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knowing the patient orientation in the OR, i.e., the direc-
tion of gravity with respect to the brain can be challenging.
For example, in frameless stereotactic procedures, the ref-
erence emitter is commonly attached to the patient’s fixa-
tion. This allows tracked instruments to be directly
related to the patient’s image volume once the patient has
been registered. This has the advantage that as the patient’s
bed is lowered and/or rotated, the reference frame is
rotated with the patient. However, in so doing, the absolute
reference to the OR (the reference frame of gravity) can be
lost unless a second reference emitter is attached to OR
space (not commonly done). Without a second reference
emitter, the direction of gravity relative to the patient is
lost. One approach to addressing this uncertainty is to gen-
erate an atlas of deformation solutions based on a range of
possible surgical presentations. This has the added benefit
to efficiency by allowing for precomputation of the defor-
mation atlas.

In this paper, a realization to the brain shift compensa-
tion problem is proposed using a precomputed deforma-
tion atlas. Operationally, Eqs. (1) and (2) are solved for a
range of possible factors causing brain shift. Let the defor-
mation atlas, E, be the matrix obtained by assembling these
model solutions whereby E is of size (n x 3) X m, where n is
the number of nodes in the finite element mesh, 3 is the
number of Cartesian displacement components at each
node, and m the number of model solutions. In general,
nx 3 is significantly larger than m, so E is a rectangular
matrix. The model-data misfit error between a linear com-
bination of precomputed displacement solutions and the
actual displacements can be written as

= [E[{a} —{U} (3)
where U is the measured volumetric intraoperative shift,
i.e., shift at all nodes and is (nx 3)x 1 vector, and « is
the m x 1 vector of regression coefficients. This can then
be expressed as the least squared error objective function,

Gionume(#) = ([E[{a} = {U})"([El{a} — {U}) (4)

As noted above, the measurements U are often incom-
plete or sparse. As a result, model solutions within E are
interpolated to the specific measured intraoperative data
points and these interpolated solutions are assembled in
an intraoperative sparse deformation atlas, M. Thus M is
of size (ng % 3) X m, where ng is the number of points for
which sparse intraoperative data has been measured. The
displacement data sets in M serve as the training samples
for the inverse model and reduce the model-data misfit
error, and objective function to

Esparse = [M{er} — {u} (5)
Gipurse (%) = (MJ{a} — {u})"(M]{2} — {u}), (6)
respectively. Here, u is the sparse intraoperative shift mea-
sured at ng points in the brain. This, however, can trans-
form the problem into an undetermined system because

there are usually more regression coefficients than measure-
ment points (i.e. m > ng). While minimum norm solutions

Evolume

can produce perfect fitting of the data they are often unsat-
isfying with respect to volumetric shift prediction due to
the measurements being confined to a small spatial region
(e.g. craniotomy in this case). This is addressed by intro-
ducing an extra constraint, which has the effect of encour-
aging a spatially smooth displacement field that is confined
within the cranial extents. The modified objective function
can be written as,

Guparse(2) = (M{er} — {u})"(IM]{} — {u})
+ o] { Y Ho} (7)

The second term in this expression is a function of the
mechanical strain energy at each point within the model
and serves to constrain the regression coefficients to values
that would also minimize the elastic energy across the
deformation atlas. In this expression, the term Y refers to
the linear elastic strain energy matrix, described by
Y, = 1/2{e;;}'[S:){e;;}, where S €i;1s the elastic stiffness
tensor, and Cartesian strain tensor in vector form, respec-
tively, for the ith node of the jth solution from the atlas
(material properties are in Appendix A.2). With the devel-
opment of any multi-term objective function (Eq. (7)), care
must be taken to allow proper scaling of terms such that
the data is matched optimally while also retaining the ben-
eficial effects of constraints. This process of regularization
is often problem specific. With this in mind, a distance
based weighting factor vector W' =[W W, Ws, ...] is
introduced that is similar to that in Lynch (2004), and is
used with the strain energy matrix described above. The
weighting vector is constructed as,
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(8)
where r; is the distance between the centroid of the mea-
surement nodes and the ith node in the brain volume.
The [ is a characteristic length that specifies the domain
over which measurement nodes should have influence.
With that, the form of Eq. (8) reduces the strain energy
constrain within the region of measurements nodes, i.e.
the craniotomy in this case. While displacements tend to
be small in areas remote from the craniotomy, they will
have increased strain energy and increased weighting.
When Eq. (7) is optimized for the regression coefficients,
the net effect of the constraint term is to enforce a minimal
elastic energy state on remote regions of the domain while
selecting coefficients that best match the shift in the cranial
and tumor regions. ¢ in Eq. (7) provides a scaling role such
that the solution is not biased by the strain energy con-
straint term. The values for / and ¢ were found empirically
and are 0.125 and 1/2700, respectively.

Finally, setting the partial derivative to zero, the opti-
mum for Eq. (7) has a direct solution for {a}. Once the
regression coefficients are determined, these are used to cal-
culate the full volume displacements using

{U'} = Ex ©)



