
Design for Historical Journal Consumption

1. Introduction

This document explains design of an API for historical journal consumption (History
API). It facilitates Glusterfs with the ability to detect file-operations happened in past by
scanning the back-end(brick-level) glusterfs journal (changelog).

2. Design Comparison
Old Design

• Changelogs produced in one perfectly running session were used
to maintain linkages, ie. Rolling-over changelog will have time-
stamp of just before rolled-over changelog.

• Involved large number of xattr file-operations during linkage
traversal, which was un-optimal.

• Required O(n), (where n is number of changelos in the list), time to
identify the end changelog for the given start-end time interval.

New design
• List of changelogs produces in one perfectly running session are

stored in htime file which also holds necessary information about
the session start and end time.

• Involves fixed sized seeks to identify N'th changelog in the list.
• Requires O(log n), (where n is number of changelogs in the list),

time to identify the end changelog for the given start-end time
interval.

3. Architectural Design

3.1 APIs
• Register

◦ int gf_changelog_register (char *brick, char *scratch_dir, char
*log_file, int log_level, int max_reconnects);

◦ This is the first call an application should invoke. A successful
return from this call signifies that the application can now use
other APIs (including history APIs) to access changelog data.

◦ @brick - brick path (export directory) for which the changelog is
needed.

◦ @scratch_dir - working directory.
◦ @log_file - log file path to log library messages.
◦ @log_level - log level (defaults to INFO).
◦ @max_reconnects - number of retries before giving up (0 for no

retries).

◦ The Register API returns zero on successful register, which means
that the consumer can successfully make use of further historical
journal consumption APIs.

◦ Return -1 on failure(error).

• History

◦ int gf_changelog_history(char* changelog_dir, unsigned long start,
unsigned long end);

◦ This API expects changelog path where the glusterfs journals are
stored, start and end time-stamps (Unix epoch time), which stands for
the duration between which the historical journals are expected to be
consumed.

◦ @changelog_dir – Directory where the brick changelogs are stored.
◦ @start – Unix time-stamp, representing start time for history

changelog consumption.
◦ @end - Unix time-stamp, representing end time for history changelog

consumption.
◦ Returns zero on success, which means a consumable set of history

changelogs are available for the given start-end time duration.
◦ Returns -1 on failure(error), which means history changelogs are not

available for the given start-end time duration. Reasons could be,
changelog/brick crashed or changelog was off for some time in the
given start-end time duration.

◦ The API is non-blocking in nature.

• history_scan
◦ ssize_t gf_history_changelog_scan ();
◦ Scan and generate a list of new changelogs produced after parsing the

total history_changelogs in groups of N (configurable based on
performance improvements, default is 3). Invoking this multiple times
one after the another results in refreshing the consumable history list.

◦ The API returns zero, when further scan() calls are required to get the
complete list of parsed history changelogs.

◦ The API returns -1 on failure(error), which means either the current
scan failed or couldn't scan the consumable changelogs though they
were available.

◦ The API returns 1, when no more consumable changelogs can be
produced as the changelog_history_list has exhausted.

◦ In any of the cases when the scan API returns non zero value, it should
not be called for this history request.

• next_history_change
◦ ssize_t gf_history_changelog_next_change (char *bufptr, size_t

maxlen);

◦ Get the next changelog file from the set scanned by history_scan.
◦ @bufptr - buffer to store the changelog file path
◦ @maxlen - length of @bufptr
◦ This API on subsequent calls provides path of each changelo (from the

list prepared by history_scan), which can be used by the consumer
(say Geo-replication) to use it the way it desires.

◦ The API returns the string length of the changelog file path (stored in
@bufptr).

◦ The API returns zero which signifies end of change list, and time call
next history_scan.

◦ The API returns -1 on failure(error).

• done_history
◦ int gf_history_changelog_done (char *file);
◦ Invoking this API results in the history changelog (@file) to be noted

as processed. Normally, this API is invoked after the history changelog
is processed.

◦ @file - the changelog file path to be marked as processed.
◦ This API when called with the changelog file location (which was

updated by “get_next_history”)and moves the consumed changelog to
a consumed directory (.processed). This API must be called after the
consumption of the changelog at location “file” is done completely by
the involved consumer (say Geo-replication).

◦ Returns 0 on success, which means the consumed changelog is moved
successfully.

◦ Returns -1 on failure(error).

3.2 Changelog design modification

• htime
◦ Htime is a directory maintained at the same location where

journals(changelogs) are stored.
◦ It contains files with the format “HTIME.<time-stamp>”. Each htime

file stores information about every uninterrupted glusterfs session
where changelog was ON.

4. Detailed Design

4.1 Register to libgfchangelog to use history API (history_register)
▪ Get the changelog directory where changelogs are stored .

• Either by dumping the changelog path in the socket connection
between libgfapi and changelog translator. (OR)

• Let gsyncd give the changelog path from which history changelogs
should be consumed.

▪ Create and initialize history_directory location in “priv” with
“.history/.current”, “.history/.processing” and “.history/.processed” for
changelog parsing, processing and consuming purposes respectively.

4.2 Maintenance of HTIME of each changelog session (changelog)
◦ HTIME is a directory maintained by changelog translator which contains

files in format “HTIME.<time-stamp>”.
◦ Each file (say HTIME.T1), will have a “time-

stamp:number_of_changelogs_in_that_session” in its extended attribute
(say T2:N). T1 stands for the start time of the changelog, T2 stands for the
last successfully rolled-over changelog time-stamp and N stands for
number of changelog file location entries in the file (HTIME.T1). N is
used for searching the desired time-stamp in the HTIME file optimally.

◦ The contents of HTIME.T1 file would be paths of successfully rolled over
changelogs in rolling sequence seperated by NULL.

◦ Example, lets assume that we have the following changelog set available
in the current changelog directory [C.t0, C.t1, C.T0, C.T1, C.T2, C.T3,
C.T4, C], where C.t0 stands for CHANGELOG.t0. The scenario is that
changelogging was interrupted at sometime after t1 and before T0 but now
running perfectly.
▪ If the previous session interruption was a crash, then changelog C.T0

is partially written rolled-over changelog and the htime file for the
currently running session would be HTIME.T0 with extended attribute
as “T4:4” and contents as [C.T1, C.T2, C.T3, C.T4].

▪ If the previous interruption was a stop, then changelog C.T0 is
consumable and hence htime file for this session would be
HTIME.<current_timeofday> with extended attribute as “T4:5” and
contents as [C.T0, C.T1, C.T2, C.T3, C.T4].

4.3 Availability of changelogs for given time-stamp (history)
◦ Identifies the HTIME file that has the changelog information about the

duration (between start and end) which was inquired to history.

4.4 Group and process the changelogs (history)
◦ Reads the HTIME file identified from section 3.3, searches optimally

(O(log n), where n is number of changelog path entries in the HTIME file)
the HTIME file for changelogs falling under the time interval the
consumer is interested in.

◦ Spawns N (N is configurable depending on performance) threads to parse
the changelogs from brick

◦ Each thread parses and moves the parsed consumable file to
“.history/.processing”.

◦ Wait for threads to join and parse next N relevant changelog files.

4.5 Scan and provide the list for consumption (history_scan)

◦ Readdir the “.history/.processing” and update the tracker with files
available for consumption.

4.6 Provide path of each conumable changelog in the list
(get_next_history_change)

◦ Read tracker and provide the path of consumable changelog path (located
at .history/.processing”) to consumer.

4.7 Move and mark the consumed changelos as “done”
(history_done)

◦ Move the consumed changelog file from “.history/.processing” to
“.history/.processed”

5. API usage and control flow
• Consumer calls “register”, which sets the needed environment for

history API usage.
• On successful return of “register” consumer calls “history”, which

checks the availability of history changelogs for given start-end time
interval and spawns a thread that starts parsing changelogs in
parallel.

• On successful return of “history” consumer should keep calling
“history_scan” till return value is -1. Each call lists set of
consumable changelogs.

• On non-negative return of “history_scan” consumer should call
“get_next_history_change” to iterate over the list created by
“history_scan” to get the individual changelogs for consumption.

• For each “get_next_history_change”, consumer should call
“done_history” to clean backlog of changelogs.

6. Assumptions
• Fixed path length of changelogs.
• Htime directory is non configurable and resides at the same

location as that of changelogs.

