
Groff macros - App 10

Underlays.
Underlays are coloured rounded boxes painted under groff source. They are great devices to emphasise

and organize bigger chunks of text and to differentiate groups at-a-glance by colour. This page and the

next two show a few examples.

We hav etwo pairs of macros to provide a number of goods: different sizes and colours, horizontal and

vertical dividers, a grid for layout planning, the inclusion of an external PostScript file to do millions of

things.

.beg _under1 .end _under1 paint underlay, your font and spacing

.beg _under2 .end _under2 paint underlay, .nf .ft CR .ps 7 .vs .4c are provided here

Both pairs are working in the same way. One pair of the.beg_.... end_... macros enclose a chunk of text

that may contain the usual formatting requests and two new ones, specific to these pairs (in blue):

.beg_...

text without/with formatting commands

. div_height 0.4

text without/with formatting commands e.g. \m[red] or \f(CB

blank lines

text without/with formatting commands

. div_Height 0.5

text without/with formatting commands

.end_...

The most basic jobs of the pairs are as follows:

The .beg _... macro starts a diversion: formats and collects text until the .end... macro is found

the .end _... macro finds out how much space is required, paints this area with the given colour,

then paints the formatted text over it

These pairs can do quite a bit more than that. The outcome can be influenced by the special formatting

macros inserted into the text (see the blue lines in the white box), by blank lines in the text, by the macro

parameters, by a few number registers, and by setup parameters in thegr.setup1file and in common vari-

ables in thePS ToolBox.

In addition, tabs can be converted to spaces or left alone, and a convenient line continuation mechanism is

provided.

a) The .div_height and .div_Height inserts.

These macros can be called up-to 6 times each within one underlay. When called they produce space

according to their parameters, then they find out the heights of the middle of these spaces.They record

these heights in the\n[u_h1] ... \n[u_h6] and \n[U_h1]...\n[U_h6] number registers, in ‘u’ units. These

heights are measured from the bottom of the underlay, upwards.

These heights can be used in PostScript inserts to good effect (seeMacro parameterslater).

In addition to recording heights, wherever .div_heightis called, the.end_... macro draws a horizontal line

at that height. It will use the same colour (hue) as of the underlay, only a bit darker.

b) Blank lines.
Please consult the introduction.

c) Tabs and line continuation.
Please consult the introduction.

405

Groff macros - App 10

d) Macro parameters.

Both pairs have 6 parameters, all of them are optional:

.beg_under1

1) indent e.g. 0.5c default: 0.3c

.end_under1

1) hue in degrees: 0-359, many extras default: 180 (cyan)

2) x-left of box from page offset, in millimetres default: 0

3) x _right default: 150

4) "[x ... x]" x v alues for vertical lines default: no lines

from page offset, in millimetres

5) include file external PS file to include default: no file

.beg_under2

1) indent e.g. 0.5c or 75 default: 97 (this is the max)

.end_under2

1) ... 5) the same parameters than those of .end _under1

All x values are measured from the page offset in the\n[s_po] register. Initially this has the value of ‘.po’

saved at the beginning of the groff document.

The only parameter of.beg_under2is different from that of its counterpart. In addition to accepting indent

in ‘c’, you may specify the number of characters to accommodate in the box, centered.

The .beg_... routines set the line-length so that to place the text in the middle but, if ‘.nf’ is declared, line-

length is not observed.

The colours are all pastel colours, the specials are: -1 for gray fill, -2 for gray stroke (border, see below).

Horizontal/vertical lines are drawn with acomplementary colour: the same hue, but a bit darker. Here’s a

selection of colours.Please use as few of them in the same document as possible.More specials later.

-2 -1 0 60 120 180 240 300

PostScript inserts are drawn after the underlay and before the text. They can do anything: paint eps pic-

tures, draw 3d objects, etc.With their use one needs to observe the following:

• They are external PostScript- or ToolBox files.

• Currently no environment variables are accepted in file names.

• They hav eto be ‘naked’, i.e they may not containshowpageor P_page_port1 or P_page_land1or

P_page_end.

• They may contain ASCIIHexDecode images physically included in the file but, for the time being,

no ASCII85Decode images are allowed.

• Included files are given their viewports in theu1,v1,u2,v2variables. Theu1,v1pair (both zeroes)

mean the lower-left corner of the underlay, theu2,v2pair the upper-right corner, in millimetres.

In addition to that, PS inserts have access to groff’s number registers and strings. For example, the

u_h1 groff number register contains the height at the time of the first call to the.div_heightmacro.

In PS terms the height above the bottom of the underlay in millimetres is:

/height \n[u_h1] G_u2mm d_

Please note the single backslash.

406

Groff macros - App 10

e) Pre-defined number registers and the ‘1000’ colour modifier.

.nr debug 0 I f s et to 1, a grid of 2 mm resolution will be drawn between the under-

lay and your text, to help in placing inserts, vertical bars, etc

.nr ut _st 0 If set to 1 (and color > -2), it strokes the outline of the underlay

In printing this is not necessary, but on-screen this may look better

.nr ut _wh 0 If set to 1 (and color = -2), it whites-out the underlay before stroking

colour ‘x + 1000’ It paints with the darker complementary colour of x (see the cyans below)

.nr c _gra -1 colour for graphics gray

.nr c _var 20 for common variables - data - registers brick

.nr c _pro 50 for processes - macros mustard

.nr c _mix 180 for all else cyan

.nr u _g1 0.38c underlay dimensions: top-gap

.nr u _m1 0.22c top-margin (within underlay)

.nr u _m2 0.20c bot-margin

.nr u _g2 0.38c bot-gap

An example.

This is part of a Perl subroutine1 and the example aims to show how to make the embeddedness of the if

structure clearer by using.div_Height calls at the tops and bottoms of theseif ... { ... } structures and a

very short external PS file:

foreach my $ss (split /,/, $st) { # s ub-strings

if ((length $ss) == 0) { next ; }

if (! ($ss =˜ /\D/)) { if ($ss == $nu) { goto yeah ; } else { next ; } }

if ((index $ss, "-") >=0) {

my ($n1, $n2) = split /-/, $ss ;

if ($n2 eq "e") { if ($nu >= $n1) { g oto yeah ; } }

else { if ($nu >= $n1 && $nu <= $n2) { goto yeah ; } } next ;

}

if ((index $ss, "(") >=0 && (index $ss, ")") > 0) {

my ($n1, $n2, $n3) = split /[()]/, $ss ;

if ((modulo $n1, $n2) == (modulo $nu, $n2)) {

if ($n3 eq "e") { if ($nu >= $n1) { g oto yeah ; } }

else { if ($nu >= $n1 && $nu <= $n3) { goto yeah ; } }

}

}

} # foreach

The PS insert is very simple:

14 \n[U _h2] G _u2mm 128.5 \n[U _h1] G _u2mm -2 P_tport1

14 \n[U _h6] G _u2mm 128.5 \n[U _h3] G _u2mm -2 P_tport1

18 \n[U _h5] G _u2mm 122.0 \n[U _h4] G _u2mm 180 1000 add P _tport1

It gets the vertical dimensions from theU_h1 etc registers, while the horizontal dimensions (‘14’ etc) can

be read from the grid produced by setting thedebugregister to 1.

1 Perl has many backslashes that may interfere with groff. If you need to print a backslash but deny it any meaning for groff,
type ‘\e’ instead of ‘\’.

407

