lb) {
- // will have to load first value of next container
- it->container_index = i + 1;
- } else {
- // the value is necessarily within the range of the container
- it->container_index = i;
- it->has_value = loadfirstvalue_largeorequal(it, val);
- return it->has_value;
- }
- } else {
- // there is no matching, so we are going for the next container
- it->container_index = -i - 1;
- }
- it->has_value = loadfirstvalue(it);
- return it->has_value;
-}
-
-bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it) {
- if (it->container_index >= it->parent->high_low_container.size) {
- return (it->has_value = false);
- }
- if (it->container_index < 0) {
- it->container_index = 0;
- return (it->has_value = loadfirstvalue(it));
- }
- uint16_t low16 = (uint16_t)it->current_value;
- if (container_iterator_next(it->container, it->typecode, &it->container_it,
- &low16)) {
- it->current_value = it->highbits | low16;
- return (it->has_value = true);
- }
- it->container_index++;
- return (it->has_value = loadfirstvalue(it));
-}
-
-bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it) {
- if (it->container_index < 0) {
- return (it->has_value = false);
- }
- if (it->container_index >= it->parent->high_low_container.size) {
- it->container_index = it->parent->high_low_container.size - 1;
- return (it->has_value = loadlastvalue(it));
- }
- uint16_t low16 = (uint16_t)it->current_value;
- if (container_iterator_prev(it->container, it->typecode, &it->container_it,
- &low16)) {
- it->current_value = it->highbits | low16;
- return (it->has_value = true);
- }
- it->container_index--;
- return (it->has_value = loadlastvalue(it));
-}
-
-uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it,
- uint32_t *buf, uint32_t count) {
- uint32_t ret = 0;
- while (it->has_value && ret < count) {
- uint32_t consumed;
- uint16_t low16 = (uint16_t)it->current_value;
- bool has_value = container_iterator_read_into_uint32(
- it->container, it->typecode, &it->container_it, it->highbits, buf,
- count - ret, &consumed, &low16);
- ret += consumed;
- buf += consumed;
- if (has_value) {
- it->has_value = true;
- it->current_value = it->highbits | low16;
- assert(ret == count);
- return ret;
- }
- it->container_index++;
- it->has_value = loadfirstvalue(it);
- }
- return ret;
-}
-
-void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it) {
- roaring_free(it);
-}
-
-/****
- * end of roaring_uint32_iterator_t
- *****/
-
-bool roaring_bitmap_equals(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2) {
- const roaring_array_t *ra1 = &r1->high_low_container;
- const roaring_array_t *ra2 = &r2->high_low_container;
-
- if (ra1->size != ra2->size) {
- return false;
- }
- for (int i = 0; i < ra1->size; ++i) {
- if (ra1->keys[i] != ra2->keys[i]) {
- return false;
- }
- }
- for (int i = 0; i < ra1->size; ++i) {
- bool areequal = container_equals(ra1->containers[i], ra1->typecodes[i],
- ra2->containers[i],
ra2->typecodes[i]);
- if (!areequal) {
- return false;
- }
- }
- return true;
-}
-
-bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2) {
- const roaring_array_t *ra1 = &r1->high_low_container;
- const roaring_array_t *ra2 = &r2->high_low_container;
-
- const int length1 = ra1->size, length2 = ra2->size;
-
- int pos1 = 0, pos2 = 0;
-
- while (pos1 < length1 && pos2 < length2) {
- const uint16_t s1 = ra_get_key_at_index(ra1, (uint16_t)pos1);
- const uint16_t s2 = ra_get_key_at_index(ra2, (uint16_t)pos2);
-
- if (s1 == s2) {
- uint8_t type1, type2;
- container_t *c1 =
- ra_get_container_at_index(ra1, (uint16_t)pos1, &type1);
- container_t *c2 =
- ra_get_container_at_index(ra2, (uint16_t)pos2, &type2);
- if (!container_is_subset(c1, type1, c2, type2)) return false;
- ++pos1;
- ++pos2;
- } else if (s1 < s2) { // s1 < s2
- return false;
- } else { // s1 > s2
- pos2 = ra_advance_until(ra2, s1, pos2);
- }
- }
- if (pos1 == length1)
- return true;
- else
- return false;
-}
-
-static void insert_flipped_container(roaring_array_t *ans_arr,
- const roaring_array_t *x1_arr, uint16_t
hb,
- uint16_t lb_start, uint16_t lb_end) {
- const int i = ra_get_index(x1_arr, hb);
- const int j = ra_get_index(ans_arr, hb);
- uint8_t ctype_in, ctype_out;
- container_t *flipped_container = NULL;
- if (i >= 0) {
- container_t *container_to_flip =
- ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
- flipped_container =
- container_not_range(container_to_flip, ctype_in,
(uint32_t)lb_start,
- (uint32_t)(lb_end + 1), &ctype_out);
-
- if (container_get_cardinality(flipped_container, ctype_out))
- ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
- ctype_out);
- else {
- container_free(flipped_container, ctype_out);
- }
- } else {
- flipped_container = container_range_of_ones(
- (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
- ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
- ctype_out);
- }
-}
-
-static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb,
- uint16_t lb_start, uint16_t lb_end) {
- const int i = ra_get_index(x1_arr, hb);
- uint8_t ctype_in, ctype_out;
- container_t *flipped_container = NULL;
- if (i >= 0) {
- container_t *container_to_flip =
- ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
- flipped_container = container_inot_range(
- container_to_flip, ctype_in, (uint32_t)lb_start,
- (uint32_t)(lb_end + 1), &ctype_out);
- // if a new container was created, the old one was already freed
- if (container_get_cardinality(flipped_container, ctype_out)) {
- ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
- } else {
- container_free(flipped_container, ctype_out);
- ra_remove_at_index(x1_arr, i);
- }
-
- } else {
- flipped_container = container_range_of_ones(
- (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
- ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
- ctype_out);
- }
-}
-
-static void insert_fully_flipped_container(roaring_array_t *ans_arr,
- const roaring_array_t *x1_arr,
- uint16_t hb) {
- const int i = ra_get_index(x1_arr, hb);
- const int j = ra_get_index(ans_arr, hb);
- uint8_t ctype_in, ctype_out;
- container_t *flipped_container = NULL;
- if (i >= 0) {
- container_t *container_to_flip =
- ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
- flipped_container =
- container_not(container_to_flip, ctype_in, &ctype_out);
- if (container_get_cardinality(flipped_container, ctype_out))
- ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
- ctype_out);
- else {
- container_free(flipped_container, ctype_out);
- }
- } else {
- flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
- ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
- ctype_out);
- }
-}
-
-static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb)
{
- const int i = ra_get_index(x1_arr, hb);
- uint8_t ctype_in, ctype_out;
- container_t *flipped_container = NULL;
- if (i >= 0) {
- container_t *container_to_flip =
- ra_get_container_at_index(x1_arr, (uint16_t)i, &ctype_in);
- flipped_container =
- container_inot(container_to_flip, ctype_in, &ctype_out);
-
- if (container_get_cardinality(flipped_container, ctype_out)) {
- ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
- } else {
- container_free(flipped_container, ctype_out);
- ra_remove_at_index(x1_arr, i);
- }
-
- } else {
- flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
- ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
- ctype_out);
- }
-}
-
-roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1,
- uint64_t range_start,
- uint64_t range_end) {
- if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
- return roaring_bitmap_copy(x1);
- }
- return roaring_bitmap_flip_closed(x1, (uint32_t)range_start,
- (uint32_t)(range_end - 1));
-}
-
-roaring_bitmap_t *roaring_bitmap_flip_closed(const roaring_bitmap_t *x1,
- uint32_t range_start,
- uint32_t range_end) {
- if (range_start > range_end) {
- return roaring_bitmap_copy(x1);
- }
-
- roaring_bitmap_t *ans = roaring_bitmap_create();
- roaring_bitmap_set_copy_on_write(ans, is_cow(x1));
-
- uint16_t hb_start = (uint16_t)(range_start >> 16);
- const uint16_t lb_start = (uint16_t)range_start; // & 0xFFFF;
- uint16_t hb_end = (uint16_t)(range_end >> 16);
- const uint16_t lb_end = (uint16_t)range_end; // & 0xFFFF;
-
- ra_append_copies_until(&ans->high_low_container, &x1->high_low_container,
- hb_start, is_cow(x1));
- if (hb_start == hb_end) {
- insert_flipped_container(&ans->high_low_container,
- &x1->high_low_container, hb_start, lb_start,
- lb_end);
- } else {
- // start and end containers are distinct
- if (lb_start > 0) {
- // handle first (partial) container
- insert_flipped_container(&ans->high_low_container,
- &x1->high_low_container, hb_start,
- lb_start, 0xFFFF);
- ++hb_start; // for the full containers. Can't wrap.
- }
-
- if (lb_end != 0xFFFF) --hb_end; // later we'll handle the partial
block
-
- for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
- insert_fully_flipped_container(&ans->high_low_container,
- &x1->high_low_container,
- (uint16_t)hb);
- }
-
- // handle a partial final container
- if (lb_end != 0xFFFF) {
- insert_flipped_container(&ans->high_low_container,
- &x1->high_low_container, hb_end + 1, 0,
- lb_end);
- ++hb_end;
- }
- }
- ra_append_copies_after(&ans->high_low_container, &x1->high_low_container,
- hb_end, is_cow(x1));
- return ans;
-}
-
-void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start,
- uint64_t range_end) {
- if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
- return;
- }
- roaring_bitmap_flip_inplace_closed(x1, (uint32_t)range_start,
- (uint32_t)(range_end - 1));
-}
-
-void roaring_bitmap_flip_inplace_closed(roaring_bitmap_t *x1,
- uint32_t range_start,
- uint32_t range_end) {
- if (range_start > range_end) {
- return; // empty range
- }
-
- uint16_t hb_start = (uint16_t)(range_start >> 16);
- const uint16_t lb_start = (uint16_t)range_start;
- uint16_t hb_end = (uint16_t)(range_end >> 16);
- const uint16_t lb_end = (uint16_t)range_end;
-
- if (hb_start == hb_end) {
- inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
- lb_end);
- } else {
- // start and end containers are distinct
- if (lb_start > 0) {
- // handle first (partial) container
- inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
- 0xFFFF);
- ++hb_start; // for the full containers. Can't wrap.
- }
-
- if (lb_end != 0xFFFF) --hb_end;
-
- for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
- inplace_fully_flip_container(&x1->high_low_container,
(uint16_t)hb);
- }
- // handle a partial final container
- if (lb_end != 0xFFFF) {
- inplace_flip_container(&x1->high_low_container, hb_end + 1, 0,
- lb_end);
- ++hb_end;
- }
- }
-}
-
-static void offset_append_with_merge(roaring_array_t *ra, int k, container_t
*c,
- uint8_t t) {
- int size = ra_get_size(ra);
- if (size == 0 || ra_get_key_at_index(ra, (uint16_t)(size - 1)) != k) {
- // No merge.
- ra_append(ra, (uint16_t)k, c, t);
- return;
- }
-
- uint8_t last_t, new_t;
- container_t *last_c, *new_c;
-
- // NOTE: we don't need to unwrap here, since we added last_c ourselves
- // we have the certainty it's not a shared container.
- // The same applies to c, as it's the result of calling container_offset.
- last_c = ra_get_container_at_index(ra, (uint16_t)(size - 1), &last_t);
- new_c = container_ior(last_c, last_t, c, t, &new_t);
-
- ra_set_container_at_index(ra, size - 1, new_c, new_t);
-
- // Comparison of pointers of different origin is UB (or so claim some
- // compiler makers), so we compare their bit representation only.
- if ((uintptr_t)last_c != (uintptr_t)new_c) {
- container_free(last_c, last_t);
- }
- container_free(c, t);
-}
-
-// roaring_bitmap_add_offset adds the value 'offset' to each and every value in
-// a bitmap, generating a new bitmap in the process. If offset + element is
-// outside of the range [0,2^32), that the element will be dropped.
-// We need "offset" to be 64 bits because we want to support values
-// between -0xFFFFFFFF up to +0xFFFFFFFF.
-roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm,
- int64_t offset) {
- roaring_bitmap_t *answer;
- roaring_array_t *ans_ra;
- int64_t container_offset;
- uint16_t in_offset;
-
- const roaring_array_t *bm_ra = &bm->high_low_container;
- int length = bm_ra->size;
-
- if (offset == 0) {
- return roaring_bitmap_copy(bm);
- }
-
- container_offset = offset >> 16;
- in_offset = (uint16_t)(offset - container_offset * (1 << 16));
-
- answer = roaring_bitmap_create();
- bool cow = is_cow(bm);
- roaring_bitmap_set_copy_on_write(answer, cow);
-
- ans_ra = &answer->high_low_container;
-
- if (in_offset == 0) {
- ans_ra = &answer->high_low_container;
-
- for (int i = 0, j = 0; i < length; ++i) {
- int64_t key = ra_get_key_at_index(bm_ra, (uint16_t)i);
- key += container_offset;
-
- if (key < 0 || key >= (1 << 16)) {
- continue;
- }
- ra_append_copy(ans_ra, bm_ra, (uint16_t)i, cow);
- ans_ra->keys[j++] = (uint16_t)key;
- }
- return answer;
- }
-
- uint8_t t;
- const container_t *c;
- container_t *lo, *hi, **lo_ptr, **hi_ptr;
- int64_t k;
-
- for (int i = 0; i < length; ++i) {
- lo = hi = NULL;
- lo_ptr = hi_ptr = NULL;
-
- k = ra_get_key_at_index(bm_ra, (uint16_t)i) + container_offset;
- if (k >= 0 && k < (1 << 16)) {
- lo_ptr = &lo;
- }
- if (k + 1 >= 0 && k + 1 < (1 << 16)) {
- hi_ptr = &hi;
- }
- if (lo_ptr == NULL && hi_ptr == NULL) {
- continue;
- }
- c = ra_get_container_at_index(bm_ra, (uint16_t)i, &t);
- c = container_unwrap_shared(c, &t);
-
- container_add_offset(c, t, lo_ptr, hi_ptr, in_offset);
- if (lo != NULL) {
- offset_append_with_merge(ans_ra, (int)k, lo, t);
- }
- if (hi != NULL) {
- ra_append(ans_ra, (uint16_t)(k + 1), hi, t);
- }
- // the `lo` and `hi` container type always keep same as container `c`.
- // in the case of `container_add_offset` on bitset container, `lo` and
- // `hi` may has small cardinality, they must be repaired to array
- // container.
- }
-
- roaring_bitmap_repair_after_lazy(answer); // do required type conversions.
- return answer;
-}
-
-roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2,
- const bool bitsetconversion) {
- uint8_t result_type = 0;
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- if (0 == length1) {
- return roaring_bitmap_copy(x2);
- }
- if (0 == length2) {
- return roaring_bitmap_copy(x1);
- }
- roaring_bitmap_t *answer =
- roaring_bitmap_create_with_capacity(length1 + length2);
- roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- container_t *c;
- if (bitsetconversion &&
- (get_container_type(c1, type1) != BITSET_CONTAINER_TYPE) &&
- (get_container_type(c2, type2) != BITSET_CONTAINER_TYPE)) {
- container_t *newc1 =
- container_mutable_unwrap_shared(c1, &type1);
- newc1 = container_to_bitset(newc1, type1);
- type1 = BITSET_CONTAINER_TYPE;
- c = container_lazy_ior(newc1, type1, c2, type2, &result_type);
- if (c != newc1) { // should not happen
- container_free(newc1, type1);
- }
- } else {
- c = container_lazy_or(c1, type1, c2, type2, &result_type);
- }
- // since we assume that the initial containers are non-empty,
- // the
- // result here
- // can only be non-empty
- ra_append(&answer->high_low_container, s1, c, result_type);
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- c1 = get_copy_of_container(c1, &type1, is_cow(x1));
- if (is_cow(x1)) {
- ra_set_container_at_index(&x1->high_low_container, pos1, c1,
- type1);
- }
- ra_append(&answer->high_low_container, s1, c1, type1);
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
- ra_append(&answer->high_low_container, s2, c2, type2);
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&answer->high_low_container,
- &x2->high_low_container, pos2, length2,
- is_cow(x2));
- } else if (pos2 == length2) {
- ra_append_copy_range(&answer->high_low_container,
- &x1->high_low_container, pos1, length1,
- is_cow(x1));
- }
- return answer;
-}
-
-void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2,
- const bool bitsetconversion) {
- uint8_t result_type = 0;
- int length1 = x1->high_low_container.size;
- const int length2 = x2->high_low_container.size;
-
- if (0 == length2) return;
-
- if (0 == length1) {
- roaring_bitmap_overwrite(x1, x2);
- return;
- }
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- if (!container_is_full(c1, type1)) {
- if ((bitsetconversion == false) ||
- (get_container_type(c1, type1) == BITSET_CONTAINER_TYPE)) {
- c1 = get_writable_copy_if_shared(c1, &type1);
- } else {
- // convert to bitset
- container_t *old_c1 = c1;
- uint8_t old_type1 = type1;
- c1 = container_mutable_unwrap_shared(c1, &type1);
- c1 = container_to_bitset(c1, type1);
- container_free(old_c1, old_type1);
- type1 = BITSET_CONTAINER_TYPE;
- }
-
- container_t *c2 = ra_get_container_at_index(
- &x2->high_low_container, (uint16_t)pos2, &type2);
- container_t *c =
- container_lazy_ior(c1, type1, c2, type2, &result_type);
-
- if (c != c1) { // in this instance a new container was
created,
- // and we need to free the old one
- container_free(c1, type1);
- }
-
- ra_set_container_at_index(&x1->high_low_container, pos1, c,
- result_type);
- }
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- // container_t *c2_clone = container_clone(c2, type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
- ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
- type2);
- pos1++;
- length1++;
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
- pos2, length2, is_cow(x2));
- }
-}
-
-roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- if (0 == length1) {
- return roaring_bitmap_copy(x2);
- }
- if (0 == length2) {
- return roaring_bitmap_copy(x1);
- }
- roaring_bitmap_t *answer =
- roaring_bitmap_create_with_capacity(length1 + length2);
- roaring_bitmap_set_copy_on_write(answer, is_cow(x1) || is_cow(x2));
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- container_t *c =
- container_lazy_xor(c1, type1, c2, type2, &result_type);
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_append(&answer->high_low_container, s1, c, result_type);
- } else {
- container_free(c, result_type);
- }
-
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- c1 = get_copy_of_container(c1, &type1, is_cow(x1));
- if (is_cow(x1)) {
- ra_set_container_at_index(&x1->high_low_container, pos1, c1,
- type1);
- }
- ra_append(&answer->high_low_container, s1, c1, type1);
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
- ra_append(&answer->high_low_container, s2, c2, type2);
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&answer->high_low_container,
- &x2->high_low_container, pos2, length2,
- is_cow(x2));
- } else if (pos2 == length2) {
- ra_append_copy_range(&answer->high_low_container,
- &x1->high_low_container, pos1, length1,
- is_cow(x1));
- }
- return answer;
-}
-
-void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- assert(x1 != x2);
- uint8_t result_type = 0;
- int length1 = x1->high_low_container.size;
- const int length2 = x2->high_low_container.size;
-
- if (0 == length2) return;
-
- if (0 == length1) {
- roaring_bitmap_overwrite(x1, x2);
- return;
- }
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
-
- // We do the computation "in place" only when c1 is not a shared
- // container. Rationale: using a shared container safely with in
- // place computation would require making a copy and then doing the
- // computation in place which is likely less efficient than
avoiding
- // in place entirely and always generating a new container.
-
- container_t *c;
- if (type1 == SHARED_CONTAINER_TYPE) {
- c = container_lazy_xor(c1, type1, c2, type2, &result_type);
- shared_container_free(CAST_shared(c1)); // release
- } else {
- c = container_lazy_ixor(c1, type1, c2, type2, &result_type);
- }
-
- if (container_nonzero_cardinality(c, result_type)) {
- ra_set_container_at_index(&x1->high_low_container, pos1, c,
- result_type);
- ++pos1;
- } else {
- container_free(c, result_type);
- ra_remove_at_index(&x1->high_low_container, pos1);
- --length1;
- }
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- // container_t *c2_clone = container_clone(c2, type2);
- c2 = get_copy_of_container(c2, &type2, is_cow(x2));
- if (is_cow(x2)) {
- ra_set_container_at_index(&x2->high_low_container, pos2, c2,
- type2);
- }
- ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
- type2);
- pos1++;
- length1++;
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
- pos2, length2, is_cow(x2));
- }
-}
-
-void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r) {
- roaring_array_t *ra = &r->high_low_container;
-
- for (int i = 0; i < ra->size; ++i) {
- const uint8_t old_type = ra->typecodes[i];
- container_t *old_c = ra->containers[i];
- uint8_t new_type = old_type;
- container_t *new_c = container_repair_after_lazy(old_c, &new_type);
- ra->containers[i] = new_c;
- ra->typecodes[i] = new_type;
- }
-}
-
-/**
- * roaring_bitmap_rank returns the number of integers that are smaller or equal
- * to x.
- */
-uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) {
- uint64_t size = 0;
- uint32_t xhigh = x >> 16;
- for (int i = 0; i < bm->high_low_container.size; i++) {
- uint32_t key = bm->high_low_container.keys[i];
- if (xhigh > key) {
- size +=
- container_get_cardinality(bm->high_low_container.containers[i],
- bm->high_low_container.typecodes[i]);
- } else if (xhigh == key) {
- return size + container_rank(bm->high_low_container.containers[i],
- bm->high_low_container.typecodes[i],
- x & 0xFFFF);
- } else {
- return size;
- }
- }
- return size;
-}
-void roaring_bitmap_rank_many(const roaring_bitmap_t *bm, const uint32_t
*begin,
- const uint32_t *end, uint64_t *ans) {
- uint64_t size = 0;
-
- int i = 0;
- const uint32_t *iter = begin;
- while (i < bm->high_low_container.size && iter != end) {
- uint32_t x = *iter;
- uint32_t xhigh = x >> 16;
- uint32_t key = bm->high_low_container.keys[i];
- if (xhigh > key) {
- size +=
- container_get_cardinality(bm->high_low_container.containers[i],
- bm->high_low_container.typecodes[i]);
- i++;
- } else if (xhigh == key) {
- uint32_t consumed = container_rank_many(
- bm->high_low_container.containers[i],
- bm->high_low_container.typecodes[i], size, iter, end, ans);
- iter += consumed;
- ans += consumed;
- } else {
- *(ans++) = size;
- iter++;
- }
- }
-}
-
-/**
- * roaring_bitmap_get_index returns the index of x, if not exsist return -1.
- */
-int64_t roaring_bitmap_get_index(const roaring_bitmap_t *bm, uint32_t x) {
- int64_t index = 0;
- const uint16_t xhigh = x >> 16;
- int32_t high_idx = ra_get_index(&bm->high_low_container, xhigh);
- if (high_idx < 0) return -1;
-
- for (int i = 0; i < bm->high_low_container.size; i++) {
- uint32_t key = bm->high_low_container.keys[i];
- if (xhigh > key) {
- index +=
- container_get_cardinality(bm->high_low_container.containers[i],
- bm->high_low_container.typecodes[i]);
- } else if (xhigh == key) {
- int32_t low_idx = container_get_index(
- bm->high_low_container.containers[high_idx],
- bm->high_low_container.typecodes[high_idx], x & 0xFFFF);
- if (low_idx < 0) return -1;
- return index + low_idx;
- } else {
- return -1;
- }
- }
- return index;
-}
-
-/**
- * roaring_bitmap_smallest returns the smallest value in the set.
- * Returns UINT32_MAX if the set is empty.
- */
-uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) {
- if (bm->high_low_container.size > 0) {
- container_t *c = bm->high_low_container.containers[0];
- uint8_t type = bm->high_low_container.typecodes[0];
- uint32_t key = bm->high_low_container.keys[0];
- uint32_t lowvalue = container_minimum(c, type);
- return lowvalue | (key << 16);
- }
- return UINT32_MAX;
-}
-
-/**
- * roaring_bitmap_smallest returns the greatest value in the set.
- * Returns 0 if the set is empty.
- */
-uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) {
- if (bm->high_low_container.size > 0) {
- container_t *container =
- bm->high_low_container.containers[bm->high_low_container.size - 1];
- uint8_t typecode =
- bm->high_low_container.typecodes[bm->high_low_container.size - 1];
- uint32_t key =
- bm->high_low_container.keys[bm->high_low_container.size - 1];
- uint32_t lowvalue = container_maximum(container, typecode);
- return lowvalue | (key << 16);
- }
- return 0;
-}
-
-bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank,
- uint32_t *element) {
- container_t *container;
- uint8_t typecode;
- uint16_t key;
- uint32_t start_rank = 0;
- int i = 0;
- bool valid = false;
- while (!valid && i < bm->high_low_container.size) {
- container = bm->high_low_container.containers[i];
- typecode = bm->high_low_container.typecodes[i];
- valid =
- container_select(container, typecode, &start_rank, rank, element);
- i++;
- }
-
- if (valid) {
- key = bm->high_low_container.keys[i - 1];
- *element |= (((uint32_t)key) << 16); // w/o cast, key promotes signed
- return true;
- } else
- return false;
-}
-
-bool roaring_bitmap_intersect(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- uint64_t answer = 0;
- int pos1 = 0, pos2 = 0;
-
- while (pos1 < length1 && pos2 < length2) {
- const uint16_t s1 =
- ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- const uint16_t s2 =
- ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- if (s1 == s2) {
- uint8_t type1, type2;
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- if (container_intersect(c1, type1, c2, type2)) return true;
- ++pos1;
- ++pos2;
- } else if (s1 < s2) { // s1 < s2
- pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
- } else { // s1 > s2
- pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
- }
- }
- return answer != 0;
-}
-
-bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t
x,
- uint64_t y) {
- if (x >= y) {
- // Empty range.
- return false;
- }
- roaring_uint32_iterator_t it;
- roaring_iterator_init(bm, &it);
- if (!roaring_uint32_iterator_move_equalorlarger(&it, (uint32_t)x)) {
- // No values above x.
- return false;
- }
- if (it.current_value >= y) {
- // No values below y.
- return false;
- }
- return true;
-}
-
-uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- const int length1 = x1->high_low_container.size,
- length2 = x2->high_low_container.size;
- uint64_t answer = 0;
- int pos1 = 0, pos2 = 0;
- while (pos1 < length1 && pos2 < length2) {
- const uint16_t s1 =
- ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- const uint16_t s2 =
- ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- if (s1 == s2) {
- uint8_t type1, type2;
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- answer += container_and_cardinality(c1, type1, c2, type2);
- ++pos1;
- ++pos2;
- } else if (s1 < s2) { // s1 < s2
- pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
- } else { // s1 > s2
- pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
- }
- }
- return answer;
-}
-
-double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
- const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
- const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
- return (double)inter / (double)(c1 + c2 - inter);
-}
-
-uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
- const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
- const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
- return c1 + c2 - inter;
-}
-
-uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
- const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
- return c1 - inter;
-}
-
-uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1,
- const roaring_bitmap_t *x2) {
- const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
- const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
- const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
- return c1 + c2 - 2 * inter;
-}
-
-bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) {
- const uint16_t hb = val >> 16;
- /*
- * the next function call involves a binary search and lots of branching.
- */
- int32_t i = ra_get_index(&r->high_low_container, hb);
- if (i < 0) return false;
-
- uint8_t typecode;
- // next call ought to be cheap
- container_t *container = ra_get_container_at_index(&r->high_low_container,
- (uint16_t)i, &typecode);
- // rest might be a tad expensive, possibly involving another round of
binary
- // search
- return container_contains(container, val & 0xFFFF, typecode);
-}
-
-/**
- * Check whether a range of values from range_start (included) to range_end
- * (excluded) is present
- */
-bool roaring_bitmap_contains_range(const roaring_bitmap_t *r,
- uint64_t range_start, uint64_t range_end) {
- if (range_start >= range_end || range_start > (uint64_t)UINT32_MAX + 1) {
- return true;
- }
- return roaring_bitmap_contains_range_closed(r, (uint32_t)range_start,
- (uint32_t)(range_end - 1));
-}
-
-/**
- * Check whether a range of values from range_start (included) to range_end
- * (included) is present
- */
-bool roaring_bitmap_contains_range_closed(const roaring_bitmap_t *r,
- uint32_t range_start,
- uint32_t range_end) {
- if (range_start > range_end) {
- return true;
- } // empty range are always contained!
- if (range_end == range_start) {
- return roaring_bitmap_contains(r, (uint32_t)range_start);
- }
- uint16_t hb_rs = (uint16_t)(range_start >> 16);
- uint16_t hb_re = (uint16_t)(range_end >> 16);
- const int32_t span = hb_re - hb_rs;
- const int32_t hlc_sz = ra_get_size(&r->high_low_container);
- if (hlc_sz < span + 1) {
- return false;
- }
- int32_t is = ra_get_index(&r->high_low_container, hb_rs);
- int32_t ie = ra_get_index(&r->high_low_container, hb_re);
- if ((ie < 0) || (is < 0) || ((ie - is) != span) || ie >= hlc_sz) {
- return false;
- }
- const uint32_t lb_rs = range_start & 0xFFFF;
- const uint32_t lb_re = (range_end & 0xFFFF) + 1;
- uint8_t type;
- container_t *c =
- ra_get_container_at_index(&r->high_low_container, (uint16_t)is, &type);
- if (hb_rs == hb_re) {
- return container_contains_range(c, lb_rs, lb_re, type);
- }
- if (!container_contains_range(c, lb_rs, 1 << 16, type)) {
- return false;
- }
- c = ra_get_container_at_index(&r->high_low_container, (uint16_t)ie, &type);
- if (!container_contains_range(c, 0, lb_re, type)) {
- return false;
- }
- for (int32_t i = is + 1; i < ie; ++i) {
- c = ra_get_container_at_index(&r->high_low_container, (uint16_t)i,
- &type);
- if (!container_is_full(c, type)) {
- return false;
- }
- }
- return true;
-}
-
-bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2) {
- return (roaring_bitmap_get_cardinality(r2) >
- roaring_bitmap_get_cardinality(r1) &&
- roaring_bitmap_is_subset(r1, r2));
-}
-
-/*
- * FROZEN SERIALIZATION FORMAT DESCRIPTION
- *
- * -- (beginning must be aligned by 32 bytes) --
- * <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS *
- * num_bitset_containers] <run_data> rle16_t[total number of rle elements in
- * all run containers] <array_data> uint16_t[total number of array elements in
- * all array containers] <keys> uint16_t[num_containers] <counts>
- * uint16_t[num_containers] <typecodes> uint8_t[num_containers] <header>
- * uint32_t
- *
- * <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
- * and the number of containers (17 bits).
- *
- * <counts> stores number of elements for every container.
- * Its meaning depends on container type.
- * For array and bitset containers, this value is the container cardinality
- * minus one. For run container, it is the number of rle_t elements (n_runs).
- *
- * <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
- * all containers of respective type.
- *
- * <*_data> and <keys> are kept close together because they are not accessed
- * during deserilization. This may reduce IO in case of large mmaped bitmaps.
- * All members have their native alignments during deserilization except
- * <header>, which is not guaranteed to be aligned by 4 bytes.
- */
-
-size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *rb) {
- const roaring_array_t *ra = &rb->high_low_container;
- size_t num_bytes = 0;
- for (int32_t i = 0; i < ra->size; i++) {
- switch (ra->typecodes[i]) {
- case BITSET_CONTAINER_TYPE: {
- num_bytes += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
- break;
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(ra->containers[i]);
- num_bytes += rc->n_runs * sizeof(rle16_t);
- break;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac =
- const_CAST_array(ra->containers[i]);
- num_bytes += ac->cardinality * sizeof(uint16_t);
- break;
- }
- default:
- roaring_unreachable;
- }
- }
- num_bytes += (2 + 2 + 1) * ra->size; // keys, counts, typecodes
- num_bytes += 4; // header
- return num_bytes;
-}
-
-inline static void *arena_alloc(char **arena, size_t num_bytes) {
- char *res = *arena;
- *arena += num_bytes;
- return res;
-}
-
-void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *rb, char *buf) {
- /*
- * Note: we do not require user to supply a specifically aligned buffer.
- * Thus we have to use memcpy() everywhere.
- */
-
- const roaring_array_t *ra = &rb->high_low_container;
-
- size_t bitset_zone_size = 0;
- size_t run_zone_size = 0;
- size_t array_zone_size = 0;
- for (int32_t i = 0; i < ra->size; i++) {
- switch (ra->typecodes[i]) {
- case BITSET_CONTAINER_TYPE: {
- bitset_zone_size +=
- BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
- break;
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(ra->containers[i]);
- run_zone_size += rc->n_runs * sizeof(rle16_t);
- break;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac =
- const_CAST_array(ra->containers[i]);
- array_zone_size += ac->cardinality * sizeof(uint16_t);
- break;
- }
- default:
- roaring_unreachable;
- }
- }
-
- uint64_t *bitset_zone = (uint64_t *)arena_alloc(&buf, bitset_zone_size);
- rle16_t *run_zone = (rle16_t *)arena_alloc(&buf, run_zone_size);
- uint16_t *array_zone = (uint16_t *)arena_alloc(&buf, array_zone_size);
- uint16_t *key_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size);
- uint16_t *count_zone = (uint16_t *)arena_alloc(&buf, 2 * ra->size);
- uint8_t *typecode_zone = (uint8_t *)arena_alloc(&buf, ra->size);
- uint32_t *header_zone = (uint32_t *)arena_alloc(&buf, 4);
-
- for (int32_t i = 0; i < ra->size; i++) {
- uint16_t count;
- switch (ra->typecodes[i]) {
- case BITSET_CONTAINER_TYPE: {
- const bitset_container_t *bc =
- const_CAST_bitset(ra->containers[i]);
- memcpy(bitset_zone, bc->words,
- BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
- bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
- if (bc->cardinality != BITSET_UNKNOWN_CARDINALITY) {
- count = (uint16_t)(bc->cardinality - 1);
- } else {
- count =
- (uint16_t)(bitset_container_compute_cardinality(bc) -
- 1);
- }
- break;
- }
- case RUN_CONTAINER_TYPE: {
- const run_container_t *rc = const_CAST_run(ra->containers[i]);
- size_t num_bytes = rc->n_runs * sizeof(rle16_t);
- memcpy(run_zone, rc->runs, num_bytes);
- run_zone += rc->n_runs;
- count = (uint16_t)rc->n_runs;
- break;
- }
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *ac =
- const_CAST_array(ra->containers[i]);
- size_t num_bytes = ac->cardinality * sizeof(uint16_t);
- memcpy(array_zone, ac->array, num_bytes);
- array_zone += ac->cardinality;
- count = (uint16_t)(ac->cardinality - 1);
- break;
- }
- default:
- roaring_unreachable;
- }
- memcpy(&count_zone[i], &count, 2);
- }
- memcpy(key_zone, ra->keys, ra->size * sizeof(uint16_t));
- memcpy(typecode_zone, ra->typecodes, ra->size * sizeof(uint8_t));
- uint32_t header = ((uint32_t)ra->size << 15) | FROZEN_COOKIE;
- memcpy(header_zone, &header, 4);
-}
-
-const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf,
- size_t length) {
- if ((uintptr_t)buf % 32 != 0) {
- return NULL;
- }
-
- // cookie and num_containers
- if (length < 4) {
- return NULL;
- }
- uint32_t header;
- memcpy(&header, buf + length - 4, 4); // header may be misaligned
- if ((header & 0x7FFF) != FROZEN_COOKIE) {
- return NULL;
- }
- int32_t num_containers = (header >> 15);
-
- // typecodes, counts and keys
- if (length < 4 + (size_t)num_containers * (1 + 2 + 2)) {
- return NULL;
- }
- uint16_t *keys = (uint16_t *)(buf + length - 4 - num_containers * 5);
- uint16_t *counts = (uint16_t *)(buf + length - 4 - num_containers * 3);
- uint8_t *typecodes = (uint8_t *)(buf + length - 4 - num_containers * 1);
-
- // {bitset,array,run}_zone
- int32_t num_bitset_containers = 0;
- int32_t num_run_containers = 0;
- int32_t num_array_containers = 0;
- size_t bitset_zone_size = 0;
- size_t run_zone_size = 0;
- size_t array_zone_size = 0;
- for (int32_t i = 0; i < num_containers; i++) {
- switch (typecodes[i]) {
- case BITSET_CONTAINER_TYPE:
- num_bitset_containers++;
- bitset_zone_size +=
- BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
- break;
- case RUN_CONTAINER_TYPE:
- num_run_containers++;
- run_zone_size += counts[i] * sizeof(rle16_t);
- break;
- case ARRAY_CONTAINER_TYPE:
- num_array_containers++;
- array_zone_size += (counts[i] + UINT32_C(1)) *
sizeof(uint16_t);
- break;
- default:
- return NULL;
- }
- }
- if (length != bitset_zone_size + run_zone_size + array_zone_size +
- 5 * num_containers + 4) {
- return NULL;
- }
- uint64_t *bitset_zone = (uint64_t *)(buf);
- rle16_t *run_zone = (rle16_t *)(buf + bitset_zone_size);
- uint16_t *array_zone = (uint16_t *)(buf + bitset_zone_size +
run_zone_size);
-
- size_t alloc_size = 0;
- alloc_size += sizeof(roaring_bitmap_t);
- alloc_size += num_containers * sizeof(container_t *);
- alloc_size += num_bitset_containers * sizeof(bitset_container_t);
- alloc_size += num_run_containers * sizeof(run_container_t);
- alloc_size += num_array_containers * sizeof(array_container_t);
-
- char *arena = (char *)roaring_malloc(alloc_size);
- if (arena == NULL) {
- return NULL;
- }
-
- roaring_bitmap_t *rb =
- (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t));
- rb->high_low_container.flags = ROARING_FLAG_FROZEN;
- rb->high_low_container.allocation_size = num_containers;
- rb->high_low_container.size = num_containers;
- rb->high_low_container.keys = (uint16_t *)keys;
- rb->high_low_container.typecodes = (uint8_t *)typecodes;
- rb->high_low_container.containers = (container_t **)arena_alloc(
- &arena, sizeof(container_t *) * num_containers);
- // Ensure offset of high_low_container.containers is known distance used in
- // C++ wrapper. sizeof(roaring_bitmap_t) is used as it is the size of the
- // only allocation that precedes high_low_container.containers. If this is
- // changed (new allocation or changed order), this offset will also need to
- // be changed in the C++ wrapper.
- assert(rb ==
- (roaring_bitmap_t *)((char *)rb->high_low_container.containers -
- sizeof(roaring_bitmap_t)));
- for (int32_t i = 0; i < num_containers; i++) {
- switch (typecodes[i]) {
- case BITSET_CONTAINER_TYPE: {
- bitset_container_t *bitset = (bitset_container_t *)arena_alloc(
- &arena, sizeof(bitset_container_t));
- bitset->words = bitset_zone;
- bitset->cardinality = counts[i] + UINT32_C(1);
- rb->high_low_container.containers[i] = bitset;
- bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
- break;
- }
- case RUN_CONTAINER_TYPE: {
- run_container_t *run = (run_container_t *)arena_alloc(
- &arena, sizeof(run_container_t));
- run->capacity = counts[i];
- run->n_runs = counts[i];
- run->runs = run_zone;
- rb->high_low_container.containers[i] = run;
- run_zone += run->n_runs;
- break;
- }
- case ARRAY_CONTAINER_TYPE: {
- array_container_t *array = (array_container_t *)arena_alloc(
- &arena, sizeof(array_container_t));
- array->capacity = counts[i] + UINT32_C(1);
- array->cardinality = counts[i] + UINT32_C(1);
- array->array = array_zone;
- rb->high_low_container.containers[i] = array;
- array_zone += counts[i] + UINT32_C(1);
- break;
- }
- default:
- roaring_free(arena);
- return NULL;
- }
- }
-
- return rb;
-}
-
-ALLOW_UNALIGNED
-roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf) {
- char *start_of_buf = (char *)buf;
- uint32_t cookie;
- int32_t num_containers;
- uint16_t *descriptive_headers;
- uint32_t *offset_headers = NULL;
- const char *run_flag_bitset = NULL;
- bool hasrun = false;
-
- // deserialize cookie
- memcpy(&cookie, buf, sizeof(uint32_t));
- buf += sizeof(uint32_t);
- if (cookie == SERIAL_COOKIE_NO_RUNCONTAINER) {
- memcpy(&num_containers, buf, sizeof(int32_t));
- buf += sizeof(int32_t);
- descriptive_headers = (uint16_t *)buf;
- buf += num_containers * 2 * sizeof(uint16_t);
- offset_headers = (uint32_t *)buf;
- buf += num_containers * sizeof(uint32_t);
- } else if ((cookie & 0xFFFF) == SERIAL_COOKIE) {
- num_containers = (cookie >> 16) + 1;
- hasrun = true;
- int32_t run_flag_bitset_size = (num_containers + 7) / 8;
- run_flag_bitset = buf;
- buf += run_flag_bitset_size;
- descriptive_headers = (uint16_t *)buf;
- buf += num_containers * 2 * sizeof(uint16_t);
- if (num_containers >= NO_OFFSET_THRESHOLD) {
- offset_headers = (uint32_t *)buf;
- buf += num_containers * sizeof(uint32_t);
- }
- } else {
- return NULL;
- }
-
- // calculate total size for allocation
- int32_t num_bitset_containers = 0;
- int32_t num_run_containers = 0;
- int32_t num_array_containers = 0;
-
- for (int32_t i = 0; i < num_containers; i++) {
- uint16_t tmp;
- memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp));
- uint32_t cardinality = tmp + 1;
- bool isbitmap = (cardinality > DEFAULT_MAX_SIZE);
- bool isrun = false;
- if (hasrun) {
- if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) {
- isbitmap = false;
- isrun = true;
- }
- }
-
- if (isbitmap) {
- num_bitset_containers++;
- } else if (isrun) {
- num_run_containers++;
- } else {
- num_array_containers++;
- }
- }
-
- size_t alloc_size = 0;
- alloc_size += sizeof(roaring_bitmap_t);
- alloc_size += num_containers * sizeof(container_t *);
- alloc_size += num_bitset_containers * sizeof(bitset_container_t);
- alloc_size += num_run_containers * sizeof(run_container_t);
- alloc_size += num_array_containers * sizeof(array_container_t);
- alloc_size += num_containers * sizeof(uint16_t); // keys
- alloc_size += num_containers * sizeof(uint8_t); // typecodes
-
- // allocate bitmap and construct containers
- char *arena = (char *)roaring_malloc(alloc_size);
- if (arena == NULL) {
- return NULL;
- }
-
- roaring_bitmap_t *rb =
- (roaring_bitmap_t *)arena_alloc(&arena, sizeof(roaring_bitmap_t));
- rb->high_low_container.flags = ROARING_FLAG_FROZEN;
- rb->high_low_container.allocation_size = num_containers;
- rb->high_low_container.size = num_containers;
- rb->high_low_container.containers = (container_t **)arena_alloc(
- &arena, sizeof(container_t *) * num_containers);
-
- uint16_t *keys =
- (uint16_t *)arena_alloc(&arena, num_containers * sizeof(uint16_t));
- uint8_t *typecodes =
- (uint8_t *)arena_alloc(&arena, num_containers * sizeof(uint8_t));
-
- rb->high_low_container.keys = keys;
- rb->high_low_container.typecodes = typecodes;
-
- for (int32_t i = 0; i < num_containers; i++) {
- uint16_t tmp;
- memcpy(&tmp, descriptive_headers + 2 * i + 1, sizeof(tmp));
- int32_t cardinality = tmp + 1;
- bool isbitmap = (cardinality > DEFAULT_MAX_SIZE);
- bool isrun = false;
- if (hasrun) {
- if ((run_flag_bitset[i / 8] & (1 << (i % 8))) != 0) {
- isbitmap = false;
- isrun = true;
- }
- }
-
- keys[i] = descriptive_headers[2 * i];
-
- if (isbitmap) {
- typecodes[i] = BITSET_CONTAINER_TYPE;
- bitset_container_t *c = (bitset_container_t *)arena_alloc(
- &arena, sizeof(bitset_container_t));
- c->cardinality = cardinality;
- if (offset_headers != NULL) {
- c->words = (uint64_t *)(start_of_buf + offset_headers[i]);
- } else {
- c->words = (uint64_t *)buf;
- buf += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
- }
- rb->high_low_container.containers[i] = c;
- } else if (isrun) {
- typecodes[i] = RUN_CONTAINER_TYPE;
- run_container_t *c =
- (run_container_t *)arena_alloc(&arena,
sizeof(run_container_t));
- c->capacity = cardinality;
- uint16_t n_runs;
- if (offset_headers != NULL) {
- memcpy(&n_runs, start_of_buf + offset_headers[i],
- sizeof(uint16_t));
- c->n_runs = n_runs;
- c->runs = (rle16_t *)(start_of_buf + offset_headers[i] +
- sizeof(uint16_t));
- } else {
- memcpy(&n_runs, buf, sizeof(uint16_t));
- c->n_runs = n_runs;
- buf += sizeof(uint16_t);
- c->runs = (rle16_t *)buf;
- buf += c->n_runs * sizeof(rle16_t);
- }
- rb->high_low_container.containers[i] = c;
- } else {
- typecodes[i] = ARRAY_CONTAINER_TYPE;
- array_container_t *c = (array_container_t *)arena_alloc(
- &arena, sizeof(array_container_t));
- c->cardinality = cardinality;
- c->capacity = cardinality;
- if (offset_headers != NULL) {
- c->array = (uint16_t *)(start_of_buf + offset_headers[i]);
- } else {
- c->array = (uint16_t *)buf;
- buf += cardinality * sizeof(uint16_t);
- }
- rb->high_low_container.containers[i] = c;
- }
- }
-
- return rb;
-}
-
-bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset) {
- uint32_t max_value = roaring_bitmap_maximum(r);
- size_t new_array_size = (size_t)(max_value / 64 + 1);
- bool resize_ok = bitset_resize(bitset, new_array_size, true);
- if (!resize_ok) {
- return false;
- }
- const roaring_array_t *ra = &r->high_low_container;
- for (int i = 0; i < ra->size; ++i) {
- uint64_t *words = bitset->array + (ra->keys[i] << 10);
- uint8_t type = ra->typecodes[i];
- const container_t *c = ra->containers[i];
- if (type == SHARED_CONTAINER_TYPE) {
- c = container_unwrap_shared(c, &type);
- }
- switch (type) {
- case BITSET_CONTAINER_TYPE: {
- size_t max_word_index = new_array_size - (ra->keys[i] << 10);
- if (max_word_index > 1024) {
- max_word_index = 1024;
- }
- const bitset_container_t *src = const_CAST_bitset(c);
- memcpy(words, src->words, max_word_index * sizeof(uint64_t));
- } break;
- case ARRAY_CONTAINER_TYPE: {
- const array_container_t *src = const_CAST_array(c);
- bitset_set_list(words, src->array, src->cardinality);
- } break;
- case RUN_CONTAINER_TYPE: {
- const run_container_t *src = const_CAST_run(c);
- for (int32_t rlepos = 0; rlepos < src->n_runs; ++rlepos) {
- rle16_t rle = src->runs[rlepos];
- bitset_set_lenrange(words, rle.value, rle.length);
- }
- } break;
- default:
- roaring_unreachable;
- }
- }
- return true;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring {
-#endif
-/* end file src/roaring.c */
-/* begin file src/roaring64.c */
-#include <assert.h>
-#include <stdarg.h>
-#include <stdint.h>
-#include <string.h>
-
-
-// For serialization / deserialization
-// containers.h last to avoid conflict with ROARING_CONTAINER_T.
-
-#ifdef __cplusplus
-using namespace ::roaring::internal;
-
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-// TODO: Copy on write.
-// TODO: Error on failed allocation.
-
-typedef struct roaring64_bitmap_s {
- art_t art;
- uint8_t flags;
-} roaring64_bitmap_t;
-
-// Leaf type of the ART used to keep the high 48 bits of each entry.
-typedef struct roaring64_leaf_s {
- art_val_t _pad;
- uint8_t typecode;
- container_t *container;
-} roaring64_leaf_t;
-
-// Alias to make it easier to work with, since it's an internal-only type
-// anyway.
-typedef struct roaring64_leaf_s leaf_t;
-
-// Iterator struct to hold iteration state.
-typedef struct roaring64_iterator_s {
- const roaring64_bitmap_t *parent;
- art_iterator_t art_it;
- roaring_container_iterator_t container_it;
- uint64_t high48; // Key that art_it points to.
-
- uint64_t value;
- bool has_value;
-
- // If has_value is false, then the iterator is saturated. This field
- // indicates the direction of saturation. If true, there are no more values
- // in the forward direction. If false, there are no more values in the
- // backward direction.
- bool saturated_forward;
-} roaring64_iterator_t;
-
-// Splits the given uint64 key into high 48 bit and low 16 bit components.
-// Expects high48_out to be of length ART_KEY_BYTES.
-static inline uint16_t split_key(uint64_t key, uint8_t high48_out[]) {
- uint64_t tmp = croaring_htobe64(key);
- memcpy(high48_out, (uint8_t *)(&tmp), ART_KEY_BYTES);
- return (uint16_t)key;
-}
-
-// Recombines the high 48 bit and low 16 bit components into a uint64 key.
-// Expects high48_out to be of length ART_KEY_BYTES.
-static inline uint64_t combine_key(const uint8_t high48[], uint16_t low16) {
- uint64_t result = 0;
- memcpy((uint8_t *)(&result), high48, ART_KEY_BYTES);
- return croaring_be64toh(result) | low16;
-}
-
-static inline uint64_t minimum(uint64_t a, uint64_t b) {
- return (a < b) ? a : b;
-}
-
-static inline leaf_t *create_leaf(container_t *container, uint8_t typecode) {
- leaf_t *leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
- leaf->container = container;
- leaf->typecode = typecode;
- return leaf;
-}
-
-static inline leaf_t *copy_leaf_container(const leaf_t *leaf) {
- leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
- result_leaf->typecode = leaf->typecode;
- // get_copy_of_container modifies the typecode passed in.
- result_leaf->container = get_copy_of_container(
- leaf->container, &result_leaf->typecode, /*copy_on_write=*/false);
- return result_leaf;
-}
-
-static inline void free_leaf(leaf_t *leaf) { roaring_free(leaf); }
-
-static inline int compare_high48(art_key_chunk_t key1[],
- art_key_chunk_t key2[]) {
- return art_compare_keys(key1, key2);
-}
-
-static inline bool roaring64_iterator_init_at_leaf_first(
- roaring64_iterator_t *it) {
- it->high48 = combine_key(it->art_it.key, 0);
- leaf_t *leaf = (leaf_t *)it->art_it.value;
- uint16_t low16 = 0;
- it->container_it =
- container_init_iterator(leaf->container, leaf->typecode, &low16);
- it->value = it->high48 | low16;
- return (it->has_value = true);
-}
-
-static inline bool roaring64_iterator_init_at_leaf_last(
- roaring64_iterator_t *it) {
- it->high48 = combine_key(it->art_it.key, 0);
- leaf_t *leaf = (leaf_t *)it->art_it.value;
- uint16_t low16 = 0;
- it->container_it =
- container_init_iterator_last(leaf->container, leaf->typecode, &low16);
- it->value = it->high48 | low16;
- return (it->has_value = true);
-}
-
-static inline roaring64_iterator_t *roaring64_iterator_init_at(
- const roaring64_bitmap_t *r, roaring64_iterator_t *it, bool first) {
- it->parent = r;
- it->art_it = art_init_iterator(&r->art, first);
- it->has_value = it->art_it.value != NULL;
- if (it->has_value) {
- if (first) {
- roaring64_iterator_init_at_leaf_first(it);
- } else {
- roaring64_iterator_init_at_leaf_last(it);
- }
- } else {
- it->saturated_forward = first;
- }
- return it;
-}
-
-roaring64_bitmap_t *roaring64_bitmap_create(void) {
- roaring64_bitmap_t *r =
- (roaring64_bitmap_t *)roaring_malloc(sizeof(roaring64_bitmap_t));
- r->art.root = NULL;
- r->flags = 0;
- return r;
-}
-
-void roaring64_bitmap_free(roaring64_bitmap_t *r) {
- if (!r) {
- return;
- }
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- container_free(leaf->container, leaf->typecode);
- free_leaf(leaf);
- art_iterator_next(&it);
- }
- art_free(&r->art);
- roaring_free(r);
-}
-
-roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r) {
- roaring64_bitmap_t *result = roaring64_bitmap_create();
-
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- uint8_t result_typecode = leaf->typecode;
- container_t *result_container = get_copy_of_container(
- leaf->container, &result_typecode, /*copy_on_write=*/false);
- leaf_t *result_leaf = create_leaf(result_container, result_typecode);
- art_insert(&result->art, it.key, (art_val_t *)result_leaf);
- art_iterator_next(&it);
- }
- return result;
-}
-
-/**
- * Steal the containers from a 32-bit bitmap and insert them into a 64-bit
- * bitmap (with an offset)
- *
- * After calling this function, the original bitmap will be empty, and the
- * returned bitmap will contain all the values from the original bitmap.
- */
-static void move_from_roaring32_offset(roaring64_bitmap_t *dst,
- roaring_bitmap_t *src,
- uint32_t high_bits) {
- uint64_t key_base = ((uint64_t)high_bits) << 32;
- uint32_t r32_size = ra_get_size(&src->high_low_container);
- for (uint32_t i = 0; i < r32_size; ++i) {
- uint16_t key = ra_get_key_at_index(&src->high_low_container, i);
- uint8_t typecode;
- container_t *container = ra_get_container_at_index(
- &src->high_low_container, (uint16_t)i, &typecode);
-
- uint8_t high48[ART_KEY_BYTES];
- uint64_t high48_bits = key_base | ((uint64_t)key << 16);
- split_key(high48_bits, high48);
- leaf_t *leaf = create_leaf(container, typecode);
- art_insert(&dst->art, high48, (art_val_t *)leaf);
- }
- // We stole all the containers, so leave behind a size of zero
- src->high_low_container.size = 0;
-}
-
-roaring64_bitmap_t *roaring64_bitmap_move_from_roaring32(
- roaring_bitmap_t *bitmap32) {
- roaring64_bitmap_t *result = roaring64_bitmap_create();
-
- move_from_roaring32_offset(result, bitmap32, 0);
-
- return result;
-}
-
-roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max,
- uint64_t step) {
- if (step == 0 || max <= min) {
- return NULL;
- }
- roaring64_bitmap_t *r = roaring64_bitmap_create();
- if (step >= (1 << 16)) {
- // Only one value per container.
- for (uint64_t value = min; value < max; value += step) {
- roaring64_bitmap_add(r, value);
- if (value > UINT64_MAX - step) {
- break;
- }
- }
- return r;
- }
- do {
- uint64_t high_bits = min & 0xFFFFFFFFFFFF0000;
- uint16_t container_min = min & 0xFFFF;
- uint32_t container_max = (uint32_t)minimum(max - high_bits, 1 << 16);
-
- uint8_t typecode;
- container_t *container = container_from_range(
- &typecode, container_min, container_max, (uint16_t)step);
-
- uint8_t high48[ART_KEY_BYTES];
- split_key(min, high48);
- leaf_t *leaf = create_leaf(container, typecode);
- art_insert(&r->art, high48, (art_val_t *)leaf);
-
- uint64_t gap = container_max - container_min + step - 1;
- uint64_t increment = gap - (gap % step);
- if (min > UINT64_MAX - increment) {
- break;
- }
- min += increment;
- } while (min < max);
- return r;
-}
-
-roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args,
- const uint64_t *vals) {
- roaring64_bitmap_t *r = roaring64_bitmap_create();
- roaring64_bitmap_add_many(r, n_args, vals);
- return r;
-}
-
-roaring64_bitmap_t *roaring64_bitmap_of(size_t n_args, ...) {
- roaring64_bitmap_t *r = roaring64_bitmap_create();
- roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
- va_list ap;
- va_start(ap, n_args);
- for (size_t i = 0; i < n_args; i++) {
- uint64_t val = va_arg(ap, uint64_t);
- roaring64_bitmap_add_bulk(r, &context, val);
- }
- va_end(ap);
- return r;
-}
-
-static inline leaf_t *containerptr_roaring64_bitmap_add(roaring64_bitmap_t *r,
- uint8_t *high48,
- uint16_t low16,
- leaf_t *leaf) {
- if (leaf != NULL) {
- uint8_t typecode2;
- container_t *container2 =
- container_add(leaf->container, low16, leaf->typecode, &typecode2);
- if (container2 != leaf->container) {
- container_free(leaf->container, leaf->typecode);
- leaf->container = container2;
- leaf->typecode = typecode2;
- }
- return leaf;
- } else {
- array_container_t *ac = array_container_create();
- uint8_t typecode;
- container_t *container =
- container_add(ac, low16, ARRAY_CONTAINER_TYPE, &typecode);
- assert(ac == container);
- leaf = create_leaf(container, typecode);
- art_insert(&r->art, high48, (art_val_t *)leaf);
- return leaf;
- }
-}
-
-void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
- leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
- containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
-}
-
-bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
- leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
-
- int old_cardinality = 0;
- if (leaf != NULL) {
- old_cardinality =
- container_get_cardinality(leaf->container, leaf->typecode);
- }
- leaf = containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
- int new_cardinality =
- container_get_cardinality(leaf->container, leaf->typecode);
- return old_cardinality != new_cardinality;
-}
-
-void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r,
- roaring64_bulk_context_t *context,
- uint64_t val) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
- if (context->leaf != NULL &&
- compare_high48(context->high_bytes, high48) == 0) {
- // We're at a container with the correct high bits.
- uint8_t typecode2;
- container_t *container2 =
- container_add(context->leaf->container, low16,
- context->leaf->typecode, &typecode2);
- if (container2 != context->leaf->container) {
- container_free(context->leaf->container, context->leaf->typecode);
- context->leaf->container = container2;
- context->leaf->typecode = typecode2;
- }
- } else {
- // We're not positioned anywhere yet or the high bits of the key
- // differ.
- leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
- context->leaf =
- containerptr_roaring64_bitmap_add(r, high48, low16, leaf);
- memcpy(context->high_bytes, high48, ART_KEY_BYTES);
- }
-}
-
-void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args,
- const uint64_t *vals) {
- if (n_args == 0) {
- return;
- }
- const uint64_t *end = vals + n_args;
- roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
- for (const uint64_t *current_val = vals; current_val != end;
- current_val++) {
- roaring64_bitmap_add_bulk(r, &context, *current_val);
- }
-}
-
-static inline void add_range_closed_at(art_t *art, uint8_t *high48,
- uint16_t min, uint16_t max) {
- leaf_t *leaf = (leaf_t *)art_find(art, high48);
- if (leaf != NULL) {
- uint8_t typecode2;
- container_t *container2 = container_add_range(
- leaf->container, leaf->typecode, min, max, &typecode2);
- if (container2 != leaf->container) {
- container_free(leaf->container, leaf->typecode);
- leaf->container = container2;
- leaf->typecode = typecode2;
- }
- return;
- }
- uint8_t typecode;
- // container_add_range is inclusive, but `container_range_of_ones` is
- // exclusive.
- container_t *container = container_range_of_ones(min, max + 1, &typecode);
- leaf = create_leaf(container, typecode);
- art_insert(art, high48, (art_val_t *)leaf);
-}
-
-void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min >= max) {
- return;
- }
- roaring64_bitmap_add_range_closed(r, min, max - 1);
-}
-
-void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min > max) {
- return;
- }
-
- art_t *art = &r->art;
- uint8_t min_high48[ART_KEY_BYTES];
- uint16_t min_low16 = split_key(min, min_high48);
- uint8_t max_high48[ART_KEY_BYTES];
- uint16_t max_low16 = split_key(max, max_high48);
- if (compare_high48(min_high48, max_high48) == 0) {
- // Only populate range within one container.
- add_range_closed_at(art, min_high48, min_low16, max_low16);
- return;
- }
-
- // Populate a range across containers. Fill intermediate containers
- // entirely.
- add_range_closed_at(art, min_high48, min_low16, 0xffff);
- uint64_t min_high_bits = min >> 16;
- uint64_t max_high_bits = max >> 16;
- for (uint64_t current = min_high_bits + 1; current < max_high_bits;
- ++current) {
- uint8_t current_high48[ART_KEY_BYTES];
- split_key(current << 16, current_high48);
- add_range_closed_at(art, current_high48, 0, 0xffff);
- }
- add_range_closed_at(art, max_high48, 0, max_low16);
-}
-
-bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
- leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
- if (leaf != NULL) {
- return container_contains(leaf->container, low16, leaf->typecode);
- }
- return false;
-}
-
-bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min >= max) {
- return true;
- }
-
- uint8_t min_high48[ART_KEY_BYTES];
- uint16_t min_low16 = split_key(min, min_high48);
- uint8_t max_high48[ART_KEY_BYTES];
- uint16_t max_low16 = split_key(max, max_high48);
- uint64_t max_high48_bits = (max - 1) & 0xFFFFFFFFFFFF0000; // Inclusive
-
- art_iterator_t it = art_lower_bound(&r->art, min_high48);
- if (it.value == NULL || combine_key(it.key, 0) > min) {
- return false;
- }
- uint64_t prev_high48_bits = min & 0xFFFFFFFFFFFF0000;
- while (it.value != NULL) {
- uint64_t current_high48_bits = combine_key(it.key, 0);
- if (current_high48_bits > max_high48_bits) {
- // We've passed the end of the range with all containers containing
- // the range.
- return true;
- }
- if (current_high48_bits - prev_high48_bits > 0x10000) {
- // There is a gap in the iterator that falls in the range.
- return false;
- }
-
- leaf_t *leaf = (leaf_t *)it.value;
- uint32_t container_min = 0;
- if (compare_high48(it.key, min_high48) == 0) {
- container_min = min_low16;
- }
- uint32_t container_max = 0xFFFF + 1; // Exclusive
- if (compare_high48(it.key, max_high48) == 0) {
- container_max = max_low16;
- }
-
- // For the first and last containers we use container_contains_range,
- // for the intermediate containers we can use container_is_full.
- if (container_min == 0 && container_max == 0xFFFF + 1) {
- if (!container_is_full(leaf->container, leaf->typecode)) {
- return false;
- }
- } else if (!container_contains_range(leaf->container, container_min,
- container_max, leaf->typecode)) {
- return false;
- }
- prev_high48_bits = current_high48_bits;
- art_iterator_next(&it);
- }
- return prev_high48_bits == max_high48_bits;
-}
-
-bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r,
- roaring64_bulk_context_t *context,
- uint64_t val) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
-
- if (context->leaf == NULL ||
- art_compare_keys(context->high_bytes, high48) != 0) {
- // We're not positioned anywhere yet or the high bits of the key
- // differ.
- leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
- if (leaf == NULL) {
- return false;
- }
- context->leaf = leaf;
- memcpy(context->high_bytes, high48, ART_KEY_BYTES);
- }
- return container_contains(context->leaf->container, low16,
- context->leaf->typecode);
-}
-
-bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank,
- uint64_t *element) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint64_t start_rank = 0;
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- uint64_t cardinality =
- container_get_cardinality(leaf->container, leaf->typecode);
- if (start_rank + cardinality > rank) {
- uint32_t uint32_start = 0;
- uint32_t uint32_rank = rank - start_rank;
- uint32_t uint32_element = 0;
- if (container_select(leaf->container, leaf->typecode,
&uint32_start,
- uint32_rank, &uint32_element)) {
- *element = combine_key(it.key, (uint16_t)uint32_element);
- return true;
- }
- return false;
- }
- start_rank += cardinality;
- art_iterator_next(&it);
- }
- return false;
-}
-
-uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
-
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint64_t rank = 0;
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- int compare_result = compare_high48(it.key, high48);
- if (compare_result < 0) {
- rank += container_get_cardinality(leaf->container, leaf->typecode);
- } else if (compare_result == 0) {
- return rank +
- container_rank(leaf->container, leaf->typecode, low16);
- } else {
- return rank;
- }
- art_iterator_next(&it);
- }
- return rank;
-}
-
-bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val,
- uint64_t *out_index) {
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
-
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint64_t index = 0;
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- int compare_result = compare_high48(it.key, high48);
- if (compare_result < 0) {
- index += container_get_cardinality(leaf->container,
leaf->typecode);
- } else if (compare_result == 0) {
- int index16 =
- container_get_index(leaf->container, leaf->typecode, low16);
- if (index16 < 0) {
- return false;
- }
- *out_index = index + index16;
- return true;
- } else {
- return false;
- }
- art_iterator_next(&it);
- }
- return false;
-}
-
-static inline leaf_t *containerptr_roaring64_bitmap_remove(
- roaring64_bitmap_t *r, uint8_t *high48, uint16_t low16, leaf_t *leaf) {
- if (leaf == NULL) {
- return NULL;
- }
-
- container_t *container = leaf->container;
- uint8_t typecode = leaf->typecode;
- uint8_t typecode2;
- container_t *container2 =
- container_remove(container, low16, typecode, &typecode2);
- if (container2 != container) {
- container_free(container, typecode);
- leaf->container = container2;
- leaf->typecode = typecode2;
- }
- if (!container_nonzero_cardinality(container2, typecode2)) {
- container_free(container2, typecode2);
- leaf = (leaf_t *)art_erase(&r->art, high48);
- if (leaf != NULL) {
- free_leaf(leaf);
- }
- return NULL;
- }
- return leaf;
-}
-
-void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val) {
- art_t *art = &r->art;
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
-
- leaf_t *leaf = (leaf_t *)art_find(art, high48);
- containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
-}
-
-bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val) {
- art_t *art = &r->art;
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
- leaf_t *leaf = (leaf_t *)art_find(art, high48);
-
- if (leaf == NULL) {
- return false;
- }
- int old_cardinality =
- container_get_cardinality(leaf->container, leaf->typecode);
- leaf = containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
- if (leaf == NULL) {
- return true;
- }
- int new_cardinality =
- container_get_cardinality(leaf->container, leaf->typecode);
- return new_cardinality != old_cardinality;
-}
-
-void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r,
- roaring64_bulk_context_t *context,
- uint64_t val) {
- art_t *art = &r->art;
- uint8_t high48[ART_KEY_BYTES];
- uint16_t low16 = split_key(val, high48);
- if (context->leaf != NULL &&
- compare_high48(context->high_bytes, high48) == 0) {
- // We're at a container with the correct high bits.
- uint8_t typecode2;
- container_t *container2 =
- container_remove(context->leaf->container, low16,
- context->leaf->typecode, &typecode2);
- if (container2 != context->leaf->container) {
- container_free(context->leaf->container, context->leaf->typecode);
- context->leaf->container = container2;
- context->leaf->typecode = typecode2;
- }
- if (!container_nonzero_cardinality(container2, typecode2)) {
- leaf_t *leaf = (leaf_t *)art_erase(art, high48);
- container_free(container2, typecode2);
- free_leaf(leaf);
- }
- } else {
- // We're not positioned anywhere yet or the high bits of the key
- // differ.
- leaf_t *leaf = (leaf_t *)art_find(art, high48);
- context->leaf =
- containerptr_roaring64_bitmap_remove(r, high48, low16, leaf);
- memcpy(context->high_bytes, high48, ART_KEY_BYTES);
- }
-}
-
-void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args,
- const uint64_t *vals) {
- if (n_args == 0) {
- return;
- }
- const uint64_t *end = vals + n_args;
- roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER;
- for (const uint64_t *current_val = vals; current_val != end;
- current_val++) {
- roaring64_bitmap_remove_bulk(r, &context, *current_val);
- }
-}
-
-static inline void remove_range_closed_at(art_t *art, uint8_t *high48,
- uint16_t min, uint16_t max) {
- leaf_t *leaf = (leaf_t *)art_find(art, high48);
- if (leaf == NULL) {
- return;
- }
- uint8_t typecode2;
- container_t *container2 = container_remove_range(
- leaf->container, leaf->typecode, min, max, &typecode2);
- if (container2 != leaf->container) {
- container_free(leaf->container, leaf->typecode);
- if (container2 != NULL) {
- leaf->container = container2;
- leaf->typecode = typecode2;
- } else {
- art_erase(art, high48);
- free_leaf(leaf);
- }
- }
-}
-
-void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min >= max) {
- return;
- }
- roaring64_bitmap_remove_range_closed(r, min, max - 1);
-}
-
-void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min > max) {
- return;
- }
-
- art_t *art = &r->art;
- uint8_t min_high48[ART_KEY_BYTES];
- uint16_t min_low16 = split_key(min, min_high48);
- uint8_t max_high48[ART_KEY_BYTES];
- uint16_t max_low16 = split_key(max, max_high48);
- if (compare_high48(min_high48, max_high48) == 0) {
- // Only remove a range within one container.
- remove_range_closed_at(art, min_high48, min_low16, max_low16);
- return;
- }
-
- // Remove a range across containers. Remove intermediate containers
- // entirely.
- remove_range_closed_at(art, min_high48, min_low16, 0xffff);
-
- art_iterator_t it = art_upper_bound(art, min_high48);
- while (it.value != NULL && art_compare_keys(it.key, max_high48) < 0) {
- leaf_t *leaf = (leaf_t *)art_iterator_erase(art, &it);
- container_free(leaf->container, leaf->typecode);
- free_leaf(leaf);
- }
- remove_range_closed_at(art, max_high48, 0, max_low16);
-}
-
-void roaring64_bitmap_clear(roaring64_bitmap_t *r) {
- roaring64_bitmap_remove_range_closed(r, 0, UINT64_MAX);
-}
-
-uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint64_t cardinality = 0;
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- cardinality +=
- container_get_cardinality(leaf->container, leaf->typecode);
- art_iterator_next(&it);
- }
- return cardinality;
-}
-
-uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max) {
- if (min >= max) {
- return 0;
- }
- // Convert to a closed range
- // No underflow here: passing the above condition implies min < max, so
- // there is a number less than max
- return roaring64_bitmap_range_closed_cardinality(r, min, max - 1);
-}
-
-uint64_t roaring64_bitmap_range_closed_cardinality(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max)
{
- if (min > max) {
- return 0;
- }
-
- uint64_t cardinality = 0;
- uint8_t min_high48[ART_KEY_BYTES];
- uint16_t min_low16 = split_key(min, min_high48);
- uint8_t max_high48[ART_KEY_BYTES];
- uint16_t max_low16 = split_key(max, max_high48);
-
- art_iterator_t it = art_lower_bound(&r->art, min_high48);
- while (it.value != NULL) {
- int max_compare_result = compare_high48(it.key, max_high48);
- if (max_compare_result > 0) {
- // We're outside the range.
- break;
- }
-
- leaf_t *leaf = (leaf_t *)it.value;
- if (max_compare_result == 0) {
- // We're at the max high key, add only the range up to the low
- // 16 bits of max.
- cardinality +=
- container_rank(leaf->container, leaf->typecode, max_low16);
- } else {
- // We're not yet at the max high key, add the full container
- // range.
- cardinality +=
- container_get_cardinality(leaf->container, leaf->typecode);
- }
- if (compare_high48(it.key, min_high48) == 0 && min_low16 > 0) {
- // We're at the min high key, remove the range up to the low 16
- // bits of min.
- cardinality -=
- container_rank(leaf->container, leaf->typecode, min_low16 - 1);
- }
- art_iterator_next(&it);
- }
- return cardinality;
-}
-
-bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r) {
- return art_is_empty(&r->art);
-}
-
-uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- if (it.value == NULL) {
- return UINT64_MAX;
- }
- leaf_t *leaf = (leaf_t *)it.value;
- return combine_key(it.key,
- container_minimum(leaf->container, leaf->typecode));
-}
-
-uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/false);
- if (it.value == NULL) {
- return 0;
- }
- leaf_t *leaf = (leaf_t *)it.value;
- return combine_key(it.key,
- container_maximum(leaf->container, leaf->typecode));
-}
-
-bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- bool has_run_container = false;
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- uint8_t new_typecode;
- // We don't need to free the existing container if a new one was
- // created, convert_run_optimize does that internally.
- leaf->container = convert_run_optimize(leaf->container, leaf->typecode,
- &new_typecode);
- leaf->typecode = new_typecode;
- has_run_container |= new_typecode == RUN_CONTAINER_TYPE;
- art_iterator_next(&it);
- }
- return has_run_container;
-}
-
-/**
- * (For advanced users.)
- * Collect statistics about the bitmap
- */
-void roaring64_bitmap_statistics(const roaring64_bitmap_t *r,
- roaring64_statistics_t *stat) {
- memset(stat, 0, sizeof(*stat));
- stat->min_value = roaring64_bitmap_minimum(r);
- stat->max_value = roaring64_bitmap_maximum(r);
-
- art_iterator_t it = art_init_iterator(&r->art, true);
- while (it.value != NULL) {
- leaf_t *leaf = (leaf_t *)it.value;
- stat->n_containers++;
- uint8_t truetype = get_container_type(leaf->container, leaf->typecode);
- uint32_t card =
- container_get_cardinality(leaf->container, leaf->typecode);
- uint32_t sbytes =
- container_size_in_bytes(leaf->container, leaf->typecode);
- stat->cardinality += card;
- switch (truetype) {
- case BITSET_CONTAINER_TYPE:
- stat->n_bitset_containers++;
- stat->n_values_bitset_containers += card;
- stat->n_bytes_bitset_containers += sbytes;
- break;
- case ARRAY_CONTAINER_TYPE:
- stat->n_array_containers++;
- stat->n_values_array_containers += card;
- stat->n_bytes_array_containers += sbytes;
- break;
- case RUN_CONTAINER_TYPE:
- stat->n_run_containers++;
- stat->n_values_run_containers += card;
- stat->n_bytes_run_containers += sbytes;
- break;
- default:
- assert(false);
- roaring_unreachable;
- }
- art_iterator_next(&it);
- }
-}
-
-static bool roaring64_leaf_internal_validate(const art_val_t *val,
- const char **reason) {
- leaf_t *leaf = (leaf_t *)val;
- return container_internal_validate(leaf->container, leaf->typecode,
reason);
-}
-
-bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r,
- const char **reason) {
- return art_internal_validate(&r->art, reason,
- roaring64_leaf_internal_validate);
-}
-
-bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL && it2.value != NULL) {
- if (compare_high48(it1.key, it2.key) != 0) {
- return false;
- }
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- if (!container_equals(leaf1->container, leaf1->typecode,
- leaf2->container, leaf2->typecode)) {
- return false;
- }
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- }
- return it1.value == NULL && it2.value == NULL;
-}
-
-bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL) {
- bool it2_present = it2.value != NULL;
-
- int compare_result = 0;
- if (it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- if (!container_is_subset(leaf1->container, leaf1->typecode,
- leaf2->container, leaf2->typecode)) {
- return false;
- }
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- }
- }
- if (!it2_present || compare_result < 0) {
- return false;
- } else if (compare_result > 0) {
- art_iterator_lower_bound(&it2, it1.key);
- }
- }
- return true;
-}
-
-bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- return roaring64_bitmap_get_cardinality(r1) <
- roaring64_bitmap_get_cardinality(r2) &&
- roaring64_bitmap_is_subset(r1, r2);
-}
-
-roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- roaring64_bitmap_t *result = roaring64_bitmap_create();
-
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL && it2.value != NULL) {
- // Cases:
- // 1. it1 < it2 -> it1++
- // 2. it1 == it1 -> output it1 & it2, it1++, it2++
- // 3. it1 > it2 -> it2++
- int compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 2: iterators at the same high key position.
- leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- result_leaf->container = container_and(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &result_leaf->typecode);
-
- if (container_nonzero_cardinality(result_leaf->container,
- result_leaf->typecode)) {
- art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
- } else {
- container_free(result_leaf->container, result_leaf->typecode);
- free_leaf(result_leaf);
- }
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- } else if (compare_result < 0) {
- // Case 1: it1 is before it2.
- art_iterator_lower_bound(&it1, it2.key);
- } else {
- // Case 3: it2 is before it1.
- art_iterator_lower_bound(&it2, it1.key);
- }
- }
- return result;
-}
-
-uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- uint64_t result = 0;
-
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL && it2.value != NULL) {
- // Cases:
- // 1. it1 < it2 -> it1++
- // 2. it1 == it1 -> output cardinaltiy it1 & it2, it1++, it2++
- // 3. it1 > it2 -> it2++
- int compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 2: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- result +=
- container_and_cardinality(leaf1->container, leaf1->typecode,
- leaf2->container, leaf2->typecode);
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- } else if (compare_result < 0) {
- // Case 1: it1 is before it2.
- art_iterator_lower_bound(&it1, it2.key);
- } else {
- // Case 3: it2 is before it1.
- art_iterator_lower_bound(&it2, it1.key);
- }
- }
- return result;
-}
-
-// Inplace and (modifies its first argument).
-void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- if (r1 == r2) {
- return;
- }
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL) {
- // Cases:
- // 1. !it2_present -> erase it1
- // 2. it2_present
- // a. it1 < it2 -> erase it1
- // b. it1 == it2 -> output it1 & it2, it1++, it2++
- // c. it1 > it2 -> it2++
- bool it2_present = it2.value != NULL;
- int compare_result = 0;
- if (it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 2a: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
-
- // We do the computation "in place" only when c1 is not a
- // shared container. Rationale: using a shared container
- // safely with in place computation would require making a
- // copy and then doing the computation in place which is
- // likely less efficient than avoiding in place entirely and
- // always generating a new container.
- uint8_t typecode2;
- container_t *container2;
- if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
- container2 = container_and(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- } else {
- container2 = container_iand(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- }
-
- if (container2 != leaf1->container) {
- container_free(leaf1->container, leaf1->typecode);
- leaf1->container = container2;
- leaf1->typecode = typecode2;
- }
- if (!container_nonzero_cardinality(container2, typecode2)) {
- container_free(container2, typecode2);
- art_iterator_erase(&r1->art, &it1);
- free_leaf(leaf1);
- } else {
- // Only advance the iterator if we didn't delete the
- // leaf, as erasing advances by itself.
- art_iterator_next(&it1);
- }
- art_iterator_next(&it2);
- }
- }
-
- if (!it2_present || compare_result < 0) {
- // Cases 1 and 3a: it1 is the only iterator or is before it2.
- leaf_t *leaf = (leaf_t *)art_iterator_erase(&r1->art, &it1);
- assert(leaf != NULL);
- container_free(leaf->container, leaf->typecode);
- free_leaf(leaf);
- } else if (compare_result > 0) {
- // Case 2c: it1 is after it2.
- art_iterator_lower_bound(&it2, it1.key);
- }
- }
-}
-
-bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- bool intersect = false;
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL && it2.value != NULL) {
- // Cases:
- // 1. it1 < it2 -> it1++
- // 2. it1 == it1 -> intersect |= it1 & it2, it1++, it2++
- // 3. it1 > it2 -> it2++
- int compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 2: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- intersect |= container_intersect(leaf1->container, leaf1->typecode,
- leaf2->container,
leaf2->typecode);
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- } else if (compare_result < 0) {
- // Case 1: it1 is before it2.
- art_iterator_lower_bound(&it1, it2.key);
- } else {
- // Case 3: it2 is before it1.
- art_iterator_lower_bound(&it2, it1.key);
- }
- }
- return intersect;
-}
-
-bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max) {
- if (min >= max) {
- return false;
- }
- roaring64_iterator_t it;
- roaring64_iterator_init_at(r, &it, /*first=*/true);
- if (!roaring64_iterator_move_equalorlarger(&it, min)) {
- return false;
- }
- return roaring64_iterator_has_value(&it) &&
- roaring64_iterator_value(&it) < max;
-}
-
-double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
- uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
- uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
- return (double)inter / (double)(c1 + c2 - inter);
-}
-
-roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- roaring64_bitmap_t *result = roaring64_bitmap_create();
-
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL || it2.value != NULL) {
- bool it1_present = it1.value != NULL;
- bool it2_present = it2.value != NULL;
-
- // Cases:
- // 1. it1_present && !it2_present -> output it1, it1++
- // 2. !it1_present && it2_present -> output it2, it2++
- // 3. it1_present && it2_present
- // a. it1 < it2 -> output it1, it1++
- // b. it1 == it2 -> output it1 | it2, it1++, it2++
- // c. it1 > it2 -> output it2, it2++
- int compare_result = 0;
- if (it1_present && it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 3b: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
- result_leaf->container = container_or(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &result_leaf->typecode);
- art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- }
- }
- if ((it1_present && !it2_present) || compare_result < 0) {
- // Cases 1 and 3a: it1 is the only iterator or is before it2.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
- art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
- art_iterator_next(&it1);
- } else if ((!it1_present && it2_present) || compare_result > 0) {
- // Cases 2 and 3c: it2 is the only iterator or is before it1.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
- art_insert(&result->art, it2.key, (art_val_t *)result_leaf);
- art_iterator_next(&it2);
- }
- }
- return result;
-}
-
-uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
- uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
- uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
- return c1 + c2 - inter;
-}
-
-void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- if (r1 == r2) {
- return;
- }
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL || it2.value != NULL) {
- bool it1_present = it1.value != NULL;
- bool it2_present = it2.value != NULL;
-
- // Cases:
- // 1. it1_present && !it2_present -> it1++
- // 2. !it1_present && it2_present -> add it2, it2++
- // 3. it1_present && it2_present
- // a. it1 < it2 -> it1++
- // b. it1 == it2 -> it1 | it2, it1++, it2++
- // c. it1 > it2 -> add it2, it2++
- int compare_result = 0;
- if (it1_present && it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 3b: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- uint8_t typecode2;
- container_t *container2;
- if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
- container2 = container_or(leaf1->container,
leaf1->typecode,
- leaf2->container,
leaf2->typecode,
- &typecode2);
- } else {
- container2 = container_ior(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- }
- if (container2 != leaf1->container) {
- container_free(leaf1->container, leaf1->typecode);
- leaf1->container = container2;
- leaf1->typecode = typecode2;
- }
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- }
- }
- if ((it1_present && !it2_present) || compare_result < 0) {
- // Cases 1 and 3a: it1 is the only iterator or is before it2.
- art_iterator_next(&it1);
- } else if ((!it1_present && it2_present) || compare_result > 0) {
- // Cases 2 and 3c: it2 is the only iterator or is before it1.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
- art_iterator_insert(&r1->art, &it1, it2.key,
- (art_val_t *)result_leaf);
- art_iterator_next(&it2);
- }
- }
-}
-
-roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- roaring64_bitmap_t *result = roaring64_bitmap_create();
-
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL || it2.value != NULL) {
- bool it1_present = it1.value != NULL;
- bool it2_present = it2.value != NULL;
-
- // Cases:
- // 1. it1_present && !it2_present -> output it1, it1++
- // 2. !it1_present && it2_present -> output it2, it2++
- // 3. it1_present && it2_present
- // a. it1 < it2 -> output it1, it1++
- // b. it1 == it2 -> output it1 ^ it2, it1++, it2++
- // c. it1 > it2 -> output it2, it2++
- int compare_result = 0;
- if (it1_present && it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 3b: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
- result_leaf->container = container_xor(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &result_leaf->typecode);
- if (container_nonzero_cardinality(result_leaf->container,
- result_leaf->typecode)) {
- art_insert(&result->art, it1.key, (art_val_t
*)result_leaf);
- } else {
- container_free(result_leaf->container,
- result_leaf->typecode);
- free_leaf(result_leaf);
- }
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- }
- }
- if ((it1_present && !it2_present) || compare_result < 0) {
- // Cases 1 and 3a: it1 is the only iterator or is before it2.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
- art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
- art_iterator_next(&it1);
- } else if ((!it1_present && it2_present) || compare_result > 0) {
- // Cases 2 and 3c: it2 is the only iterator or is before it1.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
- art_insert(&result->art, it2.key, (art_val_t *)result_leaf);
- art_iterator_next(&it2);
- }
- }
- return result;
-}
-
-uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
- uint64_t c2 = roaring64_bitmap_get_cardinality(r2);
- uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
- return c1 + c2 - 2 * inter;
-}
-
-void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- assert(r1 != r2);
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL || it2.value != NULL) {
- bool it1_present = it1.value != NULL;
- bool it2_present = it2.value != NULL;
-
- // Cases:
- // 1. it1_present && !it2_present -> it1++
- // 2. !it1_present && it2_present -> add it2, it2++
- // 3. it1_present && it2_present
- // a. it1 < it2 -> it1++
- // b. it1 == it2 -> it1 ^ it2, it1++, it2++
- // c. it1 > it2 -> add it2, it2++
- int compare_result = 0;
- if (it1_present && it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 3b: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- container_t *container1 = leaf1->container;
- uint8_t typecode1 = leaf1->typecode;
- uint8_t typecode2;
- container_t *container2;
- if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
- container2 = container_xor(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- if (container2 != container1) {
- // We only free when doing container_xor, not
- // container_ixor, as ixor frees the original
- // internally.
- container_free(container1, typecode1);
- }
- } else {
- container2 = container_ixor(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- }
- leaf1->container = container2;
- leaf1->typecode = typecode2;
-
- if (!container_nonzero_cardinality(container2, typecode2)) {
- container_free(container2, typecode2);
- art_iterator_erase(&r1->art, &it1);
- free_leaf(leaf1);
- } else {
- // Only advance the iterator if we didn't delete the
- // leaf, as erasing advances by itself.
- art_iterator_next(&it1);
- }
- art_iterator_next(&it2);
- }
- }
- if ((it1_present && !it2_present) || compare_result < 0) {
- // Cases 1 and 3a: it1 is the only iterator or is before it2.
- art_iterator_next(&it1);
- } else if ((!it1_present && it2_present) || compare_result > 0) {
- // Cases 2 and 3c: it2 is the only iterator or is before it1.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it2.value);
- if (it1_present) {
- art_iterator_insert(&r1->art, &it1, it2.key,
- (art_val_t *)result_leaf);
- art_iterator_next(&it1);
- } else {
- art_insert(&r1->art, it2.key, (art_val_t *)result_leaf);
- }
- art_iterator_next(&it2);
- }
- }
-}
-
-roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- roaring64_bitmap_t *result = roaring64_bitmap_create();
-
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL) {
- // Cases:
- // 1. it1_present && !it2_present -> output it1, it1++
- // 2. it1_present && it2_present
- // a. it1 < it2 -> output it1, it1++
- // b. it1 == it2 -> output it1 - it2, it1++, it2++
- // c. it1 > it2 -> it2++
- bool it2_present = it2.value != NULL;
- int compare_result = 0;
- if (it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 2b: iterators at the same high key position.
- leaf_t *result_leaf = (leaf_t *)roaring_malloc(sizeof(leaf_t));
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- result_leaf->container = container_andnot(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &result_leaf->typecode);
-
- if (container_nonzero_cardinality(result_leaf->container,
- result_leaf->typecode)) {
- art_insert(&result->art, it1.key, (art_val_t
*)result_leaf);
- } else {
- container_free(result_leaf->container,
- result_leaf->typecode);
- free_leaf(result_leaf);
- }
- art_iterator_next(&it1);
- art_iterator_next(&it2);
- }
- }
- if (!it2_present || compare_result < 0) {
- // Cases 1 and 2a: it1 is the only iterator or is before it2.
- leaf_t *result_leaf = copy_leaf_container((leaf_t *)it1.value);
- art_insert(&result->art, it1.key, (art_val_t *)result_leaf);
- art_iterator_next(&it1);
- } else if (compare_result > 0) {
- // Case 2c: it1 is after it2.
- art_iterator_next(&it2);
- }
- }
- return result;
-}
-
-uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- uint64_t c1 = roaring64_bitmap_get_cardinality(r1);
- uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2);
- return c1 - inter;
-}
-
-void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2) {
- art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true);
- art_iterator_t it2 = art_init_iterator(&r2->art, /*first=*/true);
-
- while (it1.value != NULL) {
- // Cases:
- // 1. it1_present && !it2_present -> it1++
- // 2. it1_present && it2_present
- // a. it1 < it2 -> it1++
- // b. it1 == it2 -> it1 - it2, it1++, it2++
- // c. it1 > it2 -> it2++
- bool it2_present = it2.value != NULL;
- int compare_result = 0;
- if (it2_present) {
- compare_result = compare_high48(it1.key, it2.key);
- if (compare_result == 0) {
- // Case 2b: iterators at the same high key position.
- leaf_t *leaf1 = (leaf_t *)it1.value;
- leaf_t *leaf2 = (leaf_t *)it2.value;
- container_t *container1 = leaf1->container;
- uint8_t typecode1 = leaf1->typecode;
- uint8_t typecode2;
- container_t *container2;
- if (leaf1->typecode == SHARED_CONTAINER_TYPE) {
- container2 = container_andnot(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- if (container2 != container1) {
- // We only free when doing container_andnot, not
- // container_iandnot, as iandnot frees the original
- // internally.
- container_free(container1, typecode1);
- }
- } else {
- container2 = container_iandnot(
- leaf1->container, leaf1->typecode, leaf2->container,
- leaf2->typecode, &typecode2);
- }
- if (container2 != container1) {
- leaf1->container = container2;
- leaf1->typecode = typecode2;
- }
-
- if (!container_nonzero_cardinality(container2, typecode2)) {
- container_free(container2, typecode2);
- art_iterator_erase(&r1->art, &it1);
- free_leaf(leaf1);
- } else {
- // Only advance the iterator if we didn't delete the
- // leaf, as erasing advances by itself.
- art_iterator_next(&it1);
- }
- art_iterator_next(&it2);
- }
- }
- if (!it2_present || compare_result < 0) {
- // Cases 1 and 2a: it1 is the only iterator or is before it2.
- art_iterator_next(&it1);
- } else if (compare_result > 0) {
- // Case 2c: it1 is after it2.
- art_iterator_next(&it2);
- }
- }
-}
-
-/**
- * Flips the leaf at high48 in the range [min, max), returning a new leaf with
a
- * new container. If the high48 key is not found in the existing bitmap, a new
- * container is created. Returns null if the negation results in an empty
range.
- */
-static leaf_t *roaring64_flip_leaf(const roaring64_bitmap_t *r,
- uint8_t high48[], uint32_t min,
- uint32_t max) {
- leaf_t *leaf1 = (leaf_t *)art_find(&r->art, high48);
- container_t *container2;
- uint8_t typecode2;
- if (leaf1 == NULL) {
- // No container at this key, create a full container.
- container2 = container_range_of_ones(min, max, &typecode2);
- } else if (min == 0 && max > 0xFFFF) {
- // Flip whole container.
- container2 =
- container_not(leaf1->container, leaf1->typecode, &typecode2);
- } else {
- // Partially flip a container.
- container2 = container_not_range(leaf1->container, leaf1->typecode,
min,
- max, &typecode2);
- }
- if (container_nonzero_cardinality(container2, typecode2)) {
- return create_leaf(container2, typecode2);
- }
- container_free(container2, typecode2);
- return NULL;
-}
-
-/**
- * Flips the leaf at high48 in the range [min, max). If the high48 key is not
- * found in the bitmap, a new container is created. Deletes the leaf and
- * associated container if the negation results in an empty range.
- */
-static void roaring64_flip_leaf_inplace(roaring64_bitmap_t *r, uint8_t
high48[],
- uint32_t min, uint32_t max) {
- leaf_t *leaf = (leaf_t *)art_find(&r->art, high48);
- container_t *container2;
- uint8_t typecode2;
- if (leaf == NULL) {
- // No container at this key, insert a full container.
- container2 = container_range_of_ones(min, max, &typecode2);
- art_insert(&r->art, high48,
- (art_val_t *)create_leaf(container2, typecode2));
- return;
- }
-
- if (min == 0 && max > 0xFFFF) {
- // Flip whole container.
- container2 =
- container_inot(leaf->container, leaf->typecode, &typecode2);
- } else {
- // Partially flip a container.
- container2 = container_inot_range(leaf->container, leaf->typecode, min,
- max, &typecode2);
- }
-
- leaf->container = container2;
- leaf->typecode = typecode2;
-
- if (!container_nonzero_cardinality(leaf->container, leaf->typecode)) {
- art_erase(&r->art, high48);
- container_free(leaf->container, leaf->typecode);
- free_leaf(leaf);
- }
-}
-
-roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max) {
- if (min >= max) {
- return roaring64_bitmap_copy(r);
- }
- return roaring64_bitmap_flip_closed(r, min, max - 1);
-}
-
-roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r1,
- uint64_t min, uint64_t max) {
- if (min > max) {
- return roaring64_bitmap_copy(r1);
- }
- uint8_t min_high48_key[ART_KEY_BYTES];
- uint16_t min_low16 = split_key(min, min_high48_key);
- uint8_t max_high48_key[ART_KEY_BYTES];
- uint16_t max_low16 = split_key(max, max_high48_key);
- uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16;
- uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16;
-
- roaring64_bitmap_t *r2 = roaring64_bitmap_create();
- art_iterator_t it = art_init_iterator(&r1->art, /*first=*/true);
-
- // Copy the containers before min unchanged.
- while (it.value != NULL && compare_high48(it.key, min_high48_key) < 0) {
- leaf_t *leaf1 = (leaf_t *)it.value;
- uint8_t typecode2 = leaf1->typecode;
- container_t *container2 = get_copy_of_container(
- leaf1->container, &typecode2, /*copy_on_write=*/false);
- art_insert(&r2->art, it.key,
- (art_val_t *)create_leaf(container2, typecode2));
- art_iterator_next(&it);
- }
-
- // Flip the range (including non-existent containers!) between min and max.
- for (uint64_t high48_bits = min_high48_bits; high48_bits <=
max_high48_bits;
- high48_bits++) {
- uint8_t current_high48_key[ART_KEY_BYTES];
- split_key(high48_bits << 16, current_high48_key);
-
- uint32_t min_container = 0;
- if (high48_bits == min_high48_bits) {
- min_container = min_low16;
- }
- uint32_t max_container = 0xFFFF + 1; // Exclusive range.
- if (high48_bits == max_high48_bits) {
- max_container = max_low16 + 1; // Exclusive.
- }
-
- leaf_t *leaf = roaring64_flip_leaf(r1, current_high48_key,
- min_container, max_container);
- if (leaf != NULL) {
- art_insert(&r2->art, current_high48_key, (art_val_t *)leaf);
- }
- }
-
- // Copy the containers after max unchanged.
- it = art_upper_bound(&r1->art, max_high48_key);
- while (it.value != NULL) {
- leaf_t *leaf1 = (leaf_t *)it.value;
- uint8_t typecode2 = leaf1->typecode;
- container_t *container2 = get_copy_of_container(
- leaf1->container, &typecode2, /*copy_on_write=*/false);
- art_insert(&r2->art, it.key,
- (art_val_t *)create_leaf(container2, typecode2));
- art_iterator_next(&it);
- }
-
- return r2;
-}
-
-void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min >= max) {
- return;
- }
- roaring64_bitmap_flip_closed_inplace(r, min, max - 1);
-}
-
-void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (min > max) {
- return;
- }
- uint16_t min_low16 = (uint16_t)min;
- uint16_t max_low16 = (uint16_t)max;
- uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16;
- uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16;
-
- // Flip the range (including non-existent containers!) between min and max.
- for (uint64_t high48_bits = min_high48_bits; high48_bits <=
max_high48_bits;
- high48_bits++) {
- uint8_t current_high48_key[ART_KEY_BYTES];
- split_key(high48_bits << 16, current_high48_key);
-
- uint32_t min_container = 0;
- if (high48_bits == min_high48_bits) {
- min_container = min_low16;
- }
- uint32_t max_container = 0xFFFF + 1; // Exclusive range.
- if (high48_bits == max_high48_bits) {
- max_container = max_low16 + 1; // Exclusive.
- }
-
- roaring64_flip_leaf_inplace(r, current_high48_key, min_container,
- max_container);
- }
-}
-
-// Returns the number of distinct high 32-bit entries in the bitmap.
-static inline uint64_t count_high32(const roaring64_bitmap_t *r) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint64_t high32_count = 0;
- uint32_t prev_high32 = 0;
- while (it.value != NULL) {
- uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32);
- if (high32_count == 0 || prev_high32 != current_high32) {
- high32_count++;
- prev_high32 = current_high32;
- }
- art_iterator_next(&it);
- }
- return high32_count;
-}
-
-// Frees the (32-bit!) bitmap without freeing the containers.
-static inline void roaring_bitmap_free_without_containers(roaring_bitmap_t *r)
{
- ra_clear_without_containers(&r->high_low_container);
- roaring_free(r);
-}
-
-size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r) {
- //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- size_t size = 0;
-
- // Write as uint64 the distinct number of "buckets", where a bucket is
- // defined as the most significant 32 bits of an element.
- uint64_t high32_count;
- size += sizeof(high32_count);
-
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint32_t prev_high32 = 0;
- roaring_bitmap_t *bitmap32 = NULL;
-
- // Iterate through buckets ordered by increasing keys.
- while (it.value != NULL) {
- uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32);
- if (bitmap32 == NULL || prev_high32 != current_high32) {
- if (bitmap32 != NULL) {
- // Write as uint32 the most significant 32 bits of the bucket.
- size += sizeof(prev_high32);
-
- // Write the 32-bit Roaring bitmaps representing the least
- // significant bits of a set of elements.
- size += roaring_bitmap_portable_size_in_bytes(bitmap32);
- roaring_bitmap_free_without_containers(bitmap32);
- }
-
- // Start a new 32-bit bitmap with the current high 32 bits.
- art_iterator_t it2 = it;
- uint32_t containers_with_high32 = 0;
- while (it2.value != NULL && (uint32_t)(combine_key(it2.key, 0) >>
- 32) == current_high32) {
- containers_with_high32++;
- art_iterator_next(&it2);
- }
- bitmap32 =
- roaring_bitmap_create_with_capacity(containers_with_high32);
-
- prev_high32 = current_high32;
- }
- leaf_t *leaf = (leaf_t *)it.value;
- ra_append(&bitmap32->high_low_container,
- (uint16_t)(current_high32 >> 16), leaf->container,
- leaf->typecode);
- art_iterator_next(&it);
- }
-
- if (bitmap32 != NULL) {
- // Write as uint32 the most significant 32 bits of the bucket.
- size += sizeof(prev_high32);
-
- // Write the 32-bit Roaring bitmaps representing the least
- // significant bits of a set of elements.
- size += roaring_bitmap_portable_size_in_bytes(bitmap32);
- roaring_bitmap_free_without_containers(bitmap32);
- }
-
- return size;
-}
-
-size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r,
- char *buf) {
- //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- if (buf == NULL) {
- return 0;
- }
- const char *initial_buf = buf;
-
- // Write as uint64 the distinct number of "buckets", where a bucket is
- // defined as the most significant 32 bits of an element.
- uint64_t high32_count = count_high32(r);
- memcpy(buf, &high32_count, sizeof(high32_count));
- buf += sizeof(high32_count);
-
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- uint32_t prev_high32 = 0;
- roaring_bitmap_t *bitmap32 = NULL;
-
- // Iterate through buckets ordered by increasing keys.
- while (it.value != NULL) {
- uint64_t current_high48 = combine_key(it.key, 0);
- uint32_t current_high32 = (uint32_t)(current_high48 >> 32);
- if (bitmap32 == NULL || prev_high32 != current_high32) {
- if (bitmap32 != NULL) {
- // Write as uint32 the most significant 32 bits of the bucket.
- memcpy(buf, &prev_high32, sizeof(prev_high32));
- buf += sizeof(prev_high32);
-
- // Write the 32-bit Roaring bitmaps representing the least
- // significant bits of a set of elements.
- buf += roaring_bitmap_portable_serialize(bitmap32, buf);
- roaring_bitmap_free_without_containers(bitmap32);
- }
-
- // Start a new 32-bit bitmap with the current high 32 bits.
- art_iterator_t it2 = it;
- uint32_t containers_with_high32 = 0;
- while (it2.value != NULL &&
- (uint32_t)combine_key(it2.key, 0) == current_high32) {
- containers_with_high32++;
- art_iterator_next(&it2);
- }
- bitmap32 =
- roaring_bitmap_create_with_capacity(containers_with_high32);
-
- prev_high32 = current_high32;
- }
- leaf_t *leaf = (leaf_t *)it.value;
- ra_append(&bitmap32->high_low_container,
- (uint16_t)(current_high48 >> 16), leaf->container,
- leaf->typecode);
- art_iterator_next(&it);
- }
-
- if (bitmap32 != NULL) {
- // Write as uint32 the most significant 32 bits of the bucket.
- memcpy(buf, &prev_high32, sizeof(prev_high32));
- buf += sizeof(prev_high32);
-
- // Write the 32-bit Roaring bitmaps representing the least
- // significant bits of a set of elements.
- buf += roaring_bitmap_portable_serialize(bitmap32, buf);
- roaring_bitmap_free_without_containers(bitmap32);
- }
-
- return buf - initial_buf;
-}
-
-size_t roaring64_bitmap_portable_deserialize_size(const char *buf,
- size_t maxbytes) {
- //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- if (buf == NULL) {
- return 0;
- }
- size_t read_bytes = 0;
-
- // Read as uint64 the distinct number of "buckets", where a bucket is
- // defined as the most significant 32 bits of an element.
- uint64_t buckets;
- if (read_bytes + sizeof(buckets) > maxbytes) {
- return 0;
- }
- memcpy(&buckets, buf, sizeof(buckets));
- buf += sizeof(buckets);
- read_bytes += sizeof(buckets);
-
- // Buckets should be 32 bits with 4 bits of zero padding.
- if (buckets > UINT32_MAX) {
- return 0;
- }
-
- // Iterate through buckets ordered by increasing keys.
- for (uint64_t bucket = 0; bucket < buckets; ++bucket) {
- // Read as uint32 the most significant 32 bits of the bucket.
- uint32_t high32;
- if (read_bytes + sizeof(high32) > maxbytes) {
- return 0;
- }
- buf += sizeof(high32);
- read_bytes += sizeof(high32);
-
- // Read the 32-bit Roaring bitmaps representing the least significant
- // bits of a set of elements.
- size_t bitmap32_size = roaring_bitmap_portable_deserialize_size(
- buf, maxbytes - read_bytes);
- if (bitmap32_size == 0) {
- return 0;
- }
- buf += bitmap32_size;
- read_bytes += bitmap32_size;
- }
- return read_bytes;
-}
-
-roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe(
- const char *buf, size_t maxbytes) {
- //
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- if (buf == NULL) {
- return NULL;
- }
- size_t read_bytes = 0;
-
- // Read as uint64 the distinct number of "buckets", where a bucket is
- // defined as the most significant 32 bits of an element.
- uint64_t buckets;
- if (read_bytes + sizeof(buckets) > maxbytes) {
- return NULL;
- }
- memcpy(&buckets, buf, sizeof(buckets));
- buf += sizeof(buckets);
- read_bytes += sizeof(buckets);
-
- // Buckets should be 32 bits with 4 bits of zero padding.
- if (buckets > UINT32_MAX) {
- return NULL;
- }
-
- roaring64_bitmap_t *r = roaring64_bitmap_create();
- // Iterate through buckets ordered by increasing keys.
- int64_t previous_high32 = -1;
- for (uint64_t bucket = 0; bucket < buckets; ++bucket) {
- // Read as uint32 the most significant 32 bits of the bucket.
- uint32_t high32;
- if (read_bytes + sizeof(high32) > maxbytes) {
- roaring64_bitmap_free(r);
- return NULL;
- }
- memcpy(&high32, buf, sizeof(high32));
- buf += sizeof(high32);
- read_bytes += sizeof(high32);
- // High 32 bits must be strictly increasing.
- if (high32 <= previous_high32) {
- roaring64_bitmap_free(r);
- return NULL;
- }
- previous_high32 = high32;
-
- // Read the 32-bit Roaring bitmaps representing the least significant
- // bits of a set of elements.
- size_t bitmap32_size = roaring_bitmap_portable_deserialize_size(
- buf, maxbytes - read_bytes);
- if (bitmap32_size == 0) {
- roaring64_bitmap_free(r);
- return NULL;
- }
-
- roaring_bitmap_t *bitmap32 = roaring_bitmap_portable_deserialize_safe(
- buf, maxbytes - read_bytes);
- if (bitmap32 == NULL) {
- roaring64_bitmap_free(r);
- return NULL;
- }
- buf += bitmap32_size;
- read_bytes += bitmap32_size;
-
- // While we don't attempt to validate much, we must ensure that there
- // is no duplication in the high 48 bits - inserting into the ART
- // assumes (or UB) no duplicate keys. The top 32 bits must be unique
- // because we check for strict increasing values of high32, but we
- // must also ensure the top 16 bits within each 32-bit bitmap are also
- // at least unique (we ensure they're strictly increasing as well,
- // which they must be for a _valid_ bitmap, since it's cheaper to
check)
- int32_t last_bitmap_key = -1;
- for (int i = 0; i < bitmap32->high_low_container.size; i++) {
- uint16_t key = bitmap32->high_low_container.keys[i];
- if (key <= last_bitmap_key) {
- roaring_bitmap_free(bitmap32);
- roaring64_bitmap_free(r);
- return NULL;
- }
- last_bitmap_key = key;
- }
-
- // Insert all containers of the 32-bit bitmap into the 64-bit bitmap.
- move_from_roaring32_offset(r, bitmap32, high32);
- roaring_bitmap_free(bitmap32);
- }
- return r;
-}
-
-bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r,
- roaring_iterator64 iterator, void *ptr) {
- art_iterator_t it = art_init_iterator(&r->art, /*first=*/true);
- while (it.value != NULL) {
- uint64_t high48 = combine_key(it.key, 0);
- uint64_t high32 = high48 & 0xFFFFFFFF00000000ULL;
- uint32_t low32 = high48;
- leaf_t *leaf = (leaf_t *)it.value;
- if (!container_iterate64(leaf->container, leaf->typecode, low32,
- iterator, high32, ptr)) {
- return false;
- }
- art_iterator_next(&it);
- }
- return true;
-}
-
-void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r,
- uint64_t *out) {
- roaring64_iterator_t it; // gets initialized in the next line
- roaring64_iterator_init_at(r, &it, /*first=*/true);
- roaring64_iterator_read(&it, out, UINT64_MAX);
-}
-
-roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r) {
- roaring64_iterator_t *it =
- (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
- return roaring64_iterator_init_at(r, it, /*first=*/true);
-}
-
-roaring64_iterator_t *roaring64_iterator_create_last(
- const roaring64_bitmap_t *r) {
- roaring64_iterator_t *it =
- (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
- return roaring64_iterator_init_at(r, it, /*first=*/false);
-}
-
-void roaring64_iterator_reinit(const roaring64_bitmap_t *r,
- roaring64_iterator_t *it) {
- roaring64_iterator_init_at(r, it, /*first=*/true);
-}
-
-void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r,
- roaring64_iterator_t *it) {
- roaring64_iterator_init_at(r, it, /*first=*/false);
-}
-
-roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it) {
- roaring64_iterator_t *new_it =
- (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t));
- memcpy(new_it, it, sizeof(*it));
- return new_it;
-}
-
-void roaring64_iterator_free(roaring64_iterator_t *it) { roaring_free(it); }
-
-bool roaring64_iterator_has_value(const roaring64_iterator_t *it) {
- return it->has_value;
-}
-
-uint64_t roaring64_iterator_value(const roaring64_iterator_t *it) {
- return it->value;
-}
-
-bool roaring64_iterator_advance(roaring64_iterator_t *it) {
- if (it->art_it.value == NULL) {
- if (it->saturated_forward) {
- return (it->has_value = false);
- }
- roaring64_iterator_init_at(it->parent, it, /*first=*/true);
- return it->has_value;
- }
- leaf_t *leaf = (leaf_t *)it->art_it.value;
- uint16_t low16 = (uint16_t)it->value;
- if (container_iterator_next(leaf->container, leaf->typecode,
- &it->container_it, &low16)) {
- it->value = it->high48 | low16;
- return (it->has_value = true);
- }
- if (art_iterator_next(&it->art_it)) {
- return roaring64_iterator_init_at_leaf_first(it);
- }
- it->saturated_forward = true;
- return (it->has_value = false);
-}
-
-bool roaring64_iterator_previous(roaring64_iterator_t *it) {
- if (it->art_it.value == NULL) {
- if (!it->saturated_forward) {
- // Saturated backward.
- return (it->has_value = false);
- }
- roaring64_iterator_init_at(it->parent, it, /*first=*/false);
- return it->has_value;
- }
- leaf_t *leaf = (leaf_t *)it->art_it.value;
- uint16_t low16 = (uint16_t)it->value;
- if (container_iterator_prev(leaf->container, leaf->typecode,
- &it->container_it, &low16)) {
- it->value = it->high48 | low16;
- return (it->has_value = true);
- }
- if (art_iterator_prev(&it->art_it)) {
- return roaring64_iterator_init_at_leaf_last(it);
- }
- it->saturated_forward = false; // Saturated backward.
- return (it->has_value = false);
-}
-
-bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it,
- uint64_t val) {
- uint8_t val_high48[ART_KEY_BYTES];
- uint16_t val_low16 = split_key(val, val_high48);
- if (!it->has_value || it->high48 != (val & 0xFFFFFFFFFFFF0000)) {
- // The ART iterator is before or after the high48 bits of `val` (or
- // beyond the ART altogether), so we need to move to a leaf with a key
- // equal or greater.
- if (!art_iterator_lower_bound(&it->art_it, val_high48)) {
- // Only smaller keys found.
- it->saturated_forward = true;
- return (it->has_value = false);
- }
- it->high48 = combine_key(it->art_it.key, 0);
- // Fall through to the next if statement.
- }
-
- if (it->high48 == (val & 0xFFFFFFFFFFFF0000)) {
- // We're at equal high bits, check if a suitable value can be found in
- // this container.
- leaf_t *leaf = (leaf_t *)it->art_it.value;
- uint16_t low16 = (uint16_t)it->value;
- if (container_iterator_lower_bound(leaf->container, leaf->typecode,
- &it->container_it, &low16,
- val_low16)) {
- it->value = it->high48 | low16;
- return (it->has_value = true);
- }
- // Only smaller entries in this container, move to the next.
- if (!art_iterator_next(&it->art_it)) {
- it->saturated_forward = true;
- return (it->has_value = false);
- }
- }
-
- // We're at a leaf with high bits greater than `val`, so the first entry in
- // this container is our result.
- return roaring64_iterator_init_at_leaf_first(it);
-}
-
-uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf,
- uint64_t count) {
- uint64_t consumed = 0;
- while (it->has_value && consumed < count) {
- uint32_t container_consumed;
- leaf_t *leaf = (leaf_t *)it->art_it.value;
- uint16_t low16 = (uint16_t)it->value;
- uint32_t container_count = UINT32_MAX;
- if (count - consumed < (uint64_t)UINT32_MAX) {
- container_count = count - consumed;
- }
- bool has_value = container_iterator_read_into_uint64(
- leaf->container, leaf->typecode, &it->container_it, it->high48,
buf,
- container_count, &container_consumed, &low16);
- consumed += container_consumed;
- buf += container_consumed;
- if (has_value) {
- it->has_value = true;
- it->value = it->high48 | low16;
- assert(consumed == count);
- return consumed;
- }
- it->has_value = art_iterator_next(&it->art_it);
- if (it->has_value) {
- roaring64_iterator_init_at_leaf_first(it);
- }
- }
- return consumed;
-}
-
-#ifdef __cplusplus
-} // extern "C"
-} // namespace roaring
-} // namespace api
-#endif
-/* end file src/roaring64.c */
-/* begin file src/roaring_array.c */
-#include <assert.h>
-#include <inttypes.h>
-#include <stdbool.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace internal {
-#endif
-
-// Convention: [0,ra->size) all elements are initialized
-// [ra->size, ra->allocation_size) is junk and contains nothing needing
freeing
-
-extern inline int32_t ra_get_size(const roaring_array_t *ra);
-extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x);
-
-extern inline container_t *ra_get_container_at_index(const roaring_array_t *ra,
- uint16_t i,
- uint8_t *typecode);
-
-extern inline void ra_unshare_container_at_index(roaring_array_t *ra,
- uint16_t i);
-
-extern inline void ra_replace_key_and_container_at_index(roaring_array_t *ra,
- int32_t i,
- uint16_t key,
- container_t *c,
- uint8_t typecode);
-
-extern inline void ra_set_container_at_index(const roaring_array_t *ra,
- int32_t i, container_t *c,
- uint8_t typecode);
-
-static bool realloc_array(roaring_array_t *ra, int32_t new_capacity) {
- //
- // Note: not implemented using C's realloc(), because the memory layout is
- // Struct-of-Arrays vs. Array-of-Structs:
- // https://github.com/RoaringBitmap/CRoaring/issues/256
-
- if (new_capacity == 0) {
- roaring_free(ra->containers);
- ra->containers = NULL;
- ra->keys = NULL;
- ra->typecodes = NULL;
- ra->allocation_size = 0;
- return true;
- }
- const size_t memoryneeded =
- new_capacity *
- (sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t));
- void *bigalloc = roaring_malloc(memoryneeded);
- if (!bigalloc) return false;
- void *oldbigalloc = ra->containers;
- container_t **newcontainers = (container_t **)bigalloc;
- uint16_t *newkeys = (uint16_t *)(newcontainers + new_capacity);
- uint8_t *newtypecodes = (uint8_t *)(newkeys + new_capacity);
- assert((char *)(newtypecodes + new_capacity) ==
- (char *)bigalloc + memoryneeded);
- if (ra->size > 0) {
- memcpy(newcontainers, ra->containers, sizeof(container_t *) *
ra->size);
- memcpy(newkeys, ra->keys, sizeof(uint16_t) * ra->size);
- memcpy(newtypecodes, ra->typecodes, sizeof(uint8_t) * ra->size);
- }
- ra->containers = newcontainers;
- ra->keys = newkeys;
- ra->typecodes = newtypecodes;
- ra->allocation_size = new_capacity;
- roaring_free(oldbigalloc);
- return true;
-}
-
-bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap) {
- if (!new_ra) return false;
- ra_init(new_ra);
-
- // Containers hold 64Ki elements, so 64Ki containers is enough to hold
- // `0x10000 * 0x10000` (all 2^32) elements
- if (cap > 0x10000) {
- cap = 0x10000;
- }
-
- if (cap > 0) {
- void *bigalloc = roaring_malloc(
- cap * (sizeof(uint16_t) + sizeof(container_t *) +
sizeof(uint8_t)));
- if (bigalloc == NULL) return false;
- new_ra->containers = (container_t **)bigalloc;
- new_ra->keys = (uint16_t *)(new_ra->containers + cap);
- new_ra->typecodes = (uint8_t *)(new_ra->keys + cap);
- // Narrowing is safe because of above check
- new_ra->allocation_size = (int32_t)cap;
- }
- return true;
-}
-
-int ra_shrink_to_fit(roaring_array_t *ra) {
- int savings = (ra->allocation_size - ra->size) *
- (sizeof(uint16_t) + sizeof(container_t *) + sizeof(uint8_t));
- if (!realloc_array(ra, ra->size)) {
- return 0;
- }
- ra->allocation_size = ra->size;
- return savings;
-}
-
-void ra_init(roaring_array_t *new_ra) {
- if (!new_ra) {
- return;
- }
- new_ra->keys = NULL;
- new_ra->containers = NULL;
- new_ra->typecodes = NULL;
-
- new_ra->allocation_size = 0;
- new_ra->size = 0;
- new_ra->flags = 0;
-}
-
-bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
- bool copy_on_write) {
- ra_clear_containers(dest); // we are going to overwrite them
- if (source->size == 0) { // Note: can't call memcpy(NULL), even w/size
- dest->size = 0; // <--- This is important.
- return true; // output was just cleared, so they match
- }
- if (dest->allocation_size < source->size) {
- if (!realloc_array(dest, source->size)) {
- return false;
- }
- }
- dest->size = source->size;
- memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t));
- // we go through the containers, turning them into shared containers...
- if (copy_on_write) {
- for (int32_t i = 0; i < dest->size; ++i) {
- source->containers[i] = get_copy_of_container(
- source->containers[i], &source->typecodes[i], copy_on_write);
- }
- // we do a shallow copy to the other bitmap
- memcpy(dest->containers, source->containers,
- dest->size * sizeof(container_t *));
- memcpy(dest->typecodes, source->typecodes,
- dest->size * sizeof(uint8_t));
- } else {
- memcpy(dest->typecodes, source->typecodes,
- dest->size * sizeof(uint8_t));
- for (int32_t i = 0; i < dest->size; i++) {
- dest->containers[i] =
- container_clone(source->containers[i], source->typecodes[i]);
- if (dest->containers[i] == NULL) {
- for (int32_t j = 0; j < i; j++) {
- container_free(dest->containers[j], dest->typecodes[j]);
- }
- ra_clear_without_containers(dest);
- return false;
- }
- }
- }
- return true;
-}
-
-void ra_clear_containers(roaring_array_t *ra) {
- for (int32_t i = 0; i < ra->size; ++i) {
- container_free(ra->containers[i], ra->typecodes[i]);
- }
-}
-
-void ra_reset(roaring_array_t *ra) {
- ra_clear_containers(ra);
- ra->size = 0;
- ra_shrink_to_fit(ra);
-}
-
-void ra_clear_without_containers(roaring_array_t *ra) {
- roaring_free(
- ra->containers); // keys and typecodes are allocated with containers
- ra->size = 0;
- ra->allocation_size = 0;
- ra->containers = NULL;
- ra->keys = NULL;
- ra->typecodes = NULL;
-}
-
-void ra_clear(roaring_array_t *ra) {
- ra_clear_containers(ra);
- ra_clear_without_containers(ra);
-}
-
-bool extend_array(roaring_array_t *ra, int32_t k) {
- int32_t desired_size = ra->size + k;
- const int32_t max_containers = 65536;
- assert(desired_size <= max_containers);
- if (desired_size > ra->allocation_size) {
- int32_t new_capacity =
- (ra->size < 1024) ? 2 * desired_size : 5 * desired_size / 4;
- if (new_capacity > max_containers) {
- new_capacity = max_containers;
- }
-
- return realloc_array(ra, new_capacity);
- }
- return true;
-}
-
-void ra_append(roaring_array_t *ra, uint16_t key, container_t *c,
- uint8_t typecode) {
- extend_array(ra, 1);
- const int32_t pos = ra->size;
-
- ra->keys[pos] = key;
- ra->containers[pos] = c;
- ra->typecodes[pos] = typecode;
- ra->size++;
-}
-
-void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
- uint16_t index, bool copy_on_write) {
- extend_array(ra, 1);
- const int32_t pos = ra->size;
-
- // old contents is junk that does not need freeing
- ra->keys[pos] = sa->keys[index];
- // the shared container will be in two bitmaps
- if (copy_on_write) {
- sa->containers[index] = get_copy_of_container(
- sa->containers[index], &sa->typecodes[index], copy_on_write);
- ra->containers[pos] = sa->containers[index];
- ra->typecodes[pos] = sa->typecodes[index];
- } else {
- ra->containers[pos] =
- container_clone(sa->containers[index], sa->typecodes[index]);
- ra->typecodes[pos] = sa->typecodes[index];
- }
- ra->size++;
-}
-
-void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
- uint16_t stopping_key, bool copy_on_write) {
- for (int32_t i = 0; i < sa->size; ++i) {
- if (sa->keys[i] >= stopping_key) break;
- ra_append_copy(ra, sa, (uint16_t)i, copy_on_write);
- }
-}
-
-void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
- int32_t start_index, int32_t end_index,
- bool copy_on_write) {
- extend_array(ra, end_index - start_index);
- for (int32_t i = start_index; i < end_index; ++i) {
- const int32_t pos = ra->size;
- ra->keys[pos] = sa->keys[i];
- if (copy_on_write) {
- sa->containers[i] = get_copy_of_container(
- sa->containers[i], &sa->typecodes[i], copy_on_write);
- ra->containers[pos] = sa->containers[i];
- ra->typecodes[pos] = sa->typecodes[i];
- } else {
- ra->containers[pos] =
- container_clone(sa->containers[i], sa->typecodes[i]);
- ra->typecodes[pos] = sa->typecodes[i];
- }
- ra->size++;
- }
-}
-
-void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
- uint16_t before_start, bool copy_on_write) {
- int start_location = ra_get_index(sa, before_start);
- if (start_location >= 0)
- ++start_location;
- else
- start_location = -start_location - 1;
- ra_append_copy_range(ra, sa, start_location, sa->size, copy_on_write);
-}
-
-void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
- int32_t start_index, int32_t end_index) {
- extend_array(ra, end_index - start_index);
-
- for (int32_t i = start_index; i < end_index; ++i) {
- const int32_t pos = ra->size;
-
- ra->keys[pos] = sa->keys[i];
- ra->containers[pos] = sa->containers[i];
- ra->typecodes[pos] = sa->typecodes[i];
- ra->size++;
- }
-}
-
-void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
- int32_t start_index, int32_t end_index,
- bool copy_on_write) {
- extend_array(ra, end_index - start_index);
-
- for (int32_t i = start_index; i < end_index; ++i) {
- const int32_t pos = ra->size;
- ra->keys[pos] = sa->keys[i];
- if (copy_on_write) {
- sa->containers[i] = get_copy_of_container(
- sa->containers[i], &sa->typecodes[i], copy_on_write);
- ra->containers[pos] = sa->containers[i];
- ra->typecodes[pos] = sa->typecodes[i];
- } else {
- ra->containers[pos] =
- container_clone(sa->containers[i], sa->typecodes[i]);
- ra->typecodes[pos] = sa->typecodes[i];
- }
- ra->size++;
- }
-}
-
-container_t *ra_get_container(roaring_array_t *ra, uint16_t x,
- uint8_t *typecode) {
- int i = binarySearch(ra->keys, (int32_t)ra->size, x);
- if (i < 0) return NULL;
- *typecode = ra->typecodes[i];
- return ra->containers[i];
-}
-
-extern inline container_t *ra_get_container_at_index(const roaring_array_t *ra,
- uint16_t i,
- uint8_t *typecode);
-
-extern inline uint16_t ra_get_key_at_index(const roaring_array_t *ra,
- uint16_t i);
-
-extern inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x);
-
-extern inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x,
- int32_t pos);
-
-// everything skipped over is freed
-int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos)
{
- while (pos < ra->size && ra->keys[pos] < x) {
- container_free(ra->containers[pos], ra->typecodes[pos]);
- ++pos;
- }
- return pos;
-}
-
-void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
- container_t *c, uint8_t typecode) {
- extend_array(ra, 1);
- // May be an optimization opportunity with DIY memmove
- memmove(&(ra->keys[i + 1]), &(ra->keys[i]),
- sizeof(uint16_t) * (ra->size - i));
- memmove(&(ra->containers[i + 1]), &(ra->containers[i]),
- sizeof(container_t *) * (ra->size - i));
- memmove(&(ra->typecodes[i + 1]), &(ra->typecodes[i]),
- sizeof(uint8_t) * (ra->size - i));
- ra->keys[i] = key;
- ra->containers[i] = c;
- ra->typecodes[i] = typecode;
- ra->size++;
-}
-
-// note: Java routine set things to 0, enabling GC.
-// Java called it "resize" but it was always used to downsize.
-// Allowing upsize would break the conventions about
-// valid containers below ra->size.
-
-void ra_downsize(roaring_array_t *ra, int32_t new_length) {
- assert(new_length <= ra->size);
- ra->size = new_length;
-}
-
-void ra_remove_at_index(roaring_array_t *ra, int32_t i) {
- memmove(&(ra->containers[i]), &(ra->containers[i + 1]),
- sizeof(container_t *) * (ra->size - i - 1));
- memmove(&(ra->keys[i]), &(ra->keys[i + 1]),
- sizeof(uint16_t) * (ra->size - i - 1));
- memmove(&(ra->typecodes[i]), &(ra->typecodes[i + 1]),
- sizeof(uint8_t) * (ra->size - i - 1));
- ra->size--;
-}
-
-void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i) {
- container_free(ra->containers[i], ra->typecodes[i]);
- ra_remove_at_index(ra, i);
-}
-
-// used in inplace andNot only, to slide left the containers from
-// the mutated RoaringBitmap that are after the largest container of
-// the argument RoaringBitmap. In use it should be followed by a call to
-// downsize.
-//
-void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
- uint32_t new_begin) {
- assert(begin <= end);
- assert(new_begin < begin);
-
- const int range = end - begin;
-
- // We ensure to previously have freed overwritten containers
- // that are not copied elsewhere
-
- memmove(&(ra->containers[new_begin]), &(ra->containers[begin]),
- sizeof(container_t *) * range);
- memmove(&(ra->keys[new_begin]), &(ra->keys[begin]),
- sizeof(uint16_t) * range);
- memmove(&(ra->typecodes[new_begin]), &(ra->typecodes[begin]),
- sizeof(uint8_t) * range);
-}
-
-void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance) {
- if (distance > 0) {
- extend_array(ra, distance);
- }
- int32_t srcpos = ra->size - count;
- int32_t dstpos = srcpos + distance;
- memmove(&(ra->keys[dstpos]), &(ra->keys[srcpos]), sizeof(uint16_t) *
count);
- memmove(&(ra->containers[dstpos]), &(ra->containers[srcpos]),
- sizeof(container_t *) * count);
- memmove(&(ra->typecodes[dstpos]), &(ra->typecodes[srcpos]),
- sizeof(uint8_t) * count);
- ra->size += distance;
-}
-
-void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans) {
- size_t ctr = 0;
- for (int32_t i = 0; i < ra->size; ++i) {
- int num_added = container_to_uint32_array(
- ans + ctr, ra->containers[i], ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16);
- ctr += num_added;
- }
-}
-
-bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset,
- size_t limit, uint32_t *ans) {
- size_t ctr = 0;
- size_t dtr = 0;
-
- size_t t_limit = 0;
-
- bool first = false;
- size_t first_skip = 0;
-
- uint32_t *t_ans = NULL;
- size_t cur_len = 0;
-
- for (int i = 0; i < ra->size; ++i) {
- const container_t *c =
- container_unwrap_shared(ra->containers[i], &ra->typecodes[i]);
- switch (ra->typecodes[i]) {
- case BITSET_CONTAINER_TYPE:
- t_limit = (const_CAST_bitset(c))->cardinality;
- break;
- case ARRAY_CONTAINER_TYPE:
- t_limit = (const_CAST_array(c))->cardinality;
- break;
- case RUN_CONTAINER_TYPE:
- t_limit = run_container_cardinality(const_CAST_run(c));
- break;
- }
- if (ctr + t_limit - 1 >= offset && ctr < offset + limit) {
- if (!first) {
- // first_skip = t_limit - (ctr + t_limit - offset);
- first_skip = offset - ctr;
- first = true;
- t_ans = (uint32_t *)roaring_malloc(sizeof(*t_ans) *
- (first_skip + limit));
- if (t_ans == NULL) {
- return false;
- }
- memset(t_ans, 0, sizeof(*t_ans) * (first_skip + limit));
- cur_len = first_skip + limit;
- }
- if (dtr + t_limit > cur_len) {
- uint32_t *append_ans = (uint32_t *)roaring_malloc(
- sizeof(*append_ans) * (cur_len + t_limit));
- if (append_ans == NULL) {
- if (t_ans != NULL) roaring_free(t_ans);
- return false;
- }
- memset(append_ans, 0,
- sizeof(*append_ans) * (cur_len + t_limit));
- cur_len = cur_len + t_limit;
- memcpy(append_ans, t_ans, dtr * sizeof(uint32_t));
- roaring_free(t_ans);
- t_ans = append_ans;
- }
- switch (ra->typecodes[i]) {
- case BITSET_CONTAINER_TYPE:
- container_to_uint32_array(t_ans + dtr,
const_CAST_bitset(c),
- ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16);
- break;
- case ARRAY_CONTAINER_TYPE:
- container_to_uint32_array(t_ans + dtr, const_CAST_array(c),
- ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16);
- break;
- case RUN_CONTAINER_TYPE:
- container_to_uint32_array(t_ans + dtr, const_CAST_run(c),
- ra->typecodes[i],
- ((uint32_t)ra->keys[i]) << 16);
- break;
- }
- dtr += t_limit;
- }
- ctr += t_limit;
- if (dtr - first_skip >= limit) break;
- }
- if (t_ans != NULL) {
- memcpy(ans, t_ans + first_skip, limit * sizeof(uint32_t));
- free(t_ans);
- }
- return true;
-}
-
-bool ra_has_run_container(const roaring_array_t *ra) {
- for (int32_t k = 0; k < ra->size; ++k) {
- if (get_container_type(ra->containers[k], ra->typecodes[k]) ==
- RUN_CONTAINER_TYPE)
- return true;
- }
- return false;
-}
-
-uint32_t ra_portable_header_size(const roaring_array_t *ra) {
- if (ra_has_run_container(ra)) {
- if (ra->size <
- NO_OFFSET_THRESHOLD) { // for small bitmaps, we omit the offsets
- return 4 + (ra->size + 7) / 8 + 4 * ra->size;
- }
- return 4 + (ra->size + 7) / 8 +
- 8 * ra->size; // - 4 because we pack the size with the cookie
- } else {
- return 4 + 4 + 8 * ra->size;
- }
-}
-
-size_t ra_portable_size_in_bytes(const roaring_array_t *ra) {
- size_t count = ra_portable_header_size(ra);
-
- for (int32_t k = 0; k < ra->size; ++k) {
- count += container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
- }
- return count;
-}
-
-// This function is endian-sensitive.
-size_t ra_portable_serialize(const roaring_array_t *ra, char *buf) {
- char *initbuf = buf;
- uint32_t startOffset = 0;
- bool hasrun = ra_has_run_container(ra);
- if (hasrun) {
- uint32_t cookie = SERIAL_COOKIE | ((uint32_t)(ra->size - 1) << 16);
- memcpy(buf, &cookie, sizeof(cookie));
- buf += sizeof(cookie);
- uint32_t s = (ra->size + 7) / 8;
- uint8_t *bitmapOfRunContainers = (uint8_t *)roaring_calloc(s, 1);
- assert(bitmapOfRunContainers != NULL); // todo: handle
- for (int32_t i = 0; i < ra->size; ++i) {
- if (get_container_type(ra->containers[i], ra->typecodes[i]) ==
- RUN_CONTAINER_TYPE) {
- bitmapOfRunContainers[i / 8] |= (1 << (i % 8));
- }
- }
- memcpy(buf, bitmapOfRunContainers, s);
- buf += s;
- roaring_free(bitmapOfRunContainers);
- if (ra->size < NO_OFFSET_THRESHOLD) {
- startOffset = 4 + 4 * ra->size + s;
- } else {
- startOffset = 4 + 8 * ra->size + s;
- }
- } else { // backwards compatibility
- uint32_t cookie = SERIAL_COOKIE_NO_RUNCONTAINER;
-
- memcpy(buf, &cookie, sizeof(cookie));
- buf += sizeof(cookie);
- memcpy(buf, &ra->size, sizeof(ra->size));
- buf += sizeof(ra->size);
-
- startOffset = 4 + 4 + 4 * ra->size + 4 * ra->size;
- }
- for (int32_t k = 0; k < ra->size; ++k) {
- memcpy(buf, &ra->keys[k], sizeof(ra->keys[k]));
- buf += sizeof(ra->keys[k]);
- // get_cardinality returns a value in [1,1<<16], subtracting one
- // we get [0,1<<16 - 1] which fits in 16 bits
- uint16_t card = (uint16_t)(container_get_cardinality(ra->containers[k],
- ra->typecodes[k])
-
- 1);
- memcpy(buf, &card, sizeof(card));
- buf += sizeof(card);
- }
- if ((!hasrun) || (ra->size >= NO_OFFSET_THRESHOLD)) {
- // writing the containers offsets
- for (int32_t k = 0; k < ra->size; k++) {
- memcpy(buf, &startOffset, sizeof(startOffset));
- buf += sizeof(startOffset);
- startOffset =
- startOffset +
- container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
- }
- }
- for (int32_t k = 0; k < ra->size; ++k) {
- buf += container_write(ra->containers[k], ra->typecodes[k], buf);
- }
- return buf - initbuf;
-}
-
-// Quickly checks whether there is a serialized bitmap at the pointer,
-// not exceeding size "maxbytes" in bytes. This function does not allocate
-// memory dynamically.
-//
-// This function returns 0 if and only if no valid bitmap is found.
-// Otherwise, it returns how many bytes are occupied.
-//
-size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes) {
- size_t bytestotal = sizeof(int32_t); // for cookie
- if (bytestotal > maxbytes) return 0;
- uint32_t cookie;
- memcpy(&cookie, buf, sizeof(int32_t));
- buf += sizeof(uint32_t);
- if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
- cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
- return 0;
- }
- int32_t size;
-
- if ((cookie & 0xFFFF) == SERIAL_COOKIE)
- size = (cookie >> 16) + 1;
- else {
- bytestotal += sizeof(int32_t);
- if (bytestotal > maxbytes) return 0;
- memcpy(&size, buf, sizeof(int32_t));
- buf += sizeof(uint32_t);
- }
- if (size > (1 << 16) || size < 0) {
- return 0;
- }
- char *bitmapOfRunContainers = NULL;
- bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
- if (hasrun) {
- int32_t s = (size + 7) / 8;
- bytestotal += s;
- if (bytestotal > maxbytes) return 0;
- bitmapOfRunContainers = (char *)buf;
- buf += s;
- }
- bytestotal += size * 2 * sizeof(uint16_t);
- if (bytestotal > maxbytes) return 0;
- uint16_t *keyscards = (uint16_t *)buf;
- buf += size * 2 * sizeof(uint16_t);
- if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
- // skipping the offsets
- bytestotal += size * 4;
- if (bytestotal > maxbytes) return 0;
- buf += size * 4;
- }
- // Reading the containers
- for (int32_t k = 0; k < size; ++k) {
- uint16_t tmp;
- memcpy(&tmp, keyscards + 2 * k + 1, sizeof(tmp));
- uint32_t thiscard = tmp + 1;
- bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
- bool isrun = false;
- if (hasrun) {
- if ((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
- isbitmap = false;
- isrun = true;
- }
- }
- if (isbitmap) {
- size_t containersize =
- BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
- bytestotal += containersize;
- if (bytestotal > maxbytes) return 0;
- buf += containersize;
- } else if (isrun) {
- bytestotal += sizeof(uint16_t);
- if (bytestotal > maxbytes) return 0;
- uint16_t n_runs;
- memcpy(&n_runs, buf, sizeof(uint16_t));
- buf += sizeof(uint16_t);
- size_t containersize = n_runs * sizeof(rle16_t);
- bytestotal += containersize;
- if (bytestotal > maxbytes) return 0;
- buf += containersize;
- } else {
- size_t containersize = thiscard * sizeof(uint16_t);
- bytestotal += containersize;
- if (bytestotal > maxbytes) return 0;
- buf += containersize;
- }
- }
- return bytestotal;
-}
-
-// This function populates answer from the content of buf (reading up to
-// maxbytes bytes). The function returns false if a properly serialized bitmap
-// cannot be found. If it returns true, readbytes is populated by how many
bytes
-// were read, we have that *readbytes <= maxbytes.
-//
-// This function is endian-sensitive.
-bool ra_portable_deserialize(roaring_array_t *answer, const char *buf,
- const size_t maxbytes, size_t *readbytes) {
- *readbytes = sizeof(int32_t); // for cookie
- if (*readbytes > maxbytes) {
- // Ran out of bytes while reading first 4 bytes.
- return false;
- }
- uint32_t cookie;
- memcpy(&cookie, buf, sizeof(int32_t));
- buf += sizeof(uint32_t);
- if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
- cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
- // "I failed to find one of the right cookies.
- return false;
- }
- int32_t size;
-
- if ((cookie & 0xFFFF) == SERIAL_COOKIE)
- size = (cookie >> 16) + 1;
- else {
- *readbytes += sizeof(int32_t);
- if (*readbytes > maxbytes) {
- // Ran out of bytes while reading second part of the cookie.
- return false;
- }
- memcpy(&size, buf, sizeof(int32_t));
- buf += sizeof(uint32_t);
- }
- if (size < 0) {
- // You cannot have a negative number of containers, the data must be
- // corrupted.
- return false;
- }
- if (size > (1 << 16)) {
- // You cannot have so many containers, the data must be corrupted.
- return false;
- }
- const char *bitmapOfRunContainers = NULL;
- bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
- if (hasrun) {
- int32_t s = (size + 7) / 8;
- *readbytes += s;
- if (*readbytes > maxbytes) { // data is corrupted?
- // Ran out of bytes while reading run bitmap.
- return false;
- }
- bitmapOfRunContainers = buf;
- buf += s;
- }
- uint16_t *keyscards = (uint16_t *)buf;
-
- *readbytes += size * 2 * sizeof(uint16_t);
- if (*readbytes > maxbytes) {
- // Ran out of bytes while reading key-cardinality array.
- return false;
- }
- buf += size * 2 * sizeof(uint16_t);
-
- bool is_ok = ra_init_with_capacity(answer, size);
- if (!is_ok) {
- // Failed to allocate memory for roaring array. Bailing out.
- return false;
- }
-
- for (int32_t k = 0; k < size; ++k) {
- uint16_t tmp;
- memcpy(&tmp, keyscards + 2 * k, sizeof(tmp));
- answer->keys[k] = tmp;
- }
- if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
- *readbytes += size * 4;
- if (*readbytes > maxbytes) { // data is corrupted?
- // Ran out of bytes while reading offsets.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
-
- // skipping the offsets
- buf += size * 4;
- }
- // Reading the containers
- for (int32_t k = 0; k < size; ++k) {
- uint16_t tmp;
- memcpy(&tmp, keyscards + 2 * k + 1, sizeof(tmp));
- uint32_t thiscard = tmp + 1;
- bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
- bool isrun = false;
- if (hasrun) {
- if ((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
- isbitmap = false;
- isrun = true;
- }
- }
- if (isbitmap) {
- // we check that the read is allowed
- size_t containersize =
- BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
- *readbytes += containersize;
- if (*readbytes > maxbytes) {
- // Running out of bytes while reading a bitset container.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- // it is now safe to read
- bitset_container_t *c = bitset_container_create();
- if (c == NULL) { // memory allocation failure
- // Failed to allocate memory for a bitset container.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- answer->size++;
- buf += bitset_container_read(thiscard, c, buf);
- answer->containers[k] = c;
- answer->typecodes[k] = BITSET_CONTAINER_TYPE;
- } else if (isrun) {
- // we check that the read is allowed
- *readbytes += sizeof(uint16_t);
- if (*readbytes > maxbytes) {
- // Running out of bytes while reading a run container (header).
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- uint16_t n_runs;
- memcpy(&n_runs, buf, sizeof(uint16_t));
- size_t containersize = n_runs * sizeof(rle16_t);
- *readbytes += containersize;
- if (*readbytes > maxbytes) { // data is corrupted?
- // Running out of bytes while reading a run container.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- // it is now safe to read
-
- run_container_t *c = run_container_create();
- if (c == NULL) { // memory allocation failure
- // Failed to allocate memory for a run container.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- answer->size++;
- buf += run_container_read(thiscard, c, buf);
- answer->containers[k] = c;
- answer->typecodes[k] = RUN_CONTAINER_TYPE;
- } else {
- // we check that the read is allowed
- size_t containersize = thiscard * sizeof(uint16_t);
- *readbytes += containersize;
- if (*readbytes > maxbytes) { // data is corrupted?
- // Running out of bytes while reading an array container.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- // it is now safe to read
- array_container_t *c =
- array_container_create_given_capacity(thiscard);
- if (c == NULL) { // memory allocation failure
- // Failed to allocate memory for an array container.
- ra_clear(answer); // we need to clear the containers already
- // allocated, and the roaring array
- return false;
- }
- answer->size++;
- buf += array_container_read(thiscard, c, buf);
- answer->containers[k] = c;
- answer->typecodes[k] = ARRAY_CONTAINER_TYPE;
- }
- }
- return true;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace internal {
-#endif
-/* end file src/roaring_array.c */
-/* begin file src/roaring_priority_queue.c */
-
-#ifdef __cplusplus
-using namespace ::roaring::internal;
-
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-struct roaring_pq_element_s {
- uint64_t size;
- bool is_temporary;
- roaring_bitmap_t *bitmap;
-};
-
-typedef struct roaring_pq_element_s roaring_pq_element_t;
-
-struct roaring_pq_s {
- roaring_pq_element_t *elements;
- uint64_t size;
-};
-
-typedef struct roaring_pq_s roaring_pq_t;
-
-static inline bool compare(roaring_pq_element_t *t1, roaring_pq_element_t *t2)
{
- return t1->size < t2->size;
-}
-
-static void pq_add(roaring_pq_t *pq, roaring_pq_element_t *t) {
- uint64_t i = pq->size;
- pq->elements[pq->size++] = *t;
- while (i > 0) {
- uint64_t p = (i - 1) >> 1;
- roaring_pq_element_t ap = pq->elements[p];
- if (!compare(t, &ap)) break;
- pq->elements[i] = ap;
- i = p;
- }
- pq->elements[i] = *t;
-}
-
-static void pq_free(roaring_pq_t *pq) { roaring_free(pq); }
-
-static void percolate_down(roaring_pq_t *pq, uint32_t i) {
- uint32_t size = (uint32_t)pq->size;
- uint32_t hsize = size >> 1;
- roaring_pq_element_t ai = pq->elements[i];
- while (i < hsize) {
- uint32_t l = (i << 1) + 1;
- uint32_t r = l + 1;
- roaring_pq_element_t bestc = pq->elements[l];
- if (r < size) {
- if (compare(pq->elements + r, &bestc)) {
- l = r;
- bestc = pq->elements[r];
- }
- }
- if (!compare(&bestc, &ai)) {
- break;
- }
- pq->elements[i] = bestc;
- i = l;
- }
- pq->elements[i] = ai;
-}
-
-static roaring_pq_t *create_pq(const roaring_bitmap_t **arr, uint32_t length) {
- size_t alloc_size =
- sizeof(roaring_pq_t) + sizeof(roaring_pq_element_t) * length;
- roaring_pq_t *answer = (roaring_pq_t *)roaring_malloc(alloc_size);
- answer->elements = (roaring_pq_element_t *)(answer + 1);
- answer->size = length;
- for (uint32_t i = 0; i < length; i++) {
- answer->elements[i].bitmap = (roaring_bitmap_t *)arr[i];
- answer->elements[i].is_temporary = false;
- answer->elements[i].size =
- roaring_bitmap_portable_size_in_bytes(arr[i]);
- }
- for (int32_t i = (length >> 1); i >= 0; i--) {
- percolate_down(answer, i);
- }
- return answer;
-}
-
-static roaring_pq_element_t pq_poll(roaring_pq_t *pq) {
- roaring_pq_element_t ans = *pq->elements;
- if (pq->size > 1) {
- pq->elements[0] = pq->elements[--pq->size];
- percolate_down(pq, 0);
- } else
- --pq->size;
- //
memmove(pq->elements,pq->elements+1,(pq->size-1)*sizeof(roaring_pq_element_t));--pq->size;
- return ans;
-}
-
-// this function consumes and frees the inputs
-static roaring_bitmap_t *lazy_or_from_lazy_inputs(roaring_bitmap_t *x1,
- roaring_bitmap_t *x2) {
- uint8_t result_type = 0;
- const int length1 = ra_get_size(&x1->high_low_container),
- length2 = ra_get_size(&x2->high_low_container);
- if (0 == length1) {
- roaring_bitmap_free(x1);
- return x2;
- }
- if (0 == length2) {
- roaring_bitmap_free(x2);
- return x1;
- }
- uint32_t neededcap = length1 > length2 ? length2 : length1;
- roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
- int pos1 = 0, pos2 = 0;
- uint8_t type1, type2;
- uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- while (true) {
- if (s1 == s2) {
- // todo: unsharing can be inefficient as it may create a clone
where
- // none
- // is needed, but it has the benefit of being easy to reason about.
-
- ra_unshare_container_at_index(&x1->high_low_container,
- (uint16_t)pos1);
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- assert(type1 != SHARED_CONTAINER_TYPE);
-
- ra_unshare_container_at_index(&x2->high_low_container,
- (uint16_t)pos2);
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- assert(type2 != SHARED_CONTAINER_TYPE);
-
- container_t *c;
-
- if ((type2 == BITSET_CONTAINER_TYPE) &&
- (type1 != BITSET_CONTAINER_TYPE)) {
- c = container_lazy_ior(c2, type2, c1, type1, &result_type);
- container_free(c1, type1);
- if (c != c2) {
- container_free(c2, type2);
- }
- } else {
- c = container_lazy_ior(c1, type1, c2, type2, &result_type);
- container_free(c2, type2);
- if (c != c1) {
- container_free(c1, type1);
- }
- }
- // since we assume that the initial containers are non-empty, the
- // result here
- // can only be non-empty
- ra_append(&answer->high_low_container, s1, c, result_type);
- ++pos1;
- ++pos2;
- if (pos1 == length1) break;
- if (pos2 == length2) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
-
- } else if (s1 < s2) { // s1 < s2
- container_t *c1 =
ra_get_container_at_index(&x1->high_low_container,
- (uint16_t)pos1,
&type1);
- ra_append(&answer->high_low_container, s1, c1, type1);
- pos1++;
- if (pos1 == length1) break;
- s1 = ra_get_key_at_index(&x1->high_low_container, (uint16_t)pos1);
-
- } else { // s1 > s2
- container_t *c2 =
ra_get_container_at_index(&x2->high_low_container,
- (uint16_t)pos2,
&type2);
- ra_append(&answer->high_low_container, s2, c2, type2);
- pos2++;
- if (pos2 == length2) break;
- s2 = ra_get_key_at_index(&x2->high_low_container, (uint16_t)pos2);
- }
- }
- if (pos1 == length1) {
- ra_append_move_range(&answer->high_low_container,
- &x2->high_low_container, pos2, length2);
- } else if (pos2 == length2) {
- ra_append_move_range(&answer->high_low_container,
- &x1->high_low_container, pos1, length1);
- }
- ra_clear_without_containers(&x1->high_low_container);
- ra_clear_without_containers(&x2->high_low_container);
- roaring_free(x1);
- roaring_free(x2);
- return answer;
-}
-
-/**
- * Compute the union of 'number' bitmaps using a heap. This can
- * sometimes be faster than roaring_bitmap_or_many which uses
- * a naive algorithm. Caller is responsible for freeing the
- * result.
- */
-roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
- const roaring_bitmap_t **x) {
- if (number == 0) {
- return roaring_bitmap_create();
- }
- if (number == 1) {
- return roaring_bitmap_copy(x[0]);
- }
- roaring_pq_t *pq = create_pq(x, number);
- while (pq->size > 1) {
- roaring_pq_element_t x1 = pq_poll(pq);
- roaring_pq_element_t x2 = pq_poll(pq);
-
- if (x1.is_temporary && x2.is_temporary) {
- roaring_bitmap_t *newb =
- lazy_or_from_lazy_inputs(x1.bitmap, x2.bitmap);
- // should normally return a fresh new bitmap *except* that
- // it can return x1.bitmap or x2.bitmap in degenerate cases
- bool temporary = !((newb == x1.bitmap) && (newb == x2.bitmap));
- uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb);
- roaring_pq_element_t newelement = {
- .size = bsize, .is_temporary = temporary, .bitmap = newb};
- pq_add(pq, &newelement);
- } else if (x2.is_temporary) {
- roaring_bitmap_lazy_or_inplace(x2.bitmap, x1.bitmap, false);
- x2.size = roaring_bitmap_portable_size_in_bytes(x2.bitmap);
- pq_add(pq, &x2);
- } else if (x1.is_temporary) {
- roaring_bitmap_lazy_or_inplace(x1.bitmap, x2.bitmap, false);
- x1.size = roaring_bitmap_portable_size_in_bytes(x1.bitmap);
-
- pq_add(pq, &x1);
- } else {
- roaring_bitmap_t *newb =
- roaring_bitmap_lazy_or(x1.bitmap, x2.bitmap, false);
- uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb);
- roaring_pq_element_t newelement = {
- .size = bsize, .is_temporary = true, .bitmap = newb};
-
- pq_add(pq, &newelement);
- }
- }
- roaring_pq_element_t X = pq_poll(pq);
- roaring_bitmap_t *answer = X.bitmap;
- roaring_bitmap_repair_after_lazy(answer);
- pq_free(pq);
- return answer;
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace api {
-#endif
-/* end file src/roaring_priority_queue.c */
diff --git a/support/roaring.h b/support/roaring.h
deleted file mode 100644
index 818e478b..00000000
--- a/support/roaring.h
+++ /dev/null
@@ -1,3052 +0,0 @@
-// !!! DO NOT EDIT - THIS IS AN AUTO-GENERATED FILE !!!
-// Created by amalgamation.sh on 2024-10-04T22:14:33Z
-
-/*
- * The CRoaring project is under a dual license (Apache/MIT).
- * Users of the library may choose one or the other license.
- */
-/*
- * Copyright 2016-2022 The CRoaring authors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * SPDX-License-Identifier: Apache-2.0
- */
-/*
- * MIT License
- *
- * Copyright 2016-2022 The CRoaring authors
- *
- * Permission is hereby granted, free of charge, to any
- * person obtaining a copy of this software and associated
- * documentation files (the "Software"), to deal in the
- * Software without restriction, including without
- * limitation the rights to use, copy, modify, merge,
- * publish, distribute, sublicense, and/or sell copies of
- * the Software, and to permit persons to whom the Software
- * is furnished to do so, subject to the following
- * conditions:
- *
- * The above copyright notice and this permission notice
- * shall be included in all copies or substantial portions
- * of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
- * ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
- * TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
- * PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
- * SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
- * IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- *
- * SPDX-License-Identifier: MIT
- */
-
-/* begin file include/roaring/roaring_version.h */
-// clang-format off
-// /include/roaring/roaring_version.h automatically generated by release.py,
do not change by hand
-#ifndef ROARING_INCLUDE_ROARING_VERSION
-#define ROARING_INCLUDE_ROARING_VERSION
-#define ROARING_VERSION "4.2.1"
-enum {
- ROARING_VERSION_MAJOR = 4,
- ROARING_VERSION_MINOR = 2,
- ROARING_VERSION_REVISION = 1
-};
-#endif // ROARING_INCLUDE_ROARING_VERSION
-// clang-format on/* end file include/roaring/roaring_version.h */
-/* begin file include/roaring/portability.h */
-/*
- * portability.h
- *
- */
-
-/**
- * All macros should be prefixed with either CROARING or ROARING.
- * The library uses both ROARING_...
- * as well as CROAIRING_ as prefixes. The ROARING_ prefix is for
- * macros that are provided by the build system or that are closely
- * related to the format. The header macros may also use ROARING_.
- * The CROARING_ prefix is for internal macros that a user is unlikely
- * to ever interact with.
- */
-
-#ifndef CROARING_INCLUDE_PORTABILITY_H_
-#define CROARING_INCLUDE_PORTABILITY_H_
-
-#ifndef _GNU_SOURCE
-#define _GNU_SOURCE 1
-#endif // _GNU_SOURCE
-#ifndef __STDC_FORMAT_MACROS
-#define __STDC_FORMAT_MACROS 1
-#endif // __STDC_FORMAT_MACROS
-
-#ifdef _MSC_VER
-#define CROARING_VISUAL_STUDIO 1
-/**
- * We want to differentiate carefully between
- * clang under visual studio and regular visual
- * studio.
- */
-#ifdef __clang__
-// clang under visual studio
-#define CROARING_CLANG_VISUAL_STUDIO 1
-#else
-// just regular visual studio (best guess)
-#define CROARING_REGULAR_VISUAL_STUDIO 1
-#endif // __clang__
-#endif // _MSC_VER
-#ifndef CROARING_VISUAL_STUDIO
-#define CROARING_VISUAL_STUDIO 0
-#endif
-#ifndef CROARING_CLANG_VISUAL_STUDIO
-#define CROARING_CLANG_VISUAL_STUDIO 0
-#endif
-#ifndef CROARING_REGULAR_VISUAL_STUDIO
-#define CROARING_REGULAR_VISUAL_STUDIO 0
-#endif
-
-#if defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE < 200809L)
-#undef _POSIX_C_SOURCE
-#endif
-
-#ifndef _POSIX_C_SOURCE
-#define _POSIX_C_SOURCE 200809L
-#endif // !(defined(_POSIX_C_SOURCE)) || (_POSIX_C_SOURCE < 200809L)
-#if !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700)
-#define _XOPEN_SOURCE 700
-#endif // !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700)
-
-#ifdef __illumos__
-#define __EXTENSIONS__
-#endif
-
-#include <stdbool.h>
-#include <stdint.h>
-#include <stdlib.h> // will provide posix_memalign with _POSIX_C_SOURCE as
defined above
-#ifdef __GLIBC__
-#include <malloc.h> // this should never be needed but there are some reports
that it is needed.
-#endif
-
-#ifdef __cplusplus
-extern "C" { // portability definitions are in global scope, not a namespace
-#endif
-
-#if defined(__SIZEOF_LONG_LONG__) && __SIZEOF_LONG_LONG__ != 8
-#error This code assumes 64-bit long longs (by use of the GCC intrinsics).
Your system is not currently supported.
-#endif
-
-#if CROARING_REGULAR_VISUAL_STUDIO
-#ifndef __restrict__
-#define __restrict__ __restrict
-#endif // __restrict__
-#endif // CROARING_REGULAR_VISUAL_STUDIO
-
-#if defined(__x86_64__) || defined(_M_X64)
-// we have an x64 processor
-#define CROARING_IS_X64 1
-
-#if defined(_MSC_VER) && (_MSC_VER < 1910)
-// Old visual studio systems won't support AVX2 well.
-#undef CROARING_IS_X64
-#endif
-
-#if defined(__clang_major__) && (__clang_major__ <= 8) && !defined(__AVX2__)
-// Older versions of clang have a bug affecting us
-//
https://stackoverflow.com/questions/57228537/how-does-one-use-pragma-clang-attribute-push-with-c-namespaces
-#undef CROARING_IS_X64
-#endif
-
-#ifdef ROARING_DISABLE_X64
-#undef CROARING_IS_X64
-#endif
-// we include the intrinsic header
-#if !CROARING_REGULAR_VISUAL_STUDIO
-/* Non-Microsoft C/C++-compatible compiler */
-#include <x86intrin.h> // on some recent GCC, this will declare posix_memalign
-
-#if CROARING_CLANG_VISUAL_STUDIO
-
-/**
- * You are not supposed, normally, to include these
- * headers directly. Instead you should either include intrin.h
- * or x86intrin.h. However, when compiling with clang
- * under Windows (i.e., when _MSC_VER is set), these headers
- * only get included *if* the corresponding features are detected
- * from macros:
- * e.g., if __AVX2__ is set... in turn, we normally set these
- * macros by compiling against the corresponding architecture
- * (e.g., arch:AVX2, -mavx2, etc.) which compiles the whole
- * software with these advanced instructions. These headers would
- * normally guard against such usage, but we carefully included
- * <x86intrin.h> (or <intrin.h>) before, so the headers
- * are fooled.
- */
-// To avoid reordering imports:
-// clang-format off
-#include <bmiintrin.h> // for _blsr_u64
-#include <lzcntintrin.h> // for __lzcnt64
-#include <immintrin.h> // for most things (AVX2, AVX512, _popcnt64)
-#include <smmintrin.h>
-#include <tmmintrin.h>
-#include <avxintrin.h>
-#include <avx2intrin.h>
-#include <wmmintrin.h>
-#if _MSC_VER >= 1920
-// Important: we need the AVX-512 headers:
-#include <avx512fintrin.h>
-#include <avx512dqintrin.h>
-#include <avx512cdintrin.h>
-#include <avx512bwintrin.h>
-#include <avx512vlintrin.h>
-#include <avx512vbmiintrin.h>
-#include <avx512vbmi2intrin.h>
-#include <avx512vpopcntdqintrin.h>
-// clang-format on
-#endif // _MSC_VER >= 1920
-// unfortunately, we may not get _blsr_u64, but, thankfully, clang
-// has it as a macro.
-#ifndef _blsr_u64
-// we roll our own
-#define _blsr_u64(n) ((n - 1) & n)
-#endif // _blsr_u64
-#endif // SIMDJSON_CLANG_VISUAL_STUDIO
-
-#endif // CROARING_REGULAR_VISUAL_STUDIO
-#endif // defined(__x86_64__) || defined(_M_X64)
-
-#if !defined(CROARING_USENEON) && !defined(DISABLENEON) && defined(__ARM_NEON)
-#define CROARING_USENEON
-#endif
-#if defined(CROARING_USENEON)
-#include <arm_neon.h>
-#endif
-
-#if !CROARING_REGULAR_VISUAL_STUDIO
-/* Non-Microsoft C/C++-compatible compiler, assumes that it supports inline
- * assembly */
-#define CROARING_INLINE_ASM 1
-#endif // _MSC_VER
-
-#if CROARING_REGULAR_VISUAL_STUDIO
-/* Microsoft C/C++-compatible compiler */
-#include <intrin.h>
-
-#ifndef __clang__ // if one compiles with MSVC *with* clang, then these
- // intrinsics are defined!!!
-#define CROARING_INTRINSICS 1
-// sadly there is no way to check whether we are missing these intrinsics
-// specifically.
-
-/* wrappers for Visual Studio built-ins that look like gcc built-ins
- * __builtin_ctzll */
-/** result might be undefined when input_num is zero */
-inline int roaring_trailing_zeroes(unsigned long long input_num) {
- unsigned long index;
-#ifdef _WIN64 // highly recommended!!!
- _BitScanForward64(&index, input_num);
-#else // if we must support 32-bit Windows
- if ((uint32_t)input_num != 0) {
- _BitScanForward(&index, (uint32_t)input_num);
- } else {
- _BitScanForward(&index, (uint32_t)(input_num >> 32));
- index += 32;
- }
-#endif // _WIN64
- return index;
-}
-
-/* wrappers for Visual Studio built-ins that look like gcc built-ins
- * __builtin_clzll */
-/** result might be undefined when input_num is zero */
-inline int roaring_leading_zeroes(unsigned long long input_num) {
- unsigned long index;
-#ifdef _WIN64 // highly recommended!!!
- _BitScanReverse64(&index, input_num);
-#else // if we must support 32-bit Windows
- if (input_num > 0xFFFFFFFF) {
- _BitScanReverse(&index, (uint32_t)(input_num >> 32));
- index += 32;
- } else {
- _BitScanReverse(&index, (uint32_t)(input_num));
- }
-#endif // _WIN64
- return 63 - index;
-}
-
-/* Use #define so this is effective even under /Ob0 (no inline) */
-#define roaring_unreachable __assume(0)
-#endif // __clang__
-
-#endif // CROARING_REGULAR_VISUAL_STUDIO
-
-#ifndef CROARING_INTRINSICS
-#define CROARING_INTRINSICS 1
-#define roaring_unreachable __builtin_unreachable()
-/** result might be undefined when input_num is zero */
-inline int roaring_trailing_zeroes(unsigned long long input_num) {
- return __builtin_ctzll(input_num);
-}
-/** result might be undefined when input_num is zero */
-inline int roaring_leading_zeroes(unsigned long long input_num) {
- return __builtin_clzll(input_num);
-}
-#endif
-
-#if CROARING_REGULAR_VISUAL_STUDIO
-#define ALIGNED(x) __declspec(align(x))
-#elif defined(__GNUC__) || defined(__clang__)
-#define ALIGNED(x) __attribute__((aligned(x)))
-#else
-#warning "Warning. Unrecognized compiler."
-#define ALIGNED(x)
-#endif
-
-#if defined(__GNUC__) || defined(__clang__)
-#define CROARING_WARN_UNUSED __attribute__((warn_unused_result))
-#else
-#define CROARING_WARN_UNUSED
-#endif
-
-#define IS_BIG_ENDIAN (*(uint16_t *)"\0\xff" < 0x100)
-
-#ifdef CROARING_USENEON
-// we can always compute the popcount fast.
-#elif (defined(_M_ARM) || defined(_M_ARM64)) && \
- ((defined(_WIN64) || defined(_WIN32)) && \
- defined(CROARING_REGULAR_VISUAL_STUDIO) && \
- CROARING_REGULAR_VISUAL_STUDIO)
-// we will need this function:
-static inline int roaring_hamming_backup(uint64_t x) {
- uint64_t c1 = UINT64_C(0x5555555555555555);
- uint64_t c2 = UINT64_C(0x3333333333333333);
- uint64_t c4 = UINT64_C(0x0F0F0F0F0F0F0F0F);
- x -= (x >> 1) & c1;
- x = ((x >> 2) & c2) + (x & c2);
- x = (x + (x >> 4)) & c4;
- x *= UINT64_C(0x0101010101010101);
- return x >> 56;
-}
-#endif
-
-static inline int roaring_hamming(uint64_t x) {
-#if defined(_WIN64) && defined(CROARING_REGULAR_VISUAL_STUDIO) && \
- CROARING_REGULAR_VISUAL_STUDIO
-#ifdef CROARING_USENEON
- return vaddv_u8(vcnt_u8(vcreate_u8(input_num)));
-#elif defined(_M_ARM64)
- return roaring_hamming_backup(x);
- // (int) _CountOneBits64(x); is unavailable
-#else // _M_ARM64
- return (int)__popcnt64(x);
-#endif // _M_ARM64
-#elif defined(_WIN32) && defined(CROARING_REGULAR_VISUAL_STUDIO) && \
- CROARING_REGULAR_VISUAL_STUDIO
-#ifdef _M_ARM
- return roaring_hamming_backup(x);
- // _CountOneBits is unavailable
-#else // _M_ARM
- return (int)__popcnt((unsigned int)x) +
- (int)__popcnt((unsigned int)(x >> 32));
-#endif // _M_ARM
-#else
- return __builtin_popcountll(x);
-#endif
-}
-
-#ifndef UINT64_C
-#define UINT64_C(c) (c##ULL)
-#endif // UINT64_C
-
-#ifndef UINT32_C
-#define UINT32_C(c) (c##UL)
-#endif // UINT32_C
-
-#ifdef __cplusplus
-} // extern "C" {
-#endif // __cplusplus
-
-// this is almost standard?
-#undef STRINGIFY_IMPLEMENTATION_
-#undef STRINGIFY
-#define STRINGIFY_IMPLEMENTATION_(a) #a
-#define STRINGIFY(a) STRINGIFY_IMPLEMENTATION_(a)
-
-// Our fast kernels require 64-bit systems.
-//
-// On 32-bit x86, we lack 64-bit popcnt, lzcnt, blsr instructions.
-// Furthermore, the number of SIMD registers is reduced.
-//
-// On 32-bit ARM, we would have smaller registers.
-//
-// The library should still have the fallback kernel. It is
-// slower, but it should run everywhere.
-
-//
-// Enable valid runtime implementations, and select
-// CROARING_BUILTIN_IMPLEMENTATION
-//
-
-// We are going to use runtime dispatch.
-#if CROARING_IS_X64
-#ifdef __clang__
-// clang does not have GCC push pop
-// warning: clang attribute push can't be used within a namespace in clang up
-// til 8.0 so CROARING_TARGET_REGION and CROARING_UNTARGET_REGION must be
-// *outside* of a namespace.
-#define CROARING_TARGET_REGION(T) \
- _Pragma(STRINGIFY(clang attribute push(__attribute__((target(T))), \
- apply_to = function)))
-#define CROARING_UNTARGET_REGION _Pragma("clang attribute pop")
-#elif defined(__GNUC__)
-// GCC is easier
-#define CROARING_TARGET_REGION(T) \
- _Pragma("GCC push_options") _Pragma(STRINGIFY(GCC target(T)))
-#define CROARING_UNTARGET_REGION _Pragma("GCC pop_options")
-#endif // clang then gcc
-
-#endif // CROARING_IS_X64
-
-// Default target region macros don't do anything.
-#ifndef CROARING_TARGET_REGION
-#define CROARING_TARGET_REGION(T)
-#define CROARING_UNTARGET_REGION
-#endif
-
-#define CROARING_TARGET_AVX2 \
- CROARING_TARGET_REGION("avx2,bmi,pclmul,lzcnt,popcnt")
-#define CROARING_TARGET_AVX512 \
- CROARING_TARGET_REGION( \
- "avx2,bmi,bmi2,pclmul,lzcnt,popcnt,avx512f,avx512dq,avx512bw," \
- "avx512vbmi2,avx512bitalg,avx512vpopcntdq")
-#define CROARING_UNTARGET_AVX2 CROARING_UNTARGET_REGION
-#define CROARING_UNTARGET_AVX512 CROARING_UNTARGET_REGION
-
-#ifdef __AVX2__
-// No need for runtime dispatching.
-// It is unnecessary and harmful to old clang to tag regions.
-#undef CROARING_TARGET_AVX2
-#define CROARING_TARGET_AVX2
-#undef CROARING_UNTARGET_AVX2
-#define CROARING_UNTARGET_AVX2
-#endif
-
-#if defined(__AVX512F__) && defined(__AVX512DQ__) && defined(__AVX512BW__) && \
- defined(__AVX512VBMI2__) && defined(__AVX512BITALG__) && \
- defined(__AVX512VPOPCNTDQ__)
-// No need for runtime dispatching.
-// It is unnecessary and harmful to old clang to tag regions.
-#undef CROARING_TARGET_AVX512
-#define CROARING_TARGET_AVX512
-#undef CROARING_UNTARGET_AVX512
-#define CROARING_UNTARGET_AVX512
-#endif
-
-// Allow unaligned memory access
-#if defined(__GNUC__) || defined(__clang__)
-#define ALLOW_UNALIGNED __attribute__((no_sanitize("alignment")))
-#else
-#define ALLOW_UNALIGNED
-#endif
-
-#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
-#define CROARING_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-#elif defined(_WIN32)
-#define CROARING_IS_BIG_ENDIAN 0
-#else
-#if defined(__APPLE__) || \
- defined(__FreeBSD__) // defined __BYTE_ORDER__ && defined
- // __ORDER_BIG_ENDIAN__
-#include <machine/endian.h>
-#elif defined(sun) || \
- defined(__sun) // defined(__APPLE__) || defined(__FreeBSD__)
-#include <sys/byteorder.h>
-#else // defined(__APPLE__) || defined(__FreeBSD__)
-
-#ifdef __has_include
-#if __has_include(<endian.h>)
-#include <endian.h>
-#endif //__has_include(<endian.h>)
-#endif //__has_include
-
-#endif // defined(__APPLE__) || defined(__FreeBSD__)
-
-#ifndef !defined(__BYTE_ORDER__) || !defined(__ORDER_LITTLE_ENDIAN__)
-#define CROARING_IS_BIG_ENDIAN 0
-#endif
-
-#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-#define CROARING_IS_BIG_ENDIAN 0
-#else // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-#define CROARING_IS_BIG_ENDIAN 1
-#endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-#endif
-
-// Host <-> big endian conversion.
-#if CROARING_IS_BIG_ENDIAN
-#define croaring_htobe64(x) (x)
-
-#elif defined(_WIN32) || defined(_WIN64) // CROARING_IS_BIG_ENDIAN
-#include <stdlib.h>
-#define croaring_htobe64(x) _byteswap_uint64(x)
-
-#elif defined(__APPLE__) // CROARING_IS_BIG_ENDIAN
-#include <libkern/OSByteOrder.h>
-#define croaring_htobe64(x) OSSwapInt64(x)
-
-#elif defined(__has_include) && \
- __has_include( \
- <byteswap.h>) && (defined(__linux__) || defined(__FreeBSD__)) //
CROARING_IS_BIG_ENDIAN
-#include <byteswap.h>
-#if defined(__linux__)
-#define croaring_htobe64(x) bswap_64(x)
-#elif defined(__FreeBSD__)
-#define croaring_htobe64(x) bswap64(x)
-#else
-#warning "Unknown platform, report as an error"
-#endif
-
-#else // CROARING_IS_BIG_ENDIAN
-// Gets compiled to bswap or equivalent on most compilers.
-#define croaring_htobe64(x)
\
- (((x & 0x00000000000000FFULL) << 56) |
\
- ((x & 0x000000000000FF00ULL) << 40) |
\
- ((x & 0x0000000000FF0000ULL) << 24) |
\
- ((x & 0x00000000FF000000ULL) << 8) | ((x & 0x000000FF00000000ULL) >> 8) |
\
- ((x & 0x0000FF0000000000ULL) >> 24) |
\
- ((x & 0x00FF000000000000ULL) >> 40) |
\
- ((x & 0xFF00000000000000ULL) >> 56))
-#endif // CROARING_IS_BIG_ENDIAN
-#define croaring_be64toh(x) croaring_htobe64(x)
-// End of host <-> big endian conversion.
-
-// Defines for the possible CROARING atomic implementations
-#define CROARING_ATOMIC_IMPL_NONE 1
-#define CROARING_ATOMIC_IMPL_CPP 2
-#define CROARING_ATOMIC_IMPL_C 3
-#define CROARING_ATOMIC_IMPL_C_WINDOWS 4
-
-// If the use has forced a specific implementation, use that, otherwise,
-// figure out the best implementation we can use.
-#if !defined(CROARING_ATOMIC_IMPL)
-#if defined(__cplusplus) && __cplusplus >= 201103L
-#ifdef __has_include
-#if __has_include(<atomic>)
-#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_CPP
-#endif //__has_include(<atomic>)
-#else
- // We lack __has_include to check:
-#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_CPP
-#endif //__has_include
-#elif __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_ATOMICS__)
-#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_C
-#elif CROARING_REGULAR_VISUAL_STUDIO
- //
https://www.technetworkhub.com/c11-atomics-in-visual-studio-2022-version-17/
-#define CROARING_ATOMIC_IMPL CROARING_ATOMIC_IMPL_C_WINDOWS
-#endif
-#endif // !defined(CROARING_ATOMIC_IMPL)
-
-#if CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C
-#include <stdatomic.h>
-typedef _Atomic(uint32_t) croaring_refcount_t;
-
-static inline void croaring_refcount_inc(croaring_refcount_t *val) {
- // Increasing the reference counter can always be done with
- // memory_order_relaxed: New references to an object can only be formed
from
- // an existing reference, and passing an existing reference from one thread
- // to another must already provide any required synchronization.
- atomic_fetch_add_explicit(val, 1, memory_order_relaxed);
-}
-
-static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
- // It is important to enforce any possible access to the object in one
- // thread (through an existing reference) to happen before deleting the
- // object in a different thread. This is achieved by a "release" operation
- // after dropping a reference (any access to the object through this
- // reference must obviously happened before), and an "acquire" operation
- // before deleting the object.
- bool is_zero = atomic_fetch_sub_explicit(val, 1, memory_order_release) ==
1;
- if (is_zero) {
- atomic_thread_fence(memory_order_acquire);
- }
- return is_zero;
-}
-
-static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
- return atomic_load_explicit(val, memory_order_relaxed);
-}
-#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_CPP
-#include <atomic>
-typedef std::atomic<uint32_t> croaring_refcount_t;
-
-static inline void croaring_refcount_inc(croaring_refcount_t *val) {
- val->fetch_add(1, std::memory_order_relaxed);
-}
-
-static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
- // See above comments on the c11 atomic implementation for memory ordering
- bool is_zero = val->fetch_sub(1, std::memory_order_release) == 1;
- if (is_zero) {
- std::atomic_thread_fence(std::memory_order_acquire);
- }
- return is_zero;
-}
-
-static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
- return val->load(std::memory_order_relaxed);
-}
-#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_C_WINDOWS
-#include <intrin.h>
-#pragma intrinsic(_InterlockedIncrement)
-#pragma intrinsic(_InterlockedDecrement)
-
-// _InterlockedIncrement and _InterlockedDecrement take a (signed) long, and
-// overflow is defined to wrap, so we can pretend it is a uint32_t for our case
-typedef volatile long croaring_refcount_t;
-
-static inline void croaring_refcount_inc(croaring_refcount_t *val) {
- _InterlockedIncrement(val);
-}
-
-static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
- return _InterlockedDecrement(val) == 0;
-}
-
-static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
- // Per
- //
https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access
- // > Simple reads and writes to properly-aligned 32-bit variables are
atomic
- // > operations. In other words, you will not end up with only one portion
- // > of the variable updated; all bits are updated in an atomic fashion.
- return *val;
-}
-#elif CROARING_ATOMIC_IMPL == CROARING_ATOMIC_IMPL_NONE
-#include <assert.h>
-typedef uint32_t croaring_refcount_t;
-
-static inline void croaring_refcount_inc(croaring_refcount_t *val) {
- *val += 1;
-}
-
-static inline bool croaring_refcount_dec(croaring_refcount_t *val) {
- assert(*val > 0);
- *val -= 1;
- return val == 0;
-}
-
-static inline uint32_t croaring_refcount_get(const croaring_refcount_t *val) {
- return *val;
-}
-#else
-#error "Unknown atomic implementation"
-#endif
-
-#if defined(__GNUC__) || defined(__clang__)
-#define CROARING_DEPRECATED __attribute__((deprecated))
-#elif defined(_MSC_VER)
-#define CROARING_DEPRECATED __declspec(deprecated)
-#else
-#define CROARING_DEPRECATED
-#endif // defined(__GNUC__) || defined(__clang__)
-
-// We want to initialize structs to zero portably (C and C++), without
-// warnings. We can do mystruct s = CROARING_ZERO_INITIALIZER;
-#if __cplusplus
-#define CROARING_ZERO_INITIALIZER \
- {}
-#else
-#define CROARING_ZERO_INITIALIZER \
- { 0 }
-#endif
-
-// We need portability.h to be included first,
-// but we also always want isadetection.h to be
-// included (right after).
-// See https://github.com/RoaringBitmap/CRoaring/issues/394
-// There is no scenario where we want portability.h to
-// be included, but not isadetection.h: the latter is a
-// strict requirement.
-#endif /* INCLUDE_PORTABILITY_H_ */
-/* end file include/roaring/portability.h */
-/* begin file include/roaring/roaring_types.h */
-/*
- Typedefs used by various components
-*/
-
-#ifndef ROARING_TYPES_H
-#define ROARING_TYPES_H
-
-#include <stdbool.h>
-#include <stdint.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-/**
- * When building .c files as C++, there's added compile-time checking if the
- * container types are derived from a `container_t` base class. So long as
- * such a base class is empty, the struct will behave compatibly with C structs
- * despite the derivation. This is due to the Empty Base Class Optimization:
- *
- * https://en.cppreference.com/w/cpp/language/ebo
- *
- * But since C isn't namespaced, taking `container_t` globally might collide
- * with other projects. So roaring.h uses ROARING_CONTAINER_T, while internal
- * code #undefs that after declaring `typedef ROARING_CONTAINER_T container_t;`
- */
-#if defined(__cplusplus)
-extern "C++" {
-struct container_s {};
-}
-#define ROARING_CONTAINER_T ::roaring::api::container_s
-#else
-#define ROARING_CONTAINER_T void // no compile-time checking
-#endif
-
-#define ROARING_FLAG_COW UINT8_C(0x1)
-#define ROARING_FLAG_FROZEN UINT8_C(0x2)
-
-/**
- * Roaring arrays are array-based key-value pairs having containers as values
- * and 16-bit integer keys. A roaring bitmap might be implemented as such.
- */
-
-// parallel arrays. Element sizes quite different.
-// Alternative is array
-// of structs. Which would have better
-// cache performance through binary searches?
-
-typedef struct roaring_array_s {
- int32_t size;
- int32_t allocation_size;
- ROARING_CONTAINER_T **containers; // Use container_t in non-API files!
- uint16_t *keys;
- uint8_t *typecodes;
- uint8_t flags;
-} roaring_array_t;
-
-typedef bool (*roaring_iterator)(uint32_t value, void *param);
-typedef bool (*roaring_iterator64)(uint64_t value, void *param);
-
-/**
- * (For advanced users.)
- * The roaring_statistics_t can be used to collect detailed statistics about
- * the composition of a roaring bitmap.
- */
-typedef struct roaring_statistics_s {
- uint32_t n_containers; /* number of containers */
-
- uint32_t n_array_containers; /* number of array containers */
- uint32_t n_run_containers; /* number of run containers */
- uint32_t n_bitset_containers; /* number of bitmap containers */
-
- uint32_t
- n_values_array_containers; /* number of values in array containers
*/
- uint32_t n_values_run_containers; /* number of values in run containers */
- uint32_t
- n_values_bitset_containers; /* number of values in bitmap containers
*/
-
- uint32_t n_bytes_array_containers; /* number of allocated bytes in array
- containers */
- uint32_t n_bytes_run_containers; /* number of allocated bytes in run
- containers */
- uint32_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap
- containers */
-
- uint32_t
- max_value; /* the maximal value, undefined if cardinality is zero */
- uint32_t
- min_value; /* the minimal value, undefined if cardinality is zero */
-
- CROARING_DEPRECATED
- uint64_t sum_value; /* deprecated always zero */
-
- uint64_t cardinality; /* total number of values stored in the bitmap */
-
- // and n_values_arrays, n_values_rle, n_values_bitmap
-} roaring_statistics_t;
-
-/**
- * (For advanced users.)
- * The roaring64_statistics_t can be used to collect detailed statistics about
- * the composition of a roaring64 bitmap.
- */
-typedef struct roaring64_statistics_s {
- uint64_t n_containers; /* number of containers */
-
- uint64_t n_array_containers; /* number of array containers */
- uint64_t n_run_containers; /* number of run containers */
- uint64_t n_bitset_containers; /* number of bitmap containers */
-
- uint64_t
- n_values_array_containers; /* number of values in array containers
*/
- uint64_t n_values_run_containers; /* number of values in run containers */
- uint64_t
- n_values_bitset_containers; /* number of values in bitmap containers
*/
-
- uint64_t n_bytes_array_containers; /* number of allocated bytes in array
- containers */
- uint64_t n_bytes_run_containers; /* number of allocated bytes in run
- containers */
- uint64_t n_bytes_bitset_containers; /* number of allocated bytes in bitmap
- containers */
-
- uint64_t
- max_value; /* the maximal value, undefined if cardinality is zero */
- uint64_t
- min_value; /* the minimal value, undefined if cardinality is zero */
-
- uint64_t cardinality; /* total number of values stored in the bitmap */
-
- // and n_values_arrays, n_values_rle, n_values_bitmap
-} roaring64_statistics_t;
-
-/**
- * Roaring-internal type used to iterate within a roaring container.
- */
-typedef struct roaring_container_iterator_s {
- // For bitset and array containers this is the index of the bit / entry.
- // For run containers this points at the run.
- int32_t index;
-} roaring_container_iterator_t;
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace api {
-#endif
-
-#endif /* ROARING_TYPES_H */
-/* end file include/roaring/roaring_types.h */
-/* begin file include/roaring/bitset/bitset.h */
-#ifndef CROARING_CBITSET_BITSET_H
-#define CROARING_CBITSET_BITSET_H
-
-// For compatibility with MSVC with the use of `restrict`
-#if (__STDC_VERSION__ >= 199901L) || \
- (defined(__GNUC__) && defined(__STDC_VERSION__))
-#define CROARING_CBITSET_RESTRICT restrict
-#else
-#define CROARING_CBITSET_RESTRICT
-#endif // (__STDC_VERSION__ >= 199901L) || (defined(__GNUC__) &&
- // defined(__STDC_VERSION__ ))
-
-#include <stdbool.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-struct bitset_s {
- uint64_t *CROARING_CBITSET_RESTRICT array;
- /* For simplicity and performance, we prefer to have a size and a capacity
- * that is a multiple of 64 bits. Thus we only track the size and the
- * capacity in terms of 64-bit words allocated */
- size_t arraysize;
- size_t capacity;
-};
-
-typedef struct bitset_s bitset_t;
-
-/* Create a new bitset. Return NULL in case of failure. */
-bitset_t *bitset_create(void);
-
-/* Create a new bitset able to contain size bits. Return NULL in case of
- * failure. */
-bitset_t *bitset_create_with_capacity(size_t size);
-
-/* Free memory. */
-void bitset_free(bitset_t *bitset);
-
-/* Set all bits to zero. */
-void bitset_clear(bitset_t *bitset);
-
-/* Set all bits to one. */
-void bitset_fill(bitset_t *bitset);
-
-/* Create a copy */
-bitset_t *bitset_copy(const bitset_t *bitset);
-
-/* For advanced users: Resize the bitset so that it can support newarraysize *
- * 64 bits. Return true in case of success, false for failure. Pad with zeroes
- * new buffer areas if requested. */
-bool bitset_resize(bitset_t *bitset, size_t newarraysize, bool padwithzeroes);
-
-/* returns how many bytes of memory the backend buffer uses */
-inline size_t bitset_size_in_bytes(const bitset_t *bitset) {
- return bitset->arraysize * sizeof(uint64_t);
-}
-
-/* returns how many bits can be accessed */
-inline size_t bitset_size_in_bits(const bitset_t *bitset) {
- return bitset->arraysize * 64;
-}
-
-/* returns how many words (64-bit) of memory the backend buffer uses */
-inline size_t bitset_size_in_words(const bitset_t *bitset) {
- return bitset->arraysize;
-}
-
-/* For advanced users: Grow the bitset so that it can support newarraysize * 64
- * bits with padding. Return true in case of success, false for failure. */
-bool bitset_grow(bitset_t *bitset, size_t newarraysize);
-
-/* attempts to recover unused memory, return false in case of
- * roaring_reallocation failure */
-bool bitset_trim(bitset_t *bitset);
-
-/* shifts all bits by 's' positions so that the bitset representing values
- * 1,2,10 would represent values 1+s, 2+s, 10+s */
-void bitset_shift_left(bitset_t *bitset, size_t s);
-
-/* shifts all bits by 's' positions so that the bitset representing values
- * 1,2,10 would represent values 1-s, 2-s, 10-s, negative values are deleted */
-void bitset_shift_right(bitset_t *bitset, size_t s);
-
-/* Set the ith bit. Attempts to resize the bitset if needed (may silently fail)
- */
-inline void bitset_set(bitset_t *bitset, size_t i) {
- size_t shiftedi = i / 64;
- if (shiftedi >= bitset->arraysize) {
- if (!bitset_grow(bitset, shiftedi + 1)) {
- return;
- }
- }
- bitset->array[shiftedi] |= ((uint64_t)1) << (i % 64);
-}
-
-/* Set the ith bit to the specified value. Attempts to resize the bitset if
- * needed (may silently fail) */
-inline void bitset_set_to_value(bitset_t *bitset, size_t i, bool flag) {
- size_t shiftedi = i / 64;
- uint64_t mask = ((uint64_t)1) << (i % 64);
- uint64_t dynmask = ((uint64_t)flag) << (i % 64);
- if (shiftedi >= bitset->arraysize) {
- if (!bitset_grow(bitset, shiftedi + 1)) {
- return;
- }
- }
- uint64_t w = bitset->array[shiftedi];
- w &= ~mask;
- w |= dynmask;
- bitset->array[shiftedi] = w;
-}
-
-/* Get the value of the ith bit. */
-inline bool bitset_get(const bitset_t *bitset, size_t i) {
- size_t shiftedi = i / 64;
- if (shiftedi >= bitset->arraysize) {
- return false;
- }
- return (bitset->array[shiftedi] & (((uint64_t)1) << (i % 64))) != 0;
-}
-
-/* Count number of bits set. */
-size_t bitset_count(const bitset_t *bitset);
-
-/* Returns true if no bit is set. */
-bool bitset_empty(const bitset_t *bitset);
-
-/* Find the index of the first bit set. Or SIZE_MAX if the bitset is empty. */
-size_t bitset_minimum(const bitset_t *bitset);
-
-/* Find the index of the last bit set. Or zero if the bitset is empty. */
-size_t bitset_maximum(const bitset_t *bitset);
-
-/* compute the union in-place (to b1), returns true if successful, to generate
a
- * new bitset first call bitset_copy */
-bool bitset_inplace_union(bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* report the size of the union (without materializing it) */
-size_t bitset_union_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* compute the intersection in-place (to b1), to generate a new bitset first
- * call bitset_copy */
-void bitset_inplace_intersection(bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* report the size of the intersection (without materializing it) */
-size_t bitset_intersection_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* returns true if the bitsets contain no common elements */
-bool bitsets_disjoint(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* returns true if the bitsets contain any common elements */
-bool bitsets_intersect(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* returns true if b1 contains all of the set bits of b2 */
-bool bitset_contains_all(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* compute the difference in-place (to b1), to generate a new bitset first call
- * bitset_copy */
-void bitset_inplace_difference(bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* compute the size of the difference */
-size_t bitset_difference_count(const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* compute the symmetric difference in-place (to b1), return true if
successful,
- * to generate a new bitset first call bitset_copy */
-bool bitset_inplace_symmetric_difference(
- bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* compute the size of the symmetric difference */
-size_t bitset_symmetric_difference_count(
- const bitset_t *CROARING_CBITSET_RESTRICT b1,
- const bitset_t *CROARING_CBITSET_RESTRICT b2);
-
-/* iterate over the set bits
- like so :
- for(size_t i = 0; bitset_next_set_bit(b,&i) ; i++) {
- //.....
- }
- */
-inline bool bitset_next_set_bit(const bitset_t *bitset, size_t *i) {
- size_t x = *i / 64;
- if (x >= bitset->arraysize) {
- return false;
- }
- uint64_t w = bitset->array[x];
- w >>= (*i & 63);
- if (w != 0) {
- *i += roaring_trailing_zeroes(w);
- return true;
- }
- x++;
- while (x < bitset->arraysize) {
- w = bitset->array[x];
- if (w != 0) {
- *i = x * 64 + roaring_trailing_zeroes(w);
- return true;
- }
- x++;
- }
- return false;
-}
-
-/* iterate over the set bits
- like so :
- size_t buffer[256];
- size_t howmany = 0;
- for(size_t startfrom = 0; (howmany = bitset_next_set_bits(b,buffer,256,
- &startfrom)) > 0 ; startfrom++) {
- //.....
- }
- */
-inline size_t bitset_next_set_bits(const bitset_t *bitset, size_t *buffer,
- size_t capacity, size_t *startfrom) {
- if (capacity == 0) return 0; // sanity check
- size_t x = *startfrom / 64;
- if (x >= bitset->arraysize) {
- return 0; // nothing more to iterate over
- }
- uint64_t w = bitset->array[x];
- w >>= (*startfrom & 63);
- size_t howmany = 0;
- size_t base = x << 6;
- while (howmany < capacity) {
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- buffer[howmany++] = r + base;
- if (howmany == capacity) goto end;
- w ^= t;
- }
- x += 1;
- if (x == bitset->arraysize) {
- break;
- }
- base += 64;
- w = bitset->array[x];
- }
-end:
- if (howmany > 0) {
- *startfrom = buffer[howmany - 1];
- }
- return howmany;
-}
-
-typedef bool (*bitset_iterator)(size_t value, void *param);
-
-// return true if uninterrupted
-inline bool bitset_for_each(const bitset_t *b, bitset_iterator iterator,
- void *ptr) {
- size_t base = 0;
- for (size_t i = 0; i < b->arraysize; ++i) {
- uint64_t w = b->array[i];
- while (w != 0) {
- uint64_t t = w & (~w + 1);
- int r = roaring_trailing_zeroes(w);
- if (!iterator(r + base, ptr)) return false;
- w ^= t;
- }
- base += 64;
- }
- return true;
-}
-
-inline void bitset_print(const bitset_t *b) {
- printf("{");
- for (size_t i = 0; bitset_next_set_bit(b, &i); i++) {
- printf("%zu, ", i);
- }
- printf("}");
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace api {
-#endif
-
-#endif
-/* end file include/roaring/bitset/bitset.h */
-/* begin file include/roaring/roaring.h */
-/*
- * An implementation of Roaring Bitmaps in C.
- */
-
-#ifndef ROARING_H
-#define ROARING_H
-
-#include <stdbool.h>
-#include <stddef.h> // for `size_t`
-#include <stdint.h>
-
-
-// Include other headers after roaring_types.h
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-typedef struct roaring_bitmap_s {
- roaring_array_t high_low_container;
-} roaring_bitmap_t;
-
-/**
- * Dynamically allocates a new bitmap (initially empty).
- * Returns NULL if the allocation fails.
- * Capacity is a performance hint for how many "containers" the data will need.
- * Client is responsible for calling `roaring_bitmap_free()`.
- */
-roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap);
-
-/**
- * Dynamically allocates a new bitmap (initially empty).
- * Returns NULL if the allocation fails.
- * Client is responsible for calling `roaring_bitmap_free()`.
- */
-inline roaring_bitmap_t *roaring_bitmap_create(void) {
- return roaring_bitmap_create_with_capacity(0);
-}
-
-/**
- * Initialize a roaring bitmap structure in memory controlled by client.
- * Capacity is a performance hint for how many "containers" the data will need.
- * Can return false if auxiliary allocations fail when capacity greater than 0.
- */
-bool roaring_bitmap_init_with_capacity(roaring_bitmap_t *r, uint32_t cap);
-
-/**
- * Initialize a roaring bitmap structure in memory controlled by client.
- * The bitmap will be in a "clear" state, with no auxiliary allocations.
- * Since this performs no allocations, the function will not fail.
- */
-inline void roaring_bitmap_init_cleared(roaring_bitmap_t *r) {
- roaring_bitmap_init_with_capacity(r, 0);
-}
-
-/**
- * Add all the values between min (included) and max (excluded) that are at a
- * distance k*step from min.
- */
-roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
- uint32_t step);
-
-/**
- * Creates a new bitmap from a pointer of uint32_t integers
- */
-roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals);
-
-/*
- * Whether you want to use copy-on-write.
- * Saves memory and avoids copies, but needs more care in a threaded context.
- * Most users should ignore this flag.
- *
- * Note: If you do turn this flag to 'true', enabling COW, then ensure that you
- * do so for all of your bitmaps, since interactions between bitmaps with and
- * without COW is unsafe.
- */
-inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t *r) {
- return r->high_low_container.flags & ROARING_FLAG_COW;
-}
-inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t *r, bool cow) {
- if (cow) {
- r->high_low_container.flags |= ROARING_FLAG_COW;
- } else {
- r->high_low_container.flags &= ~ROARING_FLAG_COW;
- }
-}
-
-roaring_bitmap_t *roaring_bitmap_add_offset(const roaring_bitmap_t *bm,
- int64_t offset);
-/**
- * Describe the inner structure of the bitmap.
- */
-void roaring_bitmap_printf_describe(const roaring_bitmap_t *r);
-
-/**
- * Creates a new bitmap from a list of uint32_t integers
- *
- * This function is deprecated, use `roaring_bitmap_from` instead, which
- * doesn't require the number of elements to be passed in.
- *
- * @see roaring_bitmap_from
- */
-CROARING_DEPRECATED roaring_bitmap_t *roaring_bitmap_of(size_t n, ...);
-
-#ifdef __cplusplus
-/**
- * Creates a new bitmap which contains all values passed in as arguments.
- *
- * To create a bitmap from a variable number of arguments, use the
- * `roaring_bitmap_of_ptr` function instead.
- */
-// Use an immediately invoked closure, capturing by reference
-// (in case __VA_ARGS__ refers to context outside the closure)
-// Include a 0 at the beginning of the array to make the array length > 0
-// (zero sized arrays are not valid in standard c/c++)
-#define roaring_bitmap_from(...) \
- [&]() { \
- const uint32_t roaring_bitmap_from_array[] = {0, __VA_ARGS__}; \
- return roaring_bitmap_of_ptr((sizeof(roaring_bitmap_from_array) / \
- sizeof(roaring_bitmap_from_array[0])) - \
- 1, \
- &roaring_bitmap_from_array[1]); \
- }()
-#else
-/**
- * Creates a new bitmap which contains all values passed in as arguments.
- *
- * To create a bitmap from a variable number of arguments, use the
- * `roaring_bitmap_of_ptr` function instead.
- */
-// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof
-// expression, which is an unevaluated context, so it's even safe in the case
-// where expressions passed have side effects (roaring64_bitmap_from(my_func(),
-// ++i))
-// Include a 0 at the beginning of the array to make the array length > 0
-// (zero sized arrays are not valid in standard c/c++)
-#define roaring_bitmap_from(...) \
- roaring_bitmap_of_ptr( \
- (sizeof((const uint32_t[]){0, __VA_ARGS__}) / sizeof(uint32_t)) - 1, \
- &((const uint32_t[]){0, __VA_ARGS__})[1])
-#endif
-
-/**
- * Copies a bitmap (this does memory allocation).
- * The caller is responsible for memory management.
- */
-roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r);
-
-/**
- * Copies a bitmap from src to dest. It is assumed that the pointer dest
- * is to an already allocated bitmap. The content of the dest bitmap is
- * freed/deleted.
- *
- * It might be preferable and simpler to call roaring_bitmap_copy except
- * that roaring_bitmap_overwrite can save on memory allocations.
- *
- * Returns true if successful, or false if there was an error. On failure,
- * the dest bitmap is left in a valid, empty state (even if it was not empty
- * before).
- */
-bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
- const roaring_bitmap_t *src);
-
-/**
- * Print the content of the bitmap.
- */
-void roaring_bitmap_printf(const roaring_bitmap_t *r);
-
-/**
- * Computes the intersection between two bitmaps and returns new bitmap. The
- * caller is responsible for memory management.
- *
- * Performance hint: if you are computing the intersection between several
- * bitmaps, two-by-two, it is best to start with the smallest bitmap.
- * You may also rely on roaring_bitmap_and_inplace to avoid creating
- * many temporary bitmaps.
- */
-roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Computes the size of the intersection between two bitmaps.
- */
-uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Check whether two bitmaps intersect.
- */
-bool roaring_bitmap_intersect(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Check whether a bitmap and an open range intersect.
- */
-bool roaring_bitmap_intersect_with_range(const roaring_bitmap_t *bm, uint64_t
x,
- uint64_t y);
-
-/**
- * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
- * distance, or the Jaccard similarity coefficient)
- *
- * The Jaccard index is undefined if both bitmaps are empty.
- */
-double roaring_bitmap_jaccard_index(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Computes the size of the union between two bitmaps.
- */
-uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Computes the size of the difference (andnot) between two bitmaps.
- */
-uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Computes the size of the symmetric difference (xor) between two bitmaps.
- */
-uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Inplace version of `roaring_bitmap_and()`, modifies r1
- * r1 == r2 is allowed.
- *
- * Performance hint: if you are computing the intersection between several
- * bitmaps, two-by-two, it is best to start with the smallest bitmap.
- */
-void roaring_bitmap_and_inplace(roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Computes the union between two bitmaps and returns new bitmap. The caller is
- * responsible for memory management.
- */
-roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Inplace version of `roaring_bitmap_or(), modifies r1.
- * TODO: decide whether r1 == r2 ok
- */
-void roaring_bitmap_or_inplace(roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Compute the union of 'number' bitmaps.
- * Caller is responsible for freeing the result.
- * See also `roaring_bitmap_or_many_heap()`
- */
-roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
- const roaring_bitmap_t **rs);
-
-/**
- * Compute the union of 'number' bitmaps using a heap. This can sometimes be
- * faster than `roaring_bitmap_or_many() which uses a naive algorithm.
- * Caller is responsible for freeing the result.
- */
-roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
- const roaring_bitmap_t **rs);
-
-/**
- * Computes the symmetric difference (xor) between two bitmaps
- * and returns new bitmap. The caller is responsible for memory management.
- */
-roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Inplace version of roaring_bitmap_xor, modifies r1, r1 != r2.
- */
-void roaring_bitmap_xor_inplace(roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Compute the xor of 'number' bitmaps.
- * Caller is responsible for freeing the result.
- */
-roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
- const roaring_bitmap_t **rs);
-
-/**
- * Computes the difference (andnot) between two bitmaps and returns new bitmap.
- * Caller is responsible for freeing the result.
- */
-roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Inplace version of roaring_bitmap_andnot, modifies r1, r1 != r2.
- */
-void roaring_bitmap_andnot_inplace(roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * TODO: consider implementing:
- *
- * "Compute the xor of 'number' bitmaps using a heap. This can sometimes be
- * faster than roaring_bitmap_xor_many which uses a naive algorithm. Caller is
- * responsible for freeing the result.""
- *
- * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number,
- * const roaring_bitmap_t **rs);
- */
-
-/**
- * Frees the memory.
- */
-void roaring_bitmap_free(const roaring_bitmap_t *r);
-
-/**
- * A bit of context usable with `roaring_bitmap_*_bulk()` functions
- *
- * Should be initialized with `{0}` (or `memset()` to all zeros).
- * Callers should treat it as an opaque type.
- *
- * A context may only be used with a single bitmap
- * (unless re-initialized to zero), and any modification to a bitmap
- * (other than modifications performed with `_bulk()` functions with the
context
- * passed) will invalidate any contexts associated with that bitmap.
- */
-typedef struct roaring_bulk_context_s {
- ROARING_CONTAINER_T *container;
- int idx;
- uint16_t key;
- uint8_t typecode;
-} roaring_bulk_context_t;
-
-/**
- * Add an item, using context from a previous insert for speed optimization.
- *
- * `context` will be used to store information between calls to make bulk
- * operations faster. `*context` should be zero-initialized before the first
- * call to this function.
- *
- * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
- * will invalidate the stored context, calling this function with a non-zero
- * context after doing any modification invokes undefined behavior.
- *
- * In order to exploit this optimization, the caller should call this function
- * with values with the same "key" (high 16 bits of the value) consecutively.
- */
-void roaring_bitmap_add_bulk(roaring_bitmap_t *r,
- roaring_bulk_context_t *context, uint32_t val);
-
-/**
- * Add value n_args from pointer vals, faster than repeatedly calling
- * `roaring_bitmap_add()`
- *
- * In order to exploit this optimization, the caller should attempt to keep
- * values with the same "key" (high 16 bits of the value) as consecutive
- * elements in `vals`
- */
-void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
- const uint32_t *vals);
-
-/**
- * Add value x
- */
-void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x);
-
-/**
- * Add value x
- * Returns true if a new value was added, false if the value already existed.
- */
-bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x);
-
-/**
- * Add all values in range [min, max]
- */
-void roaring_bitmap_add_range_closed(roaring_bitmap_t *r, uint32_t min,
- uint32_t max);
-
-/**
- * Add all values in range [min, max)
- */
-inline void roaring_bitmap_add_range(roaring_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (max <= min || min > (uint64_t)UINT32_MAX + 1) {
- return;
- }
- roaring_bitmap_add_range_closed(r, (uint32_t)min, (uint32_t)(max - 1));
-}
-
-/**
- * Remove value x
- */
-void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x);
-
-/**
- * Remove all values in range [min, max]
- */
-void roaring_bitmap_remove_range_closed(roaring_bitmap_t *r, uint32_t min,
- uint32_t max);
-
-/**
- * Remove all values in range [min, max)
- */
-inline void roaring_bitmap_remove_range(roaring_bitmap_t *r, uint64_t min,
- uint64_t max) {
- if (max <= min || min > (uint64_t)UINT32_MAX + 1) {
- return;
- }
- roaring_bitmap_remove_range_closed(r, (uint32_t)min, (uint32_t)(max - 1));
-}
-
-/**
- * Remove multiple values
- */
-void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
- const uint32_t *vals);
-
-/**
- * Remove value x
- * Returns true if a new value was removed, false if the value was not
existing.
- */
-bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x);
-
-/**
- * Check if value is present
- */
-bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val);
-
-/**
- * Check whether a range of values from range_start (included)
- * to range_end (excluded) is present
- */
-bool roaring_bitmap_contains_range(const roaring_bitmap_t *r,
- uint64_t range_start, uint64_t range_end);
-
-/**
- * Check whether a range of values from range_start (included)
- * to range_end (included) is present
- */
-bool roaring_bitmap_contains_range_closed(const roaring_bitmap_t *r,
- uint32_t range_start,
- uint32_t range_end);
-
-/**
- * Check if an items is present, using context from a previous insert or search
- * for speed optimization.
- *
- * `context` will be used to store information between calls to make bulk
- * operations faster. `*context` should be zero-initialized before the first
- * call to this function.
- *
- * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
- * will invalidate the stored context, calling this function with a non-zero
- * context after doing any modification invokes undefined behavior.
- *
- * In order to exploit this optimization, the caller should call this function
- * with values with the same "key" (high 16 bits of the value) consecutively.
- */
-bool roaring_bitmap_contains_bulk(const roaring_bitmap_t *r,
- roaring_bulk_context_t *context,
- uint32_t val);
-
-/**
- * Get the cardinality of the bitmap (number of elements).
- */
-uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *r);
-
-/**
- * Returns the number of elements in the range [range_start, range_end).
- */
-uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *r,
- uint64_t range_start,
- uint64_t range_end);
-
-/**
- * Returns the number of elements in the range [range_start, range_end].
- */
-uint64_t roaring_bitmap_range_cardinality_closed(const roaring_bitmap_t *r,
- uint32_t range_start,
- uint32_t range_end);
-/**
- * Returns true if the bitmap is empty (cardinality is zero).
- */
-bool roaring_bitmap_is_empty(const roaring_bitmap_t *r);
-
-/**
- * Empties the bitmap. It will have no auxiliary allocations (so if the bitmap
- * was initialized in client memory via roaring_bitmap_init(), then a call to
- * roaring_bitmap_clear() would be enough to "free" it)
- */
-void roaring_bitmap_clear(roaring_bitmap_t *r);
-
-/**
- * Convert the bitmap to a sorted array, output in `ans`.
- *
- * Caller is responsible to ensure that there is enough memory allocated, e.g.
- *
- * ans = malloc(roaring_bitmap_get_cardinality(bitmap) * sizeof(uint32_t));
- */
-void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *r, uint32_t *ans);
-
-/**
- * Store the bitmap to a bitset. This can be useful for people
- * who need the performance and simplicity of a standard bitset.
- * We assume that the input bitset is originally empty (does not
- * have any set bit).
- *
- * bitset_t * out = bitset_create();
- * // if the bitset has content in it, call "bitset_clear(out)"
- * bool success = roaring_bitmap_to_bitset(mybitmap, out);
- * // on failure, success will be false.
- * // You can then query the bitset:
- * bool is_present = bitset_get(out, 10011 );
- * // you must free the memory:
- * bitset_free(out);
- *
- */
-bool roaring_bitmap_to_bitset(const roaring_bitmap_t *r, bitset_t *bitset);
-
-/**
- * Convert the bitmap to a sorted array from `offset` by `limit`, output in
- * `ans`.
- *
- * Caller is responsible to ensure that there is enough memory allocated, e.g.
- *
- * ans = malloc(roaring_bitmap_get_cardinality(limit) * sizeof(uint32_t));
- *
- * Return false in case of failure (e.g., insufficient memory)
- */
-bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *r, size_t
offset,
- size_t limit, uint32_t *ans);
-
-/**
- * Remove run-length encoding even when it is more space efficient.
- * Return whether a change was applied.
- */
-bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r);
-
-/**
- * Convert array and bitmap containers to run containers when it is more
- * efficient; also convert from run containers when more space efficient.
- *
- * Returns true if the result has at least one run container.
- * Additional savings might be possible by calling `shrinkToFit()`.
- */
-bool roaring_bitmap_run_optimize(roaring_bitmap_t *r);
-
-/**
- * If needed, reallocate memory to shrink the memory usage.
- * Returns the number of bytes saved.
- */
-size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r);
-
-/**
- * Write the bitmap to an output pointer, this output buffer should refer to
- * at least `roaring_bitmap_size_in_bytes(r)` allocated bytes.
- *
- * See `roaring_bitmap_portable_serialize()` if you want a format that's
- * compatible with Java and Go implementations. This format can sometimes be
- * more space efficient than the portable form, e.g. when the data is sparse.
- *
- * Returns how many bytes written, should be `roaring_bitmap_size_in_bytes(r)`.
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- *
- * When serializing data to a file, we recommend that you also use
- * checksums so that, at deserialization, you can be confident
- * that you are recovering the correct data.
- */
-size_t roaring_bitmap_serialize(const roaring_bitmap_t *r, char *buf);
-
-/**
- * Use with `roaring_bitmap_serialize()`.
- *
- * (See `roaring_bitmap_portable_deserialize()` if you want a format that's
- * compatible with Java and Go implementations).
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- */
-roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf);
-
-/**
- * Use with `roaring_bitmap_serialize()`.
- *
- * (See `roaring_bitmap_portable_deserialize_safe()` if you want a format
that's
- * compatible with Java and Go implementations).
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- *
- * The difference with `roaring_bitmap_deserialize()` is that this function
- * checks that the input buffer is a valid bitmap. If the buffer is too small,
- * NULL is returned.
- */
-roaring_bitmap_t *roaring_bitmap_deserialize_safe(const void *buf,
- size_t maxbytes);
-
-/**
- * How many bytes are required to serialize this bitmap (NOT compatible
- * with Java and Go versions)
- */
-size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *r);
-
-/**
- * Read bitmap from a serialized buffer.
- * In case of failure, NULL is returned.
- *
- * This function is unsafe in the sense that if there is no valid serialized
- * bitmap at the pointer, then many bytes could be read, possibly causing a
- * buffer overflow. See also roaring_bitmap_portable_deserialize_safe().
- *
- * This is meant to be compatible with the Java and Go versions:
- * https://github.com/RoaringBitmap/RoaringFormatSpec
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- */
-roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf);
-
-/**
- * Read bitmap from a serialized buffer safely (reading up to maxbytes).
- * In case of failure, NULL is returned.
- *
- * This is meant to be compatible with the Java and Go versions:
- * https://github.com/RoaringBitmap/RoaringFormatSpec
- *
- * The function itself is safe in the sense that it will not cause buffer
- * overflows: it will not read beyond the scope of the provided buffer
- * (buf,maxbytes).
- *
- * However, for correct operations, it is assumed that the bitmap
- * read was once serialized from a valid bitmap (i.e., it follows the format
- * specification). If you provided an incorrect input (garbage), then the
bitmap
- * read may not be in a valid state and following operations may not lead to
- * sensible results. In particular, the serialized array containers need to be
- * in sorted order, and the run containers should be in sorted non-overlapping
- * order. This is is guaranteed to happen when serializing an existing bitmap,
- * but not for random inputs.
- *
- * You may use roaring_bitmap_internal_validate to check the validity of the
- * bitmap prior to using it.
- *
- * We recommend that you use checksums to check that serialized data
corresponds
- * to a serialized bitmap.
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- */
-roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf,
- size_t maxbytes);
-
-/**
- * Read bitmap from a serialized buffer.
- * In case of failure, NULL is returned.
- *
- * Bitmap returned by this function can be used in all readonly contexts.
- * Bitmap must be freed as usual, by calling roaring_bitmap_free().
- * Underlying buffer must not be freed or modified while it backs any bitmaps.
- *
- * The function is unsafe in the following ways:
- * 1) It may execute unaligned memory accesses.
- * 2) A buffer overflow may occur if buf does not point to a valid serialized
- * bitmap.
- *
- * This is meant to be compatible with the Java and Go versions:
- * https://github.com/RoaringBitmap/RoaringFormatSpec
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- */
-roaring_bitmap_t *roaring_bitmap_portable_deserialize_frozen(const char *buf);
-
-/**
- * Check how many bytes would be read (up to maxbytes) at this pointer if there
- * is a bitmap, returns zero if there is no valid bitmap.
- *
- * This is meant to be compatible with the Java and Go versions:
- * https://github.com/RoaringBitmap/RoaringFormatSpec
- */
-size_t roaring_bitmap_portable_deserialize_size(const char *buf,
- size_t maxbytes);
-
-/**
- * How many bytes are required to serialize this bitmap.
- *
- * This is meant to be compatible with the Java and Go versions:
- * https://github.com/RoaringBitmap/RoaringFormatSpec
- */
-size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *r);
-
-/**
- * Write a bitmap to a char buffer. The output buffer should refer to at least
- * `roaring_bitmap_portable_size_in_bytes(r)` bytes of allocated memory.
- *
- * Returns how many bytes were written which should match
- * `roaring_bitmap_portable_size_in_bytes(r)`.
- *
- * This is meant to be compatible with the Java and Go versions:
- * https://github.com/RoaringBitmap/RoaringFormatSpec
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- *
- * When serializing data to a file, we recommend that you also use
- * checksums so that, at deserialization, you can be confident
- * that you are recovering the correct data.
- */
-size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *r, char *buf);
-
-/*
- * "Frozen" serialization format imitates memory layout of roaring_bitmap_t.
- * Deserialized bitmap is a constant view of the underlying buffer.
- * This significantly reduces amount of allocations and copying required during
- * deserialization.
- * It can be used with memory mapped files.
- * Example can be found in benchmarks/frozen_benchmark.c
- *
- * [#####] const roaring_bitmap_t *
- * | | |
- * +----+ | +-+
- * | | |
- * [#####################################] underlying buffer
- *
- * Note that because frozen serialization format imitates C memory layout
- * of roaring_bitmap_t, it is not fixed. It is different on big/little endian
- * platforms and can be changed in future.
- */
-
-/**
- * Returns number of bytes required to serialize bitmap using frozen format.
- */
-size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *r);
-
-/**
- * Serializes bitmap using frozen format.
- * Buffer size must be at least roaring_bitmap_frozen_size_in_bytes().
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- *
- * When serializing data to a file, we recommend that you also use
- * checksums so that, at deserialization, you can be confident
- * that you are recovering the correct data.
- */
-void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *r, char *buf);
-
-/**
- * Creates constant bitmap that is a view of a given buffer.
- * Buffer data should have been written by `roaring_bitmap_frozen_serialize()`
- * Its beginning must also be aligned by 32 bytes.
- * Length must be equal exactly to `roaring_bitmap_frozen_size_in_bytes()`.
- * In case of failure, NULL is returned.
- *
- * Bitmap returned by this function can be used in all readonly contexts.
- * Bitmap must be freed as usual, by calling roaring_bitmap_free().
- * Underlying buffer must not be freed or modified while it backs any bitmaps.
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- */
-const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf,
- size_t length);
-
-/**
- * Iterate over the bitmap elements. The function iterator is called once for
- * all the values with ptr (can be NULL) as the second parameter of each call.
- *
- * `roaring_iterator` is simply a pointer to a function that returns bool
- * (true means that the iteration should continue while false means that it
- * should stop), and takes (uint32_t,void*) as inputs.
- *
- * Returns true if the roaring_iterator returned true throughout (so that all
- * data points were necessarily visited).
- *
- * Iteration is ordered: from the smallest to the largest elements.
- */
-bool roaring_iterate(const roaring_bitmap_t *r, roaring_iterator iterator,
- void *ptr);
-
-bool roaring_iterate64(const roaring_bitmap_t *r, roaring_iterator64 iterator,
- uint64_t high_bits, void *ptr);
-
-/**
- * Return true if the two bitmaps contain the same elements.
- */
-bool roaring_bitmap_equals(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Return true if all the elements of r1 are also in r2.
- */
-bool roaring_bitmap_is_subset(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Return true if all the elements of r1 are also in r2, and r2 is strictly
- * greater than r1.
- */
-bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * (For expert users who seek high performance.)
- *
- * Computes the union between two bitmaps and returns new bitmap. The caller is
- * responsible for memory management.
- *
- * The lazy version defers some computations such as the maintenance of the
- * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()`
- * after executing "lazy" computations.
- *
- * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result.
- *
- * `bitsetconversion` is a flag which determines whether container-container
- * operations force a bitset conversion.
- */
-roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2,
- const bool bitsetconversion);
-
-/**
- * (For expert users who seek high performance.)
- *
- * Inplace version of roaring_bitmap_lazy_or, modifies r1.
- *
- * `bitsetconversion` is a flag which determines whether container-container
- * operations force a bitset conversion.
- */
-void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2,
- const bool bitsetconversion);
-
-/**
- * (For expert users who seek high performance.)
- *
- * Execute maintenance on a bitmap created from `roaring_bitmap_lazy_or()`
- * or modified with `roaring_bitmap_lazy_or_inplace()`.
- */
-void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *r1);
-
-/**
- * Computes the symmetric difference between two bitmaps and returns new
bitmap.
- * The caller is responsible for memory management.
- *
- * The lazy version defers some computations such as the maintenance of the
- * cardinality counts. Thus you must call `roaring_bitmap_repair_after_lazy()`
- * after executing "lazy" computations.
- *
- * It is safe to repeatedly call `roaring_bitmap_lazy_xor_inplace()` on
- * the result.
- */
-roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * (For expert users who seek high performance.)
- *
- * Inplace version of roaring_bitmap_lazy_xor, modifies r1. r1 != r2
- */
-void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *r1,
- const roaring_bitmap_t *r2);
-
-/**
- * Compute the negation of the bitmap in the interval [range_start, range_end).
- * The number of negated values is range_end - range_start.
- * Areas outside the range are passed through unchanged.
- */
-roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *r1,
- uint64_t range_start, uint64_t
range_end);
-
-/**
- * Compute the negation of the bitmap in the interval [range_start, range_end].
- * The number of negated values is range_end - range_start + 1.
- * Areas outside the range are passed through unchanged.
- */
-roaring_bitmap_t *roaring_bitmap_flip_closed(const roaring_bitmap_t *x1,
- uint32_t range_start,
- uint32_t range_end);
-/**
- * compute (in place) the negation of the roaring bitmap within a specified
- * interval: [range_start, range_end). The number of negated values is
- * range_end - range_start.
- * Areas outside the range are passed through unchanged.
- */
-void roaring_bitmap_flip_inplace(roaring_bitmap_t *r1, uint64_t range_start,
- uint64_t range_end);
-
-/**
- * compute (in place) the negation of the roaring bitmap within a specified
- * interval: [range_start, range_end]. The number of negated values is
- * range_end - range_start + 1.
- * Areas outside the range are passed through unchanged.
- */
-void roaring_bitmap_flip_inplace_closed(roaring_bitmap_t *r1,
- uint32_t range_start,
- uint32_t range_end);
-
-/**
- * Selects the element at index 'rank' where the smallest element is at index
0.
- * If the size of the roaring bitmap is strictly greater than rank, then this
- * function returns true and sets element to the element of given rank.
- * Otherwise, it returns false.
- */
-bool roaring_bitmap_select(const roaring_bitmap_t *r, uint32_t rank,
- uint32_t *element);
-
-/**
- * roaring_bitmap_rank returns the number of integers that are smaller or equal
- * to x. Thus if x is the first element, this function will return 1. If
- * x is smaller than the smallest element, this function will return 0.
- *
- * The indexing convention differs between roaring_bitmap_select and
- * roaring_bitmap_rank: roaring_bitmap_select refers to the smallest value
- * as having index 0, whereas roaring_bitmap_rank returns 1 when ranking
- * the smallest value.
- */
-uint64_t roaring_bitmap_rank(const roaring_bitmap_t *r, uint32_t x);
-
-/**
- * roaring_bitmap_rank_many is an `Bulk` version of `roaring_bitmap_rank`
- * it puts rank value of each element in `[begin .. end)` to `ans[]`
- *
- * the values in `[begin .. end)` must be sorted in Ascending order;
- * Caller is responsible to ensure that there is enough memory allocated, e.g.
- *
- * ans = malloc((end-begin) * sizeof(uint64_t));
- */
-void roaring_bitmap_rank_many(const roaring_bitmap_t *r, const uint32_t *begin,
- const uint32_t *end, uint64_t *ans);
-
-/**
- * Returns the index of x in the given roaring bitmap.
- * If the roaring bitmap doesn't contain x , this function will return -1.
- * The difference with rank function is that this function will return -1 when
x
- * is not the element of roaring bitmap, but the rank function will return a
- * non-negative number.
- */
-int64_t roaring_bitmap_get_index(const roaring_bitmap_t *r, uint32_t x);
-
-/**
- * Returns the smallest value in the set, or UINT32_MAX if the set is empty.
- */
-uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *r);
-
-/**
- * Returns the greatest value in the set, or 0 if the set is empty.
- */
-uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *r);
-
-/**
- * (For advanced users.)
- *
- * Collect statistics about the bitmap, see roaring_types.h for
- * a description of roaring_statistics_t
- */
-void roaring_bitmap_statistics(const roaring_bitmap_t *r,
- roaring_statistics_t *stat);
-
-/**
- * Perform internal consistency checks. Returns true if the bitmap is
- * consistent. It may be useful to call this after deserializing bitmaps from
- * untrusted sources. If roaring_bitmap_internal_validate returns true, then
the
- * bitmap should be consistent and can be trusted not to cause crashes or
memory
- * corruption.
- *
- * Note that some operations intentionally leave bitmaps in an inconsistent
- * state temporarily, for example, `roaring_bitmap_lazy_*` functions, until
- * `roaring_bitmap_repair_after_lazy` is called.
- *
- * If reason is non-null, it will be set to a string describing the first
- * inconsistency found if any.
- */
-bool roaring_bitmap_internal_validate(const roaring_bitmap_t *r,
- const char **reason);
-
-/*********************
-* What follows is code use to iterate through values in a roaring bitmap
-
-roaring_bitmap_t *r =...
-roaring_uint32_iterator_t i;
-roaring_iterator_create(r, &i);
-while(i.has_value) {
- printf("value = %d\n", i.current_value);
- roaring_uint32_iterator_advance(&i);
-}
-
-Obviously, if you modify the underlying bitmap, the iterator
-becomes invalid. So don't.
-*/
-
-/**
- * A struct used to keep iterator state. Users should only access
- * `current_value` and `has_value`, the rest of the type should be treated as
- * opaque.
- */
-typedef struct roaring_uint32_iterator_s {
- const roaring_bitmap_t *parent; // Owner
- const ROARING_CONTAINER_T *container; // Current container
- uint8_t typecode; // Typecode of current container
- int32_t container_index; // Current container index
- uint32_t highbits; // High 16 bits of the current value
- roaring_container_iterator_t container_it;
-
- uint32_t current_value;
- bool has_value;
-} roaring_uint32_iterator_t;
-
-/**
- * Initialize an iterator object that can be used to iterate through the
values.
- * If there is a value, then this iterator points to the first value and
- * `it->has_value` is true. The value is in `it->current_value`.
- */
-void roaring_iterator_init(const roaring_bitmap_t *r,
- roaring_uint32_iterator_t *newit);
-
-/** DEPRECATED, use `roaring_iterator_init`. */
-CROARING_DEPRECATED static inline void roaring_init_iterator(
- const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) {
- roaring_iterator_init(r, newit);
-}
-
-/**
- * Initialize an iterator object that can be used to iterate through the
values.
- * If there is a value, then this iterator points to the last value and
- * `it->has_value` is true. The value is in `it->current_value`.
- */
-void roaring_iterator_init_last(const roaring_bitmap_t *r,
- roaring_uint32_iterator_t *newit);
-
-/** DEPRECATED, use `roaring_iterator_init_last`. */
-CROARING_DEPRECATED static inline void roaring_init_iterator_last(
- const roaring_bitmap_t *r, roaring_uint32_iterator_t *newit) {
- roaring_iterator_init_last(r, newit);
-}
-
-/**
- * Create an iterator object that can be used to iterate through the values.
- * Caller is responsible for calling `roaring_free_iterator()`.
- *
- * The iterator is initialized (this function calls `roaring_iterator_init()`)
- * If there is a value, then this iterator points to the first value and
- * `it->has_value` is true. The value is in `it->current_value`.
- */
-roaring_uint32_iterator_t *roaring_iterator_create(const roaring_bitmap_t *r);
-
-/** DEPRECATED, use `roaring_iterator_create`. */
-CROARING_DEPRECATED static inline roaring_uint32_iterator_t *
-roaring_create_iterator(const roaring_bitmap_t *r) {
- return roaring_iterator_create(r);
-}
-
-/**
- * Advance the iterator. If there is a new value, then `it->has_value` is true.
- * The new value is in `it->current_value`. Values are traversed in increasing
- * orders. For convenience, returns `it->has_value`.
- *
- * Once `it->has_value` is false, `roaring_uint32_iterator_advance` should not
- * be called on the iterator again. Calling `roaring_uint32_iterator_previous`
- * is allowed.
- */
-bool roaring_uint32_iterator_advance(roaring_uint32_iterator_t *it);
-
-/** DEPRECATED, use `roaring_uint32_iterator_advance`. */
-CROARING_DEPRECATED static inline bool roaring_advance_uint32_iterator(
- roaring_uint32_iterator_t *it) {
- return roaring_uint32_iterator_advance(it);
-}
-
-/**
- * Decrement the iterator. If there's a new value, then `it->has_value` is
true.
- * The new value is in `it->current_value`. Values are traversed in decreasing
- * order. For convenience, returns `it->has_value`.
- *
- * Once `it->has_value` is false, `roaring_uint32_iterator_previous` should not
- * be called on the iterator again. Calling `roaring_uint32_iterator_advance`
is
- * allowed.
- */
-bool roaring_uint32_iterator_previous(roaring_uint32_iterator_t *it);
-
-/** DEPRECATED, use `roaring_uint32_iterator_previous`. */
-CROARING_DEPRECATED static inline bool roaring_previous_uint32_iterator(
- roaring_uint32_iterator_t *it) {
- return roaring_uint32_iterator_previous(it);
-}
-
-/**
- * Move the iterator to the first value >= `val`. If there is a such a value,
- * then `it->has_value` is true. The new value is in `it->current_value`.
- * For convenience, returns `it->has_value`.
- */
-bool roaring_uint32_iterator_move_equalorlarger(roaring_uint32_iterator_t *it,
- uint32_t val);
-
-/** DEPRECATED, use `roaring_uint32_iterator_move_equalorlarger`. */
-CROARING_DEPRECATED static inline bool
-roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it,
- uint32_t val) {
- return roaring_uint32_iterator_move_equalorlarger(it, val);
-}
-
-/**
- * Creates a copy of an iterator.
- * Caller must free it.
- */
-roaring_uint32_iterator_t *roaring_uint32_iterator_copy(
- const roaring_uint32_iterator_t *it);
-
-/** DEPRECATED, use `roaring_uint32_iterator_copy`. */
-CROARING_DEPRECATED static inline roaring_uint32_iterator_t *
-roaring_copy_uint32_iterator(const roaring_uint32_iterator_t *it) {
- return roaring_uint32_iterator_copy(it);
-}
-
-/**
- * Free memory following `roaring_iterator_create()`
- */
-void roaring_uint32_iterator_free(roaring_uint32_iterator_t *it);
-
-/** DEPRECATED, use `roaring_uint32_iterator_free`. */
-CROARING_DEPRECATED static inline void roaring_free_uint32_iterator(
- roaring_uint32_iterator_t *it) {
- roaring_uint32_iterator_free(it);
-}
-
-/*
- * Reads next ${count} values from iterator into user-supplied ${buf}.
- * Returns the number of read elements.
- * This number can be smaller than ${count}, which means that iterator is
- * drained.
- *
- * This function satisfies semantics of iteration and can be used together with
- * other iterator functions.
- * - first value is copied from ${it}->current_value
- * - after function returns, iterator is positioned at the next element
- */
-uint32_t roaring_uint32_iterator_read(roaring_uint32_iterator_t *it,
- uint32_t *buf, uint32_t count);
-
-/** DEPRECATED, use `roaring_uint32_iterator_read`. */
-CROARING_DEPRECATED static inline uint32_t roaring_read_uint32_iterator(
- roaring_uint32_iterator_t *it, uint32_t *buf, uint32_t count) {
- return roaring_uint32_iterator_read(it, buf, count);
-}
-
-#ifdef __cplusplus
-}
-}
-} // extern "C" { namespace roaring { namespace api {
-#endif
-
-#endif /* ROARING_H */
-
-#ifdef __cplusplus
-/**
- * Best practices for C++ headers is to avoid polluting global scope.
- * But for C compatibility when just `roaring.h` is included building as
- * C++, default to global access for the C public API.
- *
- * BUT when `roaring.hh` is included instead, it sets this flag. That way
- * explicit namespacing must be used to get the C functions.
- *
- * This is outside the include guard so that if you include BOTH headers,
- * the order won't matter; you still get the global definitions.
- */
-#if !defined(ROARING_API_NOT_IN_GLOBAL_NAMESPACE)
-using namespace ::roaring::api;
-#endif
-#endif
-/* end file include/roaring/roaring.h */
-/* begin file include/roaring/memory.h */
-#ifndef INCLUDE_ROARING_MEMORY_H_
-#define INCLUDE_ROARING_MEMORY_H_
-
-#include <stddef.h> // for size_t
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef void* (*roaring_malloc_p)(size_t);
-typedef void* (*roaring_realloc_p)(void*, size_t);
-typedef void* (*roaring_calloc_p)(size_t, size_t);
-typedef void (*roaring_free_p)(void*);
-typedef void* (*roaring_aligned_malloc_p)(size_t, size_t);
-typedef void (*roaring_aligned_free_p)(void*);
-
-typedef struct roaring_memory_s {
- roaring_malloc_p malloc;
- roaring_realloc_p realloc;
- roaring_calloc_p calloc;
- roaring_free_p free;
- roaring_aligned_malloc_p aligned_malloc;
- roaring_aligned_free_p aligned_free;
-} roaring_memory_t;
-
-void roaring_init_memory_hook(roaring_memory_t memory_hook);
-
-void* roaring_malloc(size_t);
-void* roaring_realloc(void*, size_t);
-void* roaring_calloc(size_t, size_t);
-void roaring_free(void*);
-void* roaring_aligned_malloc(size_t, size_t);
-void roaring_aligned_free(void*);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif // INCLUDE_ROARING_MEMORY_H_
-/* end file include/roaring/memory.h */
-/* begin file include/roaring/roaring64.h */
-#ifndef ROARING64_H
-#define ROARING64_H
-
-#include <stdbool.h>
-#include <stddef.h>
-#include <stdint.h>
-
-
-#ifdef __cplusplus
-extern "C" {
-namespace roaring {
-namespace api {
-#endif
-
-typedef struct roaring64_bitmap_s roaring64_bitmap_t;
-typedef struct roaring64_leaf_s roaring64_leaf_t;
-typedef struct roaring64_iterator_s roaring64_iterator_t;
-
-/**
- * A bit of context usable with `roaring64_bitmap_*_bulk()` functions.
- *
- * Should be initialized with `{0}` (or `memset()` to all zeros).
- * Callers should treat it as an opaque type.
- *
- * A context may only be used with a single bitmap (unless re-initialized to
- * zero), and any modification to a bitmap (other than modifications performed
- * with `_bulk()` functions with the context passed) will invalidate any
- * contexts associated with that bitmap.
- */
-typedef struct roaring64_bulk_context_s {
- uint8_t high_bytes[6];
- roaring64_leaf_t *leaf;
-} roaring64_bulk_context_t;
-
-/**
- * Dynamically allocates a new bitmap (initially empty).
- * Client is responsible for calling `roaring64_bitmap_free()`.
- */
-roaring64_bitmap_t *roaring64_bitmap_create(void);
-void roaring64_bitmap_free(roaring64_bitmap_t *r);
-
-/**
- * Returns a copy of a bitmap.
- */
-roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r);
-
-/**
- * Creates a new bitmap of a pointer to N 64-bit integers.
- */
-roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args,
- const uint64_t *vals);
-
-#ifdef __cplusplus
-/**
- * Creates a new bitmap which contains all values passed in as arguments.
- *
- * To create a bitmap from a variable number of arguments, use the
- * `roaring64_bitmap_of_ptr` function instead.
- */
-// Use an immediately invoked closure, capturing by reference
-// (in case __VA_ARGS__ refers to context outside the closure)
-// Include a 0 at the beginning of the array to make the array length > 0
-// (zero sized arrays are not valid in standard c/c++)
-#define roaring64_bitmap_from(...) \
- [&]() { \
- const uint64_t roaring64_bitmap_from_array[] = {0, __VA_ARGS__}; \
- return roaring64_bitmap_of_ptr( \
- (sizeof(roaring64_bitmap_from_array) / \
- sizeof(roaring64_bitmap_from_array[0])) - \
- 1, \
- &roaring64_bitmap_from_array[1]); \
- }()
-#else
-/**
- * Creates a new bitmap which contains all values passed in as arguments.
- *
- * To create a bitmap from a variable number of arguments, use the
- * `roaring64_bitmap_of_ptr` function instead.
- */
-// While __VA_ARGS__ occurs twice in expansion, one of the times is in a sizeof
-// expression, which is an unevaluated context, so it's even safe in the case
-// where expressions passed have side effects (roaring64_bitmap_from(my_func(),
-// ++i))
-// Include a 0 at the beginning of the array to make the array length > 0
-// (zero sized arrays are not valid in standard c/c++)
-#define roaring64_bitmap_from(...) \
- roaring64_bitmap_of_ptr( \
- (sizeof((const uint64_t[]){0, __VA_ARGS__}) / sizeof(uint64_t)) - 1, \
- &((const uint64_t[]){0, __VA_ARGS__})[1])
-#endif
-
-/**
- * Create a new bitmap by moving containers from a 32 bit roaring bitmap.
- *
- * After calling this function, the original bitmap will be empty, and the
- * returned bitmap will contain all the values from the original bitmap.
- */
-roaring64_bitmap_t *roaring64_bitmap_move_from_roaring32(roaring_bitmap_t *r);
-
-/**
- * Create a new bitmap containing all the values in [min, max) that are at a
- * distance k*step from min.
- */
-roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max,
- uint64_t step);
-
-/**
- * Adds the provided value to the bitmap.
- */
-void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val);
-
-/**
- * Adds the provided value to the bitmap.
- * Returns true if a new value was added, false if the value already existed.
- */
-bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val);
-
-/**
- * Add an item, using context from a previous insert for faster insertion.
- *
- * `context` will be used to store information between calls to make bulk
- * operations faster. `*context` should be zero-initialized before the first
- * call to this function.
- *
- * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
- * will invalidate the stored context, calling this function with a non-zero
- * context after doing any modification invokes undefined behavior.
- *
- * In order to exploit this optimization, the caller should call this function
- * with values with the same high 48 bits of the value consecutively.
- */
-void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r,
- roaring64_bulk_context_t *context, uint64_t
val);
-
-/**
- * Add `n_args` values from `vals`, faster than repeatedly calling
- * `roaring64_bitmap_add()`
- *
- * In order to exploit this optimization, the caller should attempt to keep
- * values with the same high 48 bits of the value as consecutive elements in
- * `vals`.
- */
-void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args,
- const uint64_t *vals);
-
-/**
- * Add all values in range [min, max).
- */
-void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-
-/**
- * Add all values in range [min, max].
- */
-void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-
-/**
- * Removes a value from the bitmap if present.
- */
-void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val);
-
-/**
- * Removes a value from the bitmap if present, returns true if the value was
- * removed and false if the value was not present.
- */
-bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val);
-
-/**
- * Remove an item, using context from a previous insert for faster removal.
- *
- * `context` will be used to store information between calls to make bulk
- * operations faster. `*context` should be zero-initialized before the first
- * call to this function.
- *
- * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
- * will invalidate the stored context, calling this function with a non-zero
- * context after doing any modification invokes undefined behavior.
- *
- * In order to exploit this optimization, the caller should call this function
- * with values with the same high 48 bits of the value consecutively.
- */
-void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r,
- roaring64_bulk_context_t *context,
- uint64_t val);
-
-/**
- * Remove `n_args` values from `vals`, faster than repeatedly calling
- * `roaring64_bitmap_remove()`
- *
- * In order to exploit this optimization, the caller should attempt to keep
- * values with the same high 48 bits of the value as consecutive elements in
- * `vals`.
- */
-void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args,
- const uint64_t *vals);
-
-/**
- * Remove all values in range [min, max).
- */
-void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-
-/**
- * Remove all values in range [min, max].
- */
-void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-
-/**
- * Empties the bitmap.
- */
-void roaring64_bitmap_clear(roaring64_bitmap_t *r);
-
-/**
- * Returns true if the provided value is present.
- */
-bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val);
-
-/**
- * Returns true if all values in the range [min, max) are present.
- */
-bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-
-/**
- * Check if an item is present using context from a previous insert or search
- * for faster search.
- *
- * `context` will be used to store information between calls to make bulk
- * operations faster. `*context` should be zero-initialized before the first
- * call to this function.
- *
- * Modifying the bitmap in any way (other than `-bulk` suffixed functions)
- * will invalidate the stored context, calling this function with a non-zero
- * context after doing any modification invokes undefined behavior.
- *
- * In order to exploit this optimization, the caller should call this function
- * with values with the same high 48 bits of the value consecutively.
- */
-bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r,
- roaring64_bulk_context_t *context,
- uint64_t val);
-
-/**
- * Selects the element at index 'rank' where the smallest element is at index
0.
- * If the size of the bitmap is strictly greater than rank, then this function
- * returns true and sets element to the element of given rank. Otherwise, it
- * returns false.
- */
-bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank,
- uint64_t *element);
-
-/**
- * Returns the number of integers that are smaller or equal to x. Thus if x is
- * the first element, this function will return 1. If x is smaller than the
- * smallest element, this function will return 0.
- *
- * The indexing convention differs between roaring64_bitmap_select and
- * roaring64_bitmap_rank: roaring_bitmap64_select refers to the smallest value
- * as having index 0, whereas roaring64_bitmap_rank returns 1 when ranking
- * the smallest value.
- */
-uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val);
-
-/**
- * Returns true if the given value is in the bitmap, and sets `out_index` to
the
- * (0-based) index of the value in the bitmap. Returns false if the value is
not
- * in the bitmap.
- */
-bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val,
- uint64_t *out_index);
-
-/**
- * Returns the number of values in the bitmap.
- */
-uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r);
-
-/**
- * Returns the number of elements in the range [min, max).
- */
-uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max);
-
-/**
- * Returns the number of elements in the range [min, max]
- */
-uint64_t roaring64_bitmap_range_closed_cardinality(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max);
-
-/**
- * Returns true if the bitmap is empty (cardinality is zero).
- */
-bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r);
-
-/**
- * Returns the smallest value in the set, or UINT64_MAX if the set is empty.
- */
-uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r);
-
-/**
- * Returns the largest value in the set, or 0 if empty.
- */
-uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r);
-
-/**
- * Returns true if the result has at least one run container.
- */
-bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r);
-
-/**
- * (For advanced users.)
- * Collect statistics about the bitmap
- */
-void roaring64_bitmap_statistics(const roaring64_bitmap_t *r,
- roaring64_statistics_t *stat);
-
-/**
- * Perform internal consistency checks.
- *
- * Returns true if the bitmap is consistent. It may be useful to call this
- * after deserializing bitmaps from untrusted sources. If
- * roaring64_bitmap_internal_validate returns true, then the bitmap is
- * consistent and can be trusted not to cause crashes or memory corruption.
- *
- * If reason is non-null, it will be set to a string describing the first
- * inconsistency found if any.
- */
-bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r,
- const char **reason);
-
-/**
- * Return true if the two bitmaps contain the same elements.
- */
-bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Return true if all the elements of r1 are also in r2.
- */
-bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Return true if all the elements of r1 are also in r2, and r2 is strictly
- * greater than r1.
- */
-bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the intersection between two bitmaps and returns new bitmap. The
- * caller is responsible for free-ing the result.
- *
- * Performance hint: if you are computing the intersection between several
- * bitmaps, two-by-two, it is best to start with the smallest bitmaps. You may
- * also rely on roaring64_bitmap_and_inplace to avoid creating many temporary
- * bitmaps.
- */
-roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the size of the intersection between two bitmaps.
- */
-uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * In-place version of `roaring64_bitmap_and()`, modifies `r1`. `r1` and `r2`
- * are allowed to be equal.
- *
- * Performance hint: if you are computing the intersection between several
- * bitmaps, two-by-two, it is best to start with the smallest bitmaps.
- */
-void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Check whether two bitmaps intersect.
- */
-bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Check whether a bitmap intersects the range [min, max).
- */
-bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max);
-
-/**
- * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
- * distance, or the Jaccard similarity coefficient)
- *
- * The Jaccard index is undefined if both bitmaps are empty.
- */
-double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the union between two bitmaps and returns new bitmap. The caller is
- * responsible for free-ing the result.
- */
-roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the size of the union between two bitmaps.
- */
-uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * In-place version of `roaring64_bitmap_or(), modifies `r1`.
- */
-void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the symmetric difference (xor) between two bitmaps and returns a
new
- * bitmap. The caller is responsible for free-ing the result.
- */
-roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the size of the symmetric difference (xor) between two bitmaps.
- */
-uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * In-place version of `roaring64_bitmap_xor()`, modifies `r1`. `r1` and `r2`
- * are not allowed to be equal (that would result in an empty bitmap).
- */
-void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the difference (andnot) between two bitmaps and returns a new
- * bitmap. The caller is responsible for free-ing the result.
- */
-roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Computes the size of the difference (andnot) between two bitmaps.
- */
-uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * In-place version of `roaring64_bitmap_andnot()`, modifies `r1`. `r1` and
`r2`
- * are not allowed to be equal (that would result in an empty bitmap).
- */
-void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1,
- const roaring64_bitmap_t *r2);
-
-/**
- * Compute the negation of the bitmap in the interval [min, max).
- * The number of negated values is `max - min`. Areas outside the range are
- * passed through unchanged.
- */
-roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max);
-
-/**
- * Compute the negation of the bitmap in the interval [min, max].
- * The number of negated values is `max - min + 1`. Areas outside the range are
- * passed through unchanged.
- */
-roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r,
- uint64_t min, uint64_t max);
-
-/**
- * In-place version of `roaring64_bitmap_flip`. Compute the negation of the
- * bitmap in the interval [min, max). The number of negated values is `max -
- * min`. Areas outside the range are passed through unchanged.
- */
-void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-/**
- * In-place version of `roaring64_bitmap_flip_closed`. Compute the negation of
- * the bitmap in the interval [min, max]. The number of negated values is `max
-
- * min + 1`. Areas outside the range are passed through unchanged.
- */
-void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min,
- uint64_t max);
-/**
- * How many bytes are required to serialize this bitmap.
- *
- * This is meant to be compatible with other languages:
- *
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- */
-size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r);
-
-/**
- * Write a bitmap to a buffer. The output buffer should refer to at least
- * `roaring64_bitmap_portable_size_in_bytes(r)` bytes of allocated memory.
- *
- * Returns how many bytes were written, which should match
- * `roaring64_bitmap_portable_size_in_bytes(r)`.
- *
- * This is meant to be compatible with other languages:
- *
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- *
- * When serializing data to a file, we recommend that you also use
- * checksums so that, at deserialization, you can be confident
- * that you are recovering the correct data.
- */
-size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r,
- char *buf);
-/**
- * Check how many bytes would be read (up to maxbytes) at this pointer if there
- * is a valid bitmap, returns zero if there is no valid bitmap.
- *
- * This is meant to be compatible with other languages
- *
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- */
-size_t roaring64_bitmap_portable_deserialize_size(const char *buf,
- size_t maxbytes);
-
-/**
- * Read a bitmap from a serialized buffer (reading up to maxbytes).
- * In case of failure, NULL is returned.
- *
- * This is meant to be compatible with other languages
- *
https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
- *
- * The function itself is safe in the sense that it will not cause buffer
- * overflows: it will not read beyond the scope of the provided buffer
- * (buf,maxbytes).
- *
- * However, for correct operations, it is assumed that the bitmap
- * read was once serialized from a valid bitmap (i.e., it follows the format
- * specification). If you provided an incorrect input (garbage), then the
bitmap
- * read may not be in a valid state and following operations may not lead to
- * sensible results. In particular, the serialized array containers need to be
- * in sorted order, and the run containers should be in sorted non-overlapping
- * order. This is is guaranteed to happen when serializing an existing bitmap,
- * but not for random inputs.
- *
- * You may use roaring64_bitmap_internal_validate to check the validity of the
- * bitmap prior to using it.
- *
- * We recommend that you use checksums to check that serialized data
corresponds
- * to a serialized bitmap.
- *
- * This function is endian-sensitive. If you have a big-endian system (e.g., a
- * mainframe IBM s390x), the data format is going to be big-endian and not
- * compatible with little-endian systems.
- */
-roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe(const char *buf,
- size_t
maxbytes);
-
-/**
- * Iterate over the bitmap elements. The function `iterator` is called once for
- * all the values with `ptr` (can be NULL) as the second parameter of each
call.
- *
- * `roaring_iterator64` is simply a pointer to a function that returns a bool
- * and takes `(uint64_t, void*)` as inputs. True means that the iteration
should
- * continue, while false means that it should stop.
- *
- * Returns true if the `roaring64_iterator` returned true throughout (so that
- * all data points were necessarily visited).
- *
- * Iteration is ordered from the smallest to the largest elements.
- */
-bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r,
- roaring_iterator64 iterator, void *ptr);
-
-/**
- * Convert the bitmap to a sorted array `out`.
- *
- * Caller is responsible to ensure that there is enough memory allocated, e.g.
- * ```
- * out = malloc(roaring64_bitmap_get_cardinality(bitmap) * sizeof(uint64_t));
- * ```
- */
-void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r,
- uint64_t *out);
-
-/**
- * Create an iterator object that can be used to iterate through the values.
- * Caller is responsible for calling `roaring64_iterator_free()`.
- *
- * The iterator is initialized. If there is a value, then this iterator points
- * to the first value and `roaring64_iterator_has_value()` returns true. The
- * value can be retrieved with `roaring64_iterator_value()`.
- */
-roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r);
-
-/**
- * Create an iterator object that can be used to iterate through the values.
- * Caller is responsible for calling `roaring64_iterator_free()`.
- *
- * The iterator is initialized. If there is a value, then this iterator points
- * to the last value and `roaring64_iterator_has_value()` returns true. The
- * value can be retrieved with `roaring64_iterator_value()`.
- */
-roaring64_iterator_t *roaring64_iterator_create_last(
- const roaring64_bitmap_t *r);
-
-/**
- * Re-initializes an existing iterator. Functionally the same as
- * `roaring64_iterator_create` without a allocation.
- */
-void roaring64_iterator_reinit(const roaring64_bitmap_t *r,
- roaring64_iterator_t *it);
-
-/**
- * Re-initializes an existing iterator. Functionally the same as
- * `roaring64_iterator_create_last` without a allocation.
- */
-void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r,
- roaring64_iterator_t *it);
-
-/**
- * Creates a copy of the iterator. Caller is responsible for calling
- * `roaring64_iterator_free()` on the resulting iterator.
- */
-roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it);
-
-/**
- * Free the iterator.
- */
-void roaring64_iterator_free(roaring64_iterator_t *it);
-
-/**
- * Returns true if the iterator currently points to a value. If so, calling
- * `roaring64_iterator_value()` returns the value.
- */
-bool roaring64_iterator_has_value(const roaring64_iterator_t *it);
-
-/**
- * Returns the value the iterator currently points to. Should only be called if
- * `roaring64_iterator_has_value()` returns true.
- */
-uint64_t roaring64_iterator_value(const roaring64_iterator_t *it);
-
-/**
- * Advance the iterator. If there is a new value, then
- * `roaring64_iterator_has_value()` returns true. Values are traversed in
- * increasing order. For convenience, returns the result of
- * `roaring64_iterator_has_value()`.
- *
- * Once this returns false, `roaring64_iterator_advance` should not be called
on
- * the iterator again. Calling `roaring64_iterator_previous` is allowed.
- */
-bool roaring64_iterator_advance(roaring64_iterator_t *it);
-
-/**
- * Decrement the iterator. If there is a new value, then
- * `roaring64_iterator_has_value()` returns true. Values are traversed in
- * decreasing order. For convenience, returns the result of
- * `roaring64_iterator_has_value()`.
- *
- * Once this returns false, `roaring64_iterator_previous` should not be called
- * on the iterator again. Calling `roaring64_iterator_advance` is allowed.
- */
-bool roaring64_iterator_previous(roaring64_iterator_t *it);
-
-/**
- * Move the iterator to the first value greater than or equal to `val`, if it
- * exists at or after the current position of the iterator. If there is a new
- * value, then `roaring64_iterator_has_value()` returns true. Values are
- * traversed in increasing order. For convenience, returns the result of
- * `roaring64_iterator_has_value()`.
- */
-bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it,
- uint64_t val);
-
-/**
- * Reads up to `count` values from the iterator into the given `buf`. Returns
- * the number of elements read. The number of elements read can be smaller than
- * `count`, which means that there are no more elements in the bitmap.
- *
- * This function can be used together with other iterator functions.
- */
-uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf,
- uint64_t count);
-
-#ifdef __cplusplus
-} // extern "C"
-} // namespace roaring
-} // namespace api
-#endif
-
-#endif /* ROARING64_H */
-/* end file include/roaring/roaring64.h */
-----------------------------------------------------------------------
Summary of changes:
support/ChangeLog | 5 +
support/Makefile.am | 2 -
support/Makefile.in | 21 +-
support/minrx.cpp | 113 +-
support/roaring.c | 26061 --------------------------------------------------
support/roaring.h | 3052 ------
6 files changed, 59 insertions(+), 29195 deletions(-)
delete mode 100644 support/roaring.c
delete mode 100644 support/roaring.h
hooks/post-receive
--
gawk
[Prev in Thread] |
Current Thread |
[Next in Thread] |
- [SCM] gawk branch, feature/minrx, updated. gawk-4.1.0-5921-g68169459,
Arnold Robbins <=