
1. Sending messages

Messages can be sent with the send-message! procedure, which can be called as (send-
message! mq message #:priority priority), where mq is the message queue and
message is the message to send as a readable bytevector slice. This is an asynchronuous
operation, so this procedure can return before the service has processed the message.

Depending on the transport, it might be possible for messages to be lost or received out-
of-order. Some transports allow to explicitely allow messages to be lost or received out-
of-order and would by default retransmit lost messages and reorder out-of-order mes-
sages; this behaviour can to a degree be controlled by setting the priority-preference flags.

These flags are not absolute, e.g. even if reliable transmission is requested, it is possible
that the transport fail to transmit the message. The exact behaviour is transport-depen-
dent!

ppppppppprrrrrrrrreeeeeeeeefffffffff:::::::::uuuuuuuuunnnnnnnnnrrrrrrrrreeeeeeeeellllllllliiiiiiiiiaaaaaaaaabbbbbbbbbllllllllleeeeeeeee. Unreliable delivery is acceptable.

ppppppppprrrrrrrrreeeeeeeeefffffffff:::::::::lllllllllooooooooowwwwwwwww---------lllllllllaaaaaaaaattttttttteeeeeeeeennnnnnnnncccccccccyyyyyyyyy. Low latency is desired, this cannot bemeaningfully combined
with pref:cork-allowed.

ppppppppprrrrrrrrreeeeeeeeefffffffff:::::::::cccccccccooooooooorrrrrrrrrkkkkkkkkk---------aaaaaaaaallllllllllllllllllooooooooowwwwwwwwweeeeeeeeeddddddddd. The transmission of a message can be delayed to combine
this message with other messages into a larger transmission with less per-mes-
sage overhead.

ppppppppprrrrrrrrreeeeeeeeefffffffff:::::::::gggggggggooooooooooooooooooddddddddd---------ttttttttthhhhhhhhhrrrrrrrrrooooooooouuuuuuuuuggggggggghhhhhhhhhpppppppppuuuuuuuuuttttttttt. High bandwith is desired; the method chosen for trans-
mission should focus on overall throughput.

ppppppppprrrrrrrrreeeeeeeeefffffffff:::::::::ooooooooouuuuuuuuuttttttttt---------ooooooooofffffffff---------ooooooooorrrrrrrrrdddddddddeeeeeeeeerrrrrrrrr. Out-of-order delivery is acceptable.

These flags can be combined into a numeric valuewith themacro prio-prefs from (gnu
gnunet mq prio-prefs); the following code defines x as the numeric value of the flags
pref:unreliable and pref:out-of-order:

(import (gnu gnunet mq prio-prefs))

(define x (prio-prefs pref:unreliable pref:out-of-order))

This numeric priority-preference can be passsed to send-message! as the optional pri-
ority keyword argument of send-message!. The transport of connect/fibers is
always reliable and in-order. [notify-sent! callbacks][cancellation][queue size limits,
%suspicious-length]

1 SENDING MESSAGES 21


	1. Sending messages

