Graw 0.1 design report
(Widget for Graph Drawing)

Julien Jeany
Julien Roussel

julien.jeany@epita.fr
julien.roussel@epita.fr

July 1,2003

Abstract

Graw stands for Widget for Graph Drawing. Originally initiated by Yann Regis-Gianas (yann@Irde.epita.fr),
this project is now developped by 2 Epita (Ecole Pour I'Informatique et les Techniques Avancées) second-
year students : Julien Jeany (jeany_j@epita.fr) and Julien Roussel (rousse_l@epita.fr).

This document is here to provide the documentation needed to conceive and implement a such project.

/\
Ecole pour I'Informatique et les Techniques Avancées
14-16, rue Voltaire — F-94270 Le Kremlin-Bicétre cedex — France

Tél. +33 144 08 01 01 — Fax. +33 1 44 08 01 99
info@epita.fr — http://www.epita.fr

Contents

1 Introduction

2 Needs
2.1 ACtOrs e e
211 Aprogrammer e
212 Aprogram e
213 Afinaluser e e
22 System e
2.3 USECASES . . v v v i e e e e e e e e e
231 ACHONS e e e s
2.3.2 Selection e e e e
24 Diagrams e
3 Analysis
3.1 Conceptsofthesystem L
32 Conceptsusedinusecases
321 Programmer
322 Program e
323 Finaluser e e e
3.3 Staticand dynamic pointof view L L L
3.4 Eventsstream e e e e e e e e e e e e e e e
4 Design
4.1 Entity, control, interface classes definition L L L L oL
41.1 Entityclasses
412 Control classes e e e e
413 Interface classes o i e e e e e e
42 Diagramso
5 Implementation
51 Modules e e e e
5.2 Technical choices e e e e e e
5.21 XML . . e e e e
6 Tests

7 Conclusion

I Annex
1 Provided DTD . . . o o e e e e e e

W

O\ Ul > s W s e

@ 00 0 00 NI N NI

Chapter 1

Introduction

Graw is a widget for graph drawing project. The main problems of this project will be to offer the final
user the possibility to use the widget in his project, with a minimum of "genericity", concerning the widget
system bind (like Gtk or Qt, for example), the algorithms (visual reorganization of the graph), and the
graph representation. Another problem will be to have a good conception of the library, in order to get the
possibility to evolve, to improve and to add some features.

Chapter 2

Needs

2.1 Actors

An actor represents a role played by an external entity (human user, hardware, software, ...) which interacts
directly with the system. An actor can consult or modify directly the system’s state, emmitting or receiving
messages carriers of data. With Graw, we can define 3 main actors : a programmer, a program and the final
user.

2.1.1 A programmer

In order to use the Graw library, a programmer should implements some specifics needed methods.

2.1.2 A program

An external program should use the Graw library giving it some specific messages.

2.1.3 A final user

The final user should be allowed to interact with a program, using the library. All the actions with the
library should be transparent enough to the user to make it easy at utilisation.

2.2 System

2.3 Use cases

Some concepts (like node, or edge) will be defined later, but are used here.

2.3.1 Actions

e A simple left-click on a button / menu will action / open it.

e Clicking on a button will make the lib to wait for the user to do the specific action. For example : if
the user clicks on the "create node" button, then he should click on the drawing form to perform the
action.

2.3 Use cases

2.3.2 Selection
o A simple left-click on the draw form will cancel the selection.
e A simple left-click on an object (node, edge) will select it.

o Left-click and drag will draw a box. Each node / edge inside will be selected.

Ctrl+Left-click will select a non-selected object (node, edge) and add it to the previous selection.

Ctrl+Left-click will remove an already-selected object from the current selection.

When a single object is selected, a right-click on it will open a window containing his properties.

When a multiple (group) selection is engaged, a right-click on it will open a window containing some
properties for the group.

Needs

2.4 Diagrams

dnouiB / epou / abpa) uonos|as e axepy

ydeib e anes / peo

‘oBpa / apou & 8jojep / 8jeald) Uoloy

Josq [euld

(" ‘Aoxysep ‘eyeald)
Kreiqi mers ayy o} ,ebessaw, € pusg

Jawwelbold

weiboid

weibBoud sy ul spoyjaw palinbal swos sjuswaldu|

Chapter 3

Analysis

3.1 Concepts of the system

The system has the concepts to provide a library, which any user could use easily. Only few functions
to implement in code to make graw widget available ! Consequently we have a powerfull tool, easy to
integrate, and easy to use.

e As powerfull tools is associated the disponibility of many algorithms on graphs and the easy way for
graw authors to add new ones.
As many people use graph, but in so many different ways, no one has the same graph representation,
maybe because of many different use. Graw intends to be able to display any graph, independant
from the representation. This is possible by asking the final user to provide minimal functions that
retrieve the necessary information to draw a graph. As the visualisation system is based on vectorial
purpose, this should be easier for everybody to see a graph with good rendering.

e As easy to integrate is associated the possibility to integrate graw (the widget) into applications like
other widget of the concerned gui whith only few line (associates to the insertion and the code pro-
vided by user to interfer with the graph).

The User has a special integrated widget for each gui he wants to implement, and each of those wid-
gets is specifically designed for this gui (i.e the Qt widget has been developped the Qt way to be really
integrated into the widget suite).

e As easy to use is associated the visual aspect of the widget, especially designed to be easy and simple
(mouse clicks, drag and drop, align objects on a grid, ...). Finally, three concepts are mainly exposed:
graph genericity, gui genericity and easy to use. Many tricks are given to the end user to manipulate
his graph in and out of graw.The main idea is to provide a generic way to let anybody the capability
to use graw (even with the most weird graph implementation) and a specialized way to provide a
much more optimized access to data (need a preliminar conversion).

3.2 Concepts used in use cases

3.2.1 Programmer

e Implement some required methods: As any Graw user may have a different data structure to repre-
sent graphs, graw must provide a way to draw it without structure restriction. Then the programmer
implements few functions adapted to his data structure, those provide necessary information for graw
to display a graph. Then we still have genericity on graph structure.

Analysis

3.2.2 Program

e Sends a message to the widget: The graw widget has some exported function like hiding, refresh, ...,
depending on the final gui. That permits to include a graw widget in many different gui like Qt, Gtk,
Aqua, ...

e Node Representation: The representation for those nodes could be simple shape (circle, rectangle) or
complex vectorial picture (computers network representation) with a label.

e Edge Representation: the representation for a typical edge will be a single line with a label.

3.2.3 Final user

e Node action: Users can add, delete node, group of nodes. Then can also add datas on nodes and
edges.

o Node selection: Users can do selection to handle actions on many nodes or edges.

e Graphloading/saving: Because the work must be saved, graw provide a way to save and load graphs
in XML format to be standard compliant.

3.3 Static and dynamic point of view

3.4 Events stream

Chapter 4

Design

4.1 Entity, control, interface classes definition

4.1.1 Entity classes
Graph

This class represents the class structure, already prepared to handle actions as adding/ deleting nodes/edges,
and is generic enough on structure to permit the final user to use his own. It contains a node list and an
edge list. The full graph also have a scale attribute to permit global zoom on the graph.

Node

A node is a part of a graph, it contains a name, a label and a position. A basic class is coded. (simple circle
with strings in it)

Edge

An edge is, like a node, a part of a graph, it contains a name, a label and a position. it links two nodes. A
minimal class is implemented to represents the most basic edge type.

Group

The usage is one of the most important feature in graw, then a group class has been defined, enabling to
group nodes and applying functions on them. A scale parameter can be used to specify zoom on groups.

Primitive

To draw a complex graphic, primitive drawing is needed. Drawing a full picture will conclude in compos-
ing primitive drawings.

4.1.2 Control classes
Bind

The bind class controls the communication between the library and the widget because as a library, graw
has to be generic to produce many widgets for many GUIs. It also handle zoom and grid capabilities.

This class is an abstract class. the widget coder will derivate a class from bind to code in it all connections
with his gui : ability to draw a line whatever the gui (Qt, Gtk, ...).

10

Design

This class also produce the opposite communication: this class provides also a connection from the widget
to the library like GUI events (on mouse click, double click, focus, ...).
Register

This class is a singleton to access the canvas anywhere in the application.

Loader

This is an abstract class of different loader types. It is used in loading/saving graphs.

Visitor

The typical visitor class to visit graph for algorithms.

4.1.3 Interface classes
Graw

This is the main class, the only one the final user will work with. It produce an easy utilisation with only
one class to handle.

To permit the user to communicate his graph to the library, the public get_nodes() has been created. Then
the final user will instanciate a class from Graw and redefine get_nodes() to code the interaction between
the two different graph structures.

11

4.2 Diagrams

4.2 Diagrams

PTOA :()MRID+

adA} ebpa paulysp-iasn
abp3oisse|D

AV

ToA :(RI03TSTAISUOD:I03TSTA)3deooe+
PTOA :(3I03TSTA:T03TSTA)3dso0R+

abp3

PTOA :()MBIDP+
pToA :()mMEIP+
odA} epou paulyep-iasn 9AS
opoNoISsE|D 9pPONDAS
DTOA @ (RIOJTSTAISUOD:I0ITSTA) 3dadoe+
PTOA :(3I03TSTA:I03TsTA)3docoe+

<psubTsun>iutod
TeqeT :TeqRTH
BuTI3s:ip3s :euweuy

apoN

sod#

T = qur reress-
<+U03°TOUTS>3STTIP3s fespou- <psubTsun>3jutoq :sod-
dnosn BuTIls::ipys :aweu-—
1eqe
oAS :has-
abpaoAS

PTOA :(3I03TSTAISUOD:I03TsTA)3deooe+
PTOA : (3I03TSTA:I03TSTA)3deooe+
PTIOA @ (R3PON:apOU)IDSTSSSP SPOU+
PToA : (R9pON:apou)3oaTas epou+
PTOA :(<4U033TBUTS>ASTT::PIS:sSapouU) J0aTassp sopou+
SPON :pUSH <fuo1eThuTE>3STT: 1pAS : (<pPoUBTSUN>IUTOF: ZU ‘<poUBTSUN>UTOJ: TU) 308 Tes3eh sapou+
spoN :3Te3sH PTOA :(<4U032THUTS>3STT::PIS:sapoU)a3aTop Sapou+
TeqeT :TeqeT S PTOA : (®<paubTsun>juTod:jurod)Mau spou+
<> <4U038THUTS>3ISTT::PasS :UOT3DSTas—
Tooq :pejusTio—
<sdnoin ‘uoasThurg 1suocos>dew::pis :sdnoib
< <3obpPY>3STT::p3s :sobpa-—
<38poN ‘uo3aThurs 3sucosdew::p3s :sspou—

ydein

sputg :()3eb seaueo+ Ton : (3PUTIFS::p3IsS:oWeUSTTF)SABS+

: (3puTd:seAURD) I93STHoU+
() 7935 Thou+

BpuUTg OT3IBIS :SBAURD—

19)s16ay

<39PON>3STT: :p3s : () 396 sopous
ydezs :uderb—4l>

puTd :seaueo—

mern P

oa

el

pTOoA :()eaowuo+

PTOA :()¥OTTo8TqnopIybIIUCS

proa :()YoIT23ybTIUOH

pTOA :()yOoTIo8Tqnopuo+

proa :()yoTTOUOH

LPTOA :()33b 38bpTH

: (3<poubTSUN>3UTOd 3SUOD:pUS ‘F<poUBTSUN>IUTOJ ISUOD:JIBIS)MBIP SUTT+
pToa :(3<poubTsun>3jutod 3suos:3urod)mezp 3urod+

T - Jut iefeos-
Tooq :pTab-

puig

Design

Loader

+load(filename:std: :string&): void

+save(filename:std: :string&): void @~ 000 oo aaoa
1.7

[S,
Singleton
-set: std::set<T&>

XMLLoader
-filename: std::string
+XML(): void
+XML(filename:std: :string&): void
+load(filename:std: :string&): void
+save(filename:std::string&): void

SVGLoader GraphMLLoader

-primitives: std::list<Primitive&>

+GraphML():

+SVG(): +GraphML (filename:std: :string&, graph:Graph&):
+SVG(filename:std: :string&):
+save(filename:std: :string&,graph:Graph&): voi

[
LK. constneséI

Visitor

+visit(node:Node&): void,
+visit(edge:Edge&): void

LK: constness
DefaultVisitor

+visit(node:Node&): void
+visit(edge:Edge&): void

A

DrawVisitor AlgoVisitor1

+visit(node:Node&): void +visit(node:Node&): void
+visit(edge:Edge&): void +visit(edge:Edge&): void

4.2 Diagrams

13

Primitive

+draw(): void

1

Text

-text: std::string
-font: std::string

+draw(): void

BezierCurve

-line: Line
-controllers: std::list<Point&

+draw(): void

Line

-start: const Point<unsigned>&
-end: const Point<unsigned>&

+draw(start:const Point<unsigned>&,end:const Point<unsigned>&): vo}

Point

-x: T
-y: T

+x_get(): T
+x_get(): const T
+y_get(): T

+y_get(): const T

+Point(x:const T=0,y:const T=0):
+Point(point:const Point<T>&):

+x_set(x:const T):
+y_set(y:const T):

void
void

Chapter 5

Implementation

5.1 Modules

A module system will be used in Graw implementation, allowing the developpers to get a better repar-
totion of the tasks to do. This should also allow an improvement of the design of the project, and some
facilities to extend the library.

The main modules should be :
e Widget : the general widget library, with the differents binds.
e Graph : the differents representations of graphes.

e Algorithms : to manage all the algorithms on graphes.

5.2 Technical choices

52.1 XML

The entire project will be developped in C++. Why this choice ? C++ is a standard in the world of object-
oriented languages, and has the advantage to be portable from an architecture to another, and to favorite
the modularity and conception of a project. C++ got another strength, which is to make the work of the
programmer really easier, with many tools or library already developped (like parsers, mathematical tools,
)
libxml++ should be the right choice to parse our XML files (graphes and pictures). This library is easy
to use and fast to incorporate in a project.

Although, GraphML will be used to represent the graphes in a XML format. GraphML has the ad-
vatages to be rich enough to permit every kind of fantasies on graph representation.

Graw will permit to export graphes as pictures. As this feature exists, Graw should be able to save
graphes in many formats. The main format should be the SVG one. SVG is an XML file format, devel-
opped by the W3C, and used to describe vectorial pictures.

Graw will be binded on some widget-manager, such a Qt (for the first version). In a next version, Graw
should be usable with a Gtk bind.

Chapter 6

Tests

The test period is in a graphical application case a difficult operation. After many research over the Internet,
we do not have found anything. That’s why we will stay in our position : use the "Monkey test".

This remains in a full-clicking way of test. By the way, this kind of tests could be realized by humans, or by
a few softwares (not implemented on non-Windows systems). As we develop under the Linux system, we
should use the Monkey system.

To test the algorithms, only a human verification could validate them because of their complexity.

Chapter 7

Conclusion

The core team expects Graw to be functionnal and utilizable enough to help some other projects. For
example, a program using Graw should be able to draw automata, in order to offer a widget for visual-
testing for some libraries, such as Vaucanson, or interface for some languages, such as MAL (Minimalist
Automaton Language).

Part1

Annex

18

.1 Provided DTD

<l >
<!--Parameter entity for data content -->
<I >

<IENTITY % GRAPHML.data.content "(#PCDATA)">

<l-- >
<l--Parameter entities for attribute list extensions -->
<l- ->

<IENTITY % GRAPHML.graphml.attrib ">
<IENTITY % GRAPHML.locator.attrib "">
<IENTITY % GRAPHML.graph.attrib ">
<IENTITY % GRAPHML.node.attrib ">
<IENTITY % GRAPHML.port.attrib ">
<IENTITY % GRAPHML.edge.attrib ">
<IENTITY % GRAPHML.hyperedge.attrib ">
<IENTITY % GRAPHML.endpoint.attrib ">
<IENTITY % GRAPHML.key.attrib "">
<IENTITY % GRAPHML.data.attrib "">
<IENTITY % GRAPHML.default.attrib ">

<l -->
<l--Attributes used by each GRAPHML element-->
<I- >

<IENTITY % GRAPHML.common.attrib ">

<l >
<!--the graphml elements-->
<I-- -->

<IELEMENT data %GRAPHML.data.content;>

<IATTLIST data
key IDREF #REQUIRED
id ID #IMPLIED
%GRAPHML.data.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT default %GRAPHML.data.content;>
<IATTLIST default
%GRAPHML.default.attrib;
%GRAPHML.common.attrib;
>

<IELEMENT key (desc?,default?)>
<IATTLIST key
id ID #REQUIRED
for (graph|node|edge|hyperedge|portlendpoint|all) “all"

.1 Provided DTD

19

%GRAPHML.key.attrib;
%GRAPHML.common.attrib;
>

<IELEMENT graphml (desc?,key*,(data|graph)*)>
<IATTLIST graphml
%GRAPHML.graphml.attrib;
%GRAPHML.common.attrib;
>

<IELEMENT graph (desc?,(((data|node|edge|hyperedge)*)|locator))>

<IATTLIST graph
id ID #IMPLIED
edgedefault (directed|undirected) #REQUIRED
%GRAPHML.graph.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT node (desc?,((((data|port)*,graph?))|locator))>

<IATTLIST node
id ID #REQUIRED
%GRAPHML.node.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT port (desc?,(data|port)*)>

<IATTLIST port
name NMTOKEN #REQUIRED
%GRAPHML.port.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT edge (desc?,data*,graph?)>
<IATTLIST edge

id ID #IMPLIED
source IDREF #REQUIRED
sourceport NMTOKEN #IMPLIED
target IDREF #REQUIRED
targetport NMTOKEN #IMPLIED

directed (true|false) #IMPLIED
%GRAPHML.edge.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT hyperedge (desc?,(datalendpoint)*,graph?)>

<IATTLIST hyperedge
id ID #IMPLIED
%GRAPHML.hyperedge.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT endpoint (desc?)>

20

<IATTLIST endpoint
id ID #IMPLIED
node |IDREF #REQUIRED
port NMTOKEN #IMPLIED
type (injoutlundir) "undir"
%GRAPHML.endpoint.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT locator EMPTY>
<IATTLIST locator
xmins:xlink CDATA #FIXED

"http://lwww.w3.0rg/TR/2000/PR-xlink-20001220/"

xlink:href CDATA #REQUIRED

xlink:type (simple) #FIXED
%GRAPHML.locator.attrib;
%GRAPHML.common.attrib;

>

<IELEMENT desc (#PCDATA)>
<IATTLIST desc %GRAPHML.common.attrib;>

"simple”

	1 Introduction
	2 Needs
	2.1 Actors
	2.1.1 A programmer
	2.1.2 A program
	2.1.3 A final user

	2.2 System
	2.3 Use cases
	2.3.1 Actions
	2.3.2 Selection

	2.4 Diagrams

	3 Analysis
	3.1 Concepts of the system
	3.2 Concepts used in use cases
	3.2.1 Programmer
	3.2.2 Program
	3.2.3 Final user

	3.3 Static and dynamic point of view
	3.4 Events stream

	4 Design
	4.1 Entity, control, interface classes definition
	4.1.1 Entity classes
	4.1.2 Control classes
	4.1.3 Interface classes

	4.2 Diagrams

	5 Implementation
	5.1 Modules
	5.2 Technical choices
	5.2.1 XML

	6 Tests
	7 Conclusion
	I Annex
	.1 Provided DTD

