Design for Historical Journal Consumption

1. Introduction

This document explains design of an API for historical journal consumption (History
API). It facilitates Glusterfs with the ability to detect file-operations happened in past by
scanning the back-end(brick-level) glusterfs journal (changelog).

2. Desigh Comparison
Old Design
* Changelogs produced in one perfectly running session were used
to maintain linkages, ie. Rolling-over changelog will have time-
stamp of just before rolled-over changelog.
* Involved large number of xattr file-operations during linkage
traversal, which was un-optimal.
* Required O(n), (where n is number of changelos in the list), time to
identify the end changelog for the given start-end time interval.
New design
* List of changelogs produces in one perfectly running session are
stored in htime file which also holds necessary information about
the session start and end time.
* Involves fixed sized seeks to identify N'th changelog in the list.
* Requires O(log n), (where n is number of changelogs in the list),
time to identify the end changelog for the given start-end time
interval.

3. Architectural Design

3.1 APIs
* Register

o int gf changelog_register (char *brick, char *scratch_dir, char
*log_file, int log_level, int max_reconnects);

o This is the first call an application should invoke. A successful
return from this call signifies that the application can now use
other APIs (including history APIs) to access changelog data.

o @brick - brick path (export directory) for which the changelog is
needed.

o @scratch_dir - working directory.

o @Ilog_file - log file path to log library messages.

o @log_level - log level (defaults to INFO).

© (@max_reconnects - number of retries before giving up (0 for no
retries).

© The Register API returns zero on successful register, which means
that the consumer can successfully make use of further historical
journal consumption APIs.

o Return -1 on failure(error).

* History

o

int gf_changelog history(char* changelog_dir, unsigned long start,
unsigned long end);

This API expects changelog path where the glusterfs journals are
stored, start and end time-stamps (Unix epoch time), which stands for
the duration between which the historical journals are expected to be
consumed.

@changelog_dir — Directory where the brick changelogs are stored.
@start — Unix time-stamp, representing start time for history
changelog consumption.

@end - Unix time-stamp, representing end time for history changelog
consumption.

Returns zero on success, which means a consumable set of history
changelogs are available for the given start-end time duration.

Returns -1 on failure(error), which means history changelogs are not
available for the given start-end time duration. Reasons could be,
changelog/brick crashed or changelog was off for some time in the
given start-end time duration.

The API is non-blocking in nature.

* history_scan

(¢]

@)

ssize_t gf_history_changelog_scan ();

Scan and generate a list of new changelogs produced after parsing the
total history_changelogs in groups of N (configurable based on
performance improvements, default is 3). Invoking this multiple times
one after the another results in refreshing the consumable history list.
The API returns zero, when further scan() calls are required to get the
complete list of parsed history changelogs.

The API returns -1 on failure(error), which means either the current
scan failed or couldn't scan the consumable changelogs though they
were available.

The API returns 1, when no more consumable changelogs can be
produced as the changelog_history_list has exhausted.

In any of the cases when the scan API returns non zero value, it should
not be called for this history request.

* next_history_change

@)

ssize_t gf_history_changelog_next_change (char *bufptr, size_t
maxlen);

Get the next changelog file from the set scanned by history_scan.
@bufptr - buffer to store the changelog file path

@maxlen - length of @bufptr

This API on subsequent calls provides path of each changelo (from the
list prepared by history_scan), which can be used by the consumer
(say Geo-replication) to use it the way it desires.

The API returns the string length of the changelog file path (stored in
@bufptr).

The API returns zero which signifies end of change list, and time call
next history_scan.

The API returns -1 on failure(error).

* done_history

(0]

(¢]

int gf_history_changelog_done (char *file);

Invoking this API results in the history changelog (@file) to be noted
as processed. Normally, this API is invoked after the history changelog
is processed.

@file - the changelog file path to be marked as processed.

This API when called with the changelog file location (which was
updated by “get_next_history”)and moves the consumed changelog to
a consumed directory (.processed). This API must be called after the
consumption of the changelog at location “file” is done completely by
the involved consumer (say Geo-replication).

Returns 0 on success, which means the consumed changelog is moved
successfully.

Returns -1 on failure(error).

3.2 Changelog design modification

¢ htime

(e]

(¢]

Htime is a directory maintained at the same location where
journals(changelogs) are stored.

It contains files with the format “HTIME.<time-stamp>”. Each htime
file stores information about every uninterrupted glusterfs session
where changelog was ON.

4. Detailed Design

4.1 Register to libgfchangelog to use history API (history_register)

Get the changelog directory where changelogs are stored .

* FEither by dumping the changelog path in the socket connection
between libgfapi and changelog translator. (OR)

* Let gsyncd give the changelog path from which history changelogs
should be consumed.

= (Create and initialize history_directory location in “priv”’ with
“.history/.current”, “.history/.processing” and “.history/.processed” for
changelog parsing, processing and consuming purposes respectively.

4.2 Maintenance of HTIME of each changelog session (changelog)
o HTIME is a directory maintained by changelog translator which contains
files in format “HTIME.<time-stamp>".
o Each file (say HTIME.T1), will have a “time-
stamp:number_of_changelogs_in_that_session” in its extended attribute
(say T2:N). T1 stands for the start time of the changelog, T2 stands for the
last successfully rolled-over changelog time-stamp and N stands for
number of changelog file location entries in the file (HTIME.T1). N is
used for searching the desired time-stamp in the HTIME file optimally.
o The contents of HTIME.T1 file would be paths of successfully rolled over
changelogs in rolling sequence seperated by NULL.
o Example, lets assume that we have the following changelog set available
in the current changelog directory [C.t0, C.t1, C.TO, C.T1, C.T2, C.T3,
C.T4, C], where C.t0 stands for CHANGELOG.t0. The scenario is that
changelogging was interrupted at sometime after t1 and before TO but now
running perfectly.
= If the previous session interruption was a crash, then changelog C.T0
is partially written rolled-over changelog and the htime file for the
currently running session would be HTIME.TO with extended attribute
as “T4:4” and contents as [C.T1, C.T2, C.T3, C.T4].

= If the previous interruption was a stop, then changelog C.TO is
consumable and hence htime file for this session would be
HTIME.<current_timeofday> with extended attribute as “T4:5” and
contents as [C.T0, C.T1, C.T2, C.T3, C.T4].

4.3 Availability of changelogs for given time-stamp (history)
o Identifies the HTIME file that has the changelog information about the
duration (between start and end) which was inquired to history.

4.4 Group and process the changelogs (history)

o Reads the HTIME file identified from section 3.3, searches optimally
(O(log n), where n is number of changelog path entries in the HTIME file)
the HTIME file for changelogs falling under the time interval the
consumer is interested in.

o Spawns N (N is configurable depending on performance) threads to parse
the changelogs from brick

o Each thread parses and moves the parsed consumable file to
“.history/.processing™.

© Wait for threads to join and parse next N relevant changelog files.

4.5 Scan and provide the list for consumption (history_scan)

© Readdir the “history/.processing” and update the tracker with files
available for consumption.

4.6 Provide path of each conumable changelog in the list
(get_next_history_change)
© Read tracker and provide the path of consumable changelog path (located
at .history/.processing™) to consumer.

4.7 Move and mark the consumed changelos as “done”
(history_done)
© Move the consumed changelog file from “history/.processing” to
“.history/.processed”

5. APl usage and control flow

* Consumer calls “register”, which sets the needed environment for
history APl usage.

¢ On successful return of “register” consumer calls “history”, which
checks the availability of history changelogs for given start-end time
interval and spawns a thread that starts parsing changelogs in
parallel.

* On successful return of “history” consumer should keep calling
“history_scan” till return value is -1. Each call lists set of
consumable changelogs.

* On non-negative return of “history_scan” consumer should call
“get_next_history _change” to iterate over the list created by
“history_scan” to get the individual changelogs for consumption.

* For each *“get_next_ history change”, consumer should call
“done_history” to clean backlog of changelogs.

6. Assumptions
* Fixed path length of changelogs.
* Htime directory is non configurable and resides at the same
location as that of changelogs.

