
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 97

A Typesetter-independent TROFF

Brian W. Kernighan

Revised, March, 1982

A Typesetter-independent TROFF

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although TROFF has been the mainstay of document preparation at Bell
Labs for several years, it has heretofore been very dependent on one particular
typesetter, the Graphic Systems CAT.

This paper describes conversion of TROFF to deal with a wide class of type-
setters.

Some of these typesetters provide many more facilities than the CAT does.
Typical extra features include more sizes and fonts, larger alphabets, and the
ability to create new characters and to draw graphical objects. The paper
describes the enhancements that permit TROFF to take advantage of some of these
capabilities as well.

Revised, March, 1982

A Typesetter-independent TROFF

Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. A Bit of History

‘‘I will be speaking today about work in progress, instead of completed research; this
was not my original intention when I chose the subject of this lecture, but the fact is I
couldn’t get my computer programs working in time.’’

Donald E. Knuth1

The TROFF text formatter2 was originally written by the late Joe Ossanna in about 1973, in
assembly language for the PDP-11. (NROFF, which drives terminals instead of a typesetter, is
essentially identical to TROFF; we will use ‘‘TROFF’’ as a generic term henceforth.) It was rewritten
in C around 1975, and underwent slow but steady evolution until Ossanna’s death late in 1977.

In spite of some obvious deficiencies — a rebarbative input syntax, mysterious and undocu-
mented properties in some areas, and a voracious appetite for computer resources (especially
when used with macro packages and preprocessors like EQN and TBL) — TROFF has been the basis
of document preparation at Bell Labs for some years, and is likely to remain so for years to come.

Early in 1979, the Computing Science Research Center decided to acquire a new typesetter,
primarily because of our interests in typesetting graphics. At the same time, the Murray Hill
Computer Center began to investigate the possibility of replacing their family of aging CAT’s
with a new, high-performance typesetter, simply to keep up with their rapidly expanding load.

My first thought (a thought shared by many others) was that this would be a glorious
opportunity to replace TROFF with a new formatting language: better designed, easier to work
with, and of course much faster. This remains a desirable goal, but, after quite a bit of thought
spread over several years, I am still not really much closer to a better design, let alone an imple-
mentation. Furthermore, a great deal of software depends on TROFF — the preprocessors, the
macro packages, and of course all of their documentation and our accumulated expertise. Toss-
ing this aside is not something to be done lightly.

Accordingly, in the spring of 1979, I set about to modify TROFF so that it would run hence-
forth without change on a variety of typesetters. The ground rule was that TROFF should retain
its current specifications, so that existing software like EQN, TBL and the macro packages would
continue to work with it.

Since much of the rest of this paper is encrusted with details that could appeal only to main-
tainers or masochists, I will give here a brief summary of what has been done. Non-specialists
can stop reading at the end of the section.

TROFF is highly dependent on the Graphic Systems CAT typesetter, not just in details of
code but also in many aspects of its design. The language design issues have been largely
ignored (few are truly fundamental), while the code has been modified so that dependencies are
either eliminated or at least parameterized.

TROFF originally had parameters of the typesetter compiled into the code, often in non-
obvious ways. The new version reads a parameter file each time it is invoked, to set values for
machine resolution, legal sizes, fonts and characters, character widths and the like.

TROFF output used to be binary device codes specific to the CAT and arcane beyond
description. The output of the new version is ASCII characters in a simple and (I hope) universal

- 2 -

language that describes where each character is to be placed and in what size and font. A post-
processor must be written for each typesetter to convert this typesetter-independent language
into specific codes for that typesetter. Post-processors currently exist for the CAT, the Mergen-
thaler Linotron 202, the Autologic APS-5, the Tektronix 4014 terminal, The Imagen Canon laser
printer, Versatec printers, and a bit-map terminal. New ones can generally be written in less than
a day; they share much of their code with previous ones.

The new output language contains information that is not readily identifiable in the older
output. Most notably, the beginning of each page and line is marked, so post-processors can do
device-specific optimizations such as sorting the data vertically or printing it boustrophedo-
nically, independently of TROFF.

Since actual output is done by a post-processor, not TROFF, new capabilities for graphics
have been easy to add. TROFF now recognizes commands for drawing diagonal lines, circles,
ellipses, circular arcs, and quadratic B-splines; these are used in the PIC3 and IDEAL4 languages.

A number of limitations have been eased or eliminated. A document may have an arbitrary
number of fonts on any page (if the output device permits it, of course). Fonts may be accessed
merely by naming them; ‘‘mounting’’ is no longer necessary. Character height and slant may be
set independently of width.

The new TROFF is about 1000 bytes larger in instruction space and 13000 bytes larger in data
space (thus guaranteeing that it will not run on PDP-11/40 style machines). It runs about as fast
as the original version, though a simple improvement that I made could be retrofitted into the
earlier version to keep it about 20% faster. The post-processors are not included in these time
comparisons; they typically take 10-20% of the TROFF time.

2. Typesetter Dependencies

TROFF turns out to be surprisingly dependent on the Graphic Systems CAT, not just in the
code but in its design.

Some of the design dependencies are pretty obvious. For example, the CAT provides four
fonts (of 102 characters each) and 15 sizes. The specific sizes are wired into the syntax of the lan-
guage: since the CAT has no sizes larger than 36 points, \s46 can be uniquely decoded as a 4-
point 6, while \s36 is simply a switch into size 36.

TROFF makes the assumption that there are four fonts, three of which are physically isomor-
phic (that is, the same characters appear in the same position in each) and one ‘‘special’’ font that
is logically a part of each of the others. The reserved font name S finds its way into several com-
mands and receives special treatment in a variety of contexts.

Some commands have the basic resolution of the CAT wired into their definition; for exam-
ple, the units of the .ss command (which sets the size of the inter-word spacing) are 36th’s of an
em, because the CAT typesetter itself works in those units.

Some command line options reflect idiosyncrasies of the CAT. For example, the option -p
requests that the output all be printed in one size; since the CAT is excruciatingly slow at chang-
ing point sizes, this prints an approximation to final output comparatively quickly. The -g
option causes font information to appear in the output file for the benefit of the operations staff at
the Murray Hill Computer Center.

At the same time, there are myriad places where the characteristics of the CAT are an inte-
gral part of the code for TROFF. Some of these are quite evident; others are subtle indeed.

The most obvious instance is the internal encoding of a character. Within TROFF, objects are
passed around as 16 bit quantities. There are two fundamental objects — printable characters
and motions. An object looks like this:

1 4 2 1 8_________________________________
m s f z c_________________________________

If the m bit is a 1, the object represents a motion; if it is zero, the object is something to be printed.

- 3 -

In that case, s is the size (actually an index into a table of legal sizes), f is the font, z is the zero-
motion bit (i.e., no space after printing), and c is the character. If the high order bit of c is set, the
character is to be looked up in a table of special names (for example, 0200 is the hyphen \(hy);
otherwise it is ASCII. Furthermore, if c is less than octal 40 or greater than octal 370, the character
is actually some encoded control function or very special character such as \e or \{.

Clearly the tight packing makes it utterly impossible to add another size or font — there are
no bits left over. It also implies limits on the number of characters in a font and on the number of
special names (names of the form \(xx).

Motions are encoded as

1 1 1 13_________________________________
m v n mag_________________________________

m is the ‘‘motion bit’’, which is 1 for a motion, v is 1 for a vertical motion, and n is 1 for a negative
motion. The remaining 13 bits give the magnitude. Since there are only 13 bits, the maximum
amount of motion is 8191 machine units. With the CAT’s resolution of 432 units per inch, this is a
generous 19 inches. But for the Linotron 202 (resolution 972/inch), it is only 8.5 inches.

Within the code, certain character values are used in tests and assignments without identifi-
cation. For instance the octal value 0200 is used (without identification) as a hyphen. But of
course the mask 0200 also occurs many times. As might be imagined, it takes some study to
determine whether any particular 0200 is a hyphen or a mask.

The basic resolution of the CAT is 432 units per inch horizontally and 144 vertically. Char-
acter widths are given as the number of units at size 6 points. There are 72 points in an inch.
Thus the program contains as magic numbers every factor of 432, and ±1 from each factor as well.

Finally, TROFF is simply a big program (at least by my standards) — about 7000 lines of vir-
tually uncommented C. (I am indebted to Lorinda Cherry for a new version of the C beautifier
that made the code legible, if not comprehensible.) It was implemented before the recent addi-
tions to C, so there are no typedef’s to distinguish among the various kinds of integers, rela-
tively few macros with arguments, no internal static variables, and a startling number of glo-
bal variables with two-character names.

None of these remarks should be taken as denigrating Ossanna’s accomplishment with
TROFF. It has proven a remarkably robust tool, taking unbelievable abuse from a variety of pre-
processors and being forced into uses that were never conceived of in the original design, all with
considerable grace under fire.

3. Modifying TROFF

The first step was to widen the 16-bit internal representation of a character to 32 bits, to
accommodate more sizes and fonts. The current representation is

1 7 8 1 15___
z s f m c___

If m is 1, bits 16 and 17 are v and n. Access to this representation is entirely through macros; for
example, a macro called cbits fetches the character bits, another called setsfbits sets the size
and font bits, and so on.

This stage took several weeks of meticulous checking, since it was necessary to examine
every integer constant, variable and function in the program to decide whether it was being used
to store an internal character. These are now all identified and typedef’d for future reference.

Widening 16 bits to 32 turns out to be quite costly on the PDP-11, since the program must
process long integers instead of short ones. The result is approximately a 25% increase in pro-
gram size and perhaps 25% increase in run time. Furthermore the temporary file in which TROFF

keeps its macro and string definitions doubles in size (to 256k bytes).

Note that at this stage the program has not been changed in any fundamental way — it still

- 4 -

generates CAT output, so a bit-for-bit regression test against the original version can be per-
formed after each change. This proved to be very important for maintaining sanity in both pro-
gram and programmer.

4. Dynamic Machine Parameters

The next step was to find all the the numbers in the program that depend on the CAT and
replace them by variables. This also contributed marginally to slower execution, since many val-
ues and expressions that were constants now became variables.

With parameters identified as such, the next step was to make it possible to load a descrip-
tion of the typesetter each time TROFF is run, rather than creating a compiled version for each
typesetter. Accordingly, a set of description files was designed and created for each typesetter
and each font. The description really comes in two pieces — a table describing parameters of the
machine, and a table of widths for each font. To illustrate, here is the parameter file for the CAT:

Graphic Systems CAT-4
res 432
hor 1
vert 3
unitwidth 6
sizes 6 7 8 9 10 11 12 14 16 18 20 22 24 28 36 0
fonts 4 R I B S
charset
\| \ˆ \- _
hy bu sq em ru 14 12 34 mi fi fl ff Fi Fl de dg sc fm aa ga
ul sl *a *b *g *d *e *z *y *h *i *k *l *m *n *c *o *p *r *s
*t *u *f *x *q *w *A *B *G *D *E *Z *Y *H *I *K *L *M *N *C
*O *P *R *S *T *U *F *X *Q *W sr ts rn >= <= == ˜= ap != ->
<- ua da eq mu di +- cu ca sb sp ib ip if pd gr no is pt es
mo pl rg co br ct dd rh lh ** bs or ci lt lb rt rb lk rk bv
lf rf lc rc

A # introduces a comment. res is the machine resolution in units per inch. hor and vert give
the minimum number of machine units that it is possible to move in the corresponding direction.
unitwidth specifies the point size at which the character widths map directly into machine
units. sizes lists the set of legal point sizes, terminated by a zero. fonts lists the default set of
fonts (which can be overridden by subsequent .fp commands). charset introduces the set of
legitimate special names (names of the form \(xx, including some special cases like \|).

For comparison, here is the description file for the Mergenthaler Linotron 202. The 202 has
many more sizes and fonts than the CAT, and quite a few more characters as well. (The 202 actu-
ally permits nearly 250 sizes; no use has yet been found for most of them.)

- 5 -

Mergenthaler Linotron 202
fonts 10 R I B BI H HB HK PO CH S
sizes 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 32 34 36 38 40
45 50 55 60 66 72 78 84 90 96 102 108 0

res 972
hor 1
vert 2
unitwidth 4
paperwidth 7500
charset
\| \ˆ \- _
** *C *D *F *G *H *L *P *Q *S *W *a *b *c *d *e *f *g *h
*i *k *l *m *n *p *q *r *s *t *w *x *y *z +- -> <- <=
== >= L. Sl al aa ap b0 br bs bu bv ca
cd ci co ct cu dd de dg di em eq es fe fm ga gr hy
ib if ip is l. lh ma mi mo mu no or pd pl pp pt rg rh ru
sb sc sl sp sq sr tm tp ts ˜= ˜˜ ul rn en
lf rf lc rc lt rt lb rb lk rk != ua da 12 fa te ma fe
hc .. ob bx *o *u b9 14 34 ss vr

paperwidth specifies the maximum width of paper in units, overriding the default 73⁄4".

In addition to this description file (one per typesetter), there is one file per font that lists
properties of that font. Here is part of the description of Times Roman for the CAT:

Times Roman for CAT-4
name R
internalname 1
ligatures ff fi fl ffi ffl 0
charset
\| 6 0 0
\ˆ 3 0 0
a 17 0 025
b 20 2 012
c 16 0 027
d 20 2 011
e 18 0 031
f 13 2 014
...
! 12 2 0145
& 28 2 050
(16 2 0132
) 16 2 0133
* 16 0 0122
+ 36 0 0143
, 12 0 047
hy 13 0 040 hyphen
- " =hy
\- 36 0 0123
. 10 0 044
de 15 0 0136 degree
dg 20 0 0137 dagger
fm 8 0 0150
rg 20 0 0141
co 20 0 0153
ct 19 0 0127
...

The name is the external TROFF name, one or two characters, as used in .ft and \f com-
mands. The internal name is not used by TROFF itself, but is necessary for the postprocessors. If

- 6 -

the font has ligatures, they are listed. It is possible to set the width of the space for each font sep-
arately with the spacewidth command, not illustrated here. There is also a keyword special
to indicate that the font is a ‘‘special’’ font — one that is to be searched if the regular font does not
contain the character requested. There is no limit on the number of special fonts, but they should
be listed last in the fonts part of the description file.

The four columns of data are the character name, its width, its ascender/descender infor-
mation (1 → descender, 2 → ascender, 3 → both), and the actual typesetter code required to print
it. When the point size is unitwidth, the width is the character width in machine units. If the
name is a single character, it is taken simply as a normal ASCII character. Two or more characters
indicate a name of the form \(xx; there are a handful of historical exceptions like \-. A width of
""" " " " indicates that the character is a synonym for the immediately preceding character, as in
- and hy above. Comments may follow the four data fields.

There are significant advantages to having the font and typesetter descriptions merely text
files that can be edited easily, but it is too time-consuming to load all this ASCII information each
time TROFF is invoked. Thus a separate program called makedev is used to compile it into a
binary file that can be read by TROFF in a single read. When TROFF is invoked, an argument of the
form -Txxx tells it to load the description file for typesetter xxx from a standard directory.

Descriptions for the default fonts are compiled into the description file; if a new font is
requested by a .fp command, its description data replaces the original values. The .ft com-
mand has been modified so that if the requested font is not currently ‘‘mounted’’, its description
data will be placed in the hidden font position 0. Since there is only one such position, each new
non-standard font overlays the previous one. This mechanism is intended to make occasional use
of non-standard fonts easy; the .fp mechanism remains necessary for other purposes.

The notion of special fonts has been generalized somewhat — rather than a single special
font, there can be several. The algorithm currently used is to search for each character on the cur-
rent font; if it is not found there, then the special fonts are searched in order (as given in the
description file). Other than that, the treatment of special fonts is essentially unchanged.

At this stage in the modifications to TROFF, all internal arithmetic is done in terms of the res-
olution of the specified typesetter. The character set and character widths are defined by the val-
ues loaded from the font description. Indeed, the mapping from character name to what gets
printed is determined by this table — fonts are no longer all isomorphic.

Although it is certainly convenient for testing during program development, it is not clear
that loading the font information for the typesetter each time TROFF is invoked is the right way to
operate in an environment that supports only a single kind of typesetter. In a production mode it
might be desirable to compile in the default information for the standard typesetter.

5. Output Language

The final step is to modify the output of TROFF so that it is typesetter-independent. The new
version of TROFF produces output that is not intended to go directly to a typesetter. Rather, it is
more or less independent of any typesetter, except that the numbers in it have been computed on
the basis of the resolution specified in the description file for the intended typesetter.

The output language is simple:

- 7 -

sn size in points
fn font as number from 1 to n
cx ASCII character x
Cxy character \(xy; terminate xy by white space
Hn go to absolute horizontal position n. (n > 0)
Vn go to absolute vertical position n (down is positive)
hn go n units horizontally (to the right; n > 0)
vn go n units vertically (down; n > 0)
nnc move right nn, then print c (nn is exactly 2 digits!)
nb a end of line (information only -- no action needed)

b = space before line, a = after
w paddable word space (information only -- no action needed)
pn new page n begins -- set V to 0
x ...\n device control functions
D ...\n drawing functions (graphics)

Encoding small horizontal motions followed by a character as nnc shrinks the output file size by
about 35% and run-time by about 15%.

The device control and graphics commands are intended as open-ended families, to be
expanded as needed.

x i init
x T s name of typesetter is s
x r n h v resolution is n/inch, h = minimum horizontal motion, v = min vert
x p pause (can restart)
x s stop -- done forever
x t generate trailer
x f n s font position n contains font s
x H n set character height to n
x S n set slant to n

Subcommands like ‘‘i’’ are often spelled out like ‘‘init’’.

The drawing functions are

Dl dh dv draw line from current position by dh dv
Dc d draw circle of diameter d with left side here
De d1 d2 draw ellipse of diameters d1 d2
Da dh1 dv1 dh2 dv2

draw arc from current position to dh1+dh2 dv1+dv2,
center at dh1 dv1 from current position

D˜ dh1 dv1 dh2 dv2 ...
draw B-spline from current position to dh1 dv1,
then to dh2 dv2, then to ...

In all of these, dh dv is an increment on the current horizontal and vertical position, with down
and right positive.

Blanks, tabs and newlines may occur as separators in the input, and are mandatory to sepa-
rate constructions that would otherwise be confused.

To illustrate, the following is the output from the input

hello
.br
.ps 20
.ft H
goodbye

using -Tcat:

- 8 -

x T cat
x res 432 1 3
x init
x font 1 R
x font 2 I
x font 3 B
x font 4 S
V0
p1
s10
f1
H416
V72
ch
35e30l17l17on72 0
x font 0 H
f1
H416
f0
s20
V144
cg
70o70o70d73b73y67en72 0
x trailer
V4752
x stop

Here is the same output from the 202. Notice how the numbers are more than twice as big,
reflecting the higher resolution of the 202. Also notice that the font H is a standard font on the 202
so no special loading is needed to switch to it.

- 9 -

x T 202
x res 972 1 2
x init
x font 1 R
x font 2 I
x font 3 B
x font 4 BI
x font 5 H
x font 6 HB
x font 7 HK
x font 8 PO
x font 9 CH
x font 10 S
V0
p1
s10
f1
H936
V156
ch
73e63l35l35on156 0
H936
f5
s20
V312
cg
h150co
h150co
h150cd
h150cb
h150cy
h135ce
n156 0
x trailer
V10692
x stop

The output is guaranteed to be ASCII, and thus amenable to processing by all the normal
Unix tools. The language is simple — it is straightforward to write a prototype driver for a par-
ticular typesetter, especially when one can steal an existing one as a model, although it may take
some effort to make one of production quality. This form also demystifies TROFF output and
makes it possible for anyone to write other programs to process or generate it.

On the other hand, it is about twice as voluminous as the output intended for the CAT.
Cleverness (or sacrificing ASCII-ness) could bring it down to not much more than one byte per
character printed, but so far I have not felt this to be very important.

There is not really much to say about the post-processors. D202 drives the 202, DCAT drives
the CAT (although not very efficiently — the vital boustrophedon and size-sorting features are
not there), DAPS drives the APS-5, DCAN drives the Canon, and TC (notice the parallel name struc-
ture) drives the Tektronix 4014. There are also rough and ready drivers for other display termi-
nals.

Since it is easy to identify page and line boundaries, some drivers are able to offer useful
features that were not feasible with the older TROFF. For example, TC permits the user to ask for
specific pages by number, and to skip back and forth in the document. D202 displays the output
page number on the operator’s control panel and will also stop at specified pages if requested.
An experimental postprocessor called DSORT sorts the intermediate language by vertical position,
to minimize vertical motion; it is intended for printing complicated PIC diagrams and for circuit
diagrams produced by PLTROFF. (PLTROFF converts the standard Unix plot language into TROFF

- 10 -

commands.) All of the post-processors can scan their input relatively quickly to print only
selected pages.

6. New Things

During the process of making these changes to TROFF, I have made some changes to the pro-
gram that are visible to users (thus violating the avowed goal of keeping it compatible).

Some changes are simply the easing of restrictions. For example, there is no longer any
limit on the number of fonts that can occur on a page (if one’s typesetter is up to it), nor does the
.fp command that requests ‘‘mounting’’ a new font have to occur only at the beginning. Fur-
thermore, a font may be accessed merely by naming it — the command

\f(ARBell Laboratories\fP

will produce

Bell Laboratories

(The font AR is Avant-Garde Book. Obviously two-letter font names will have to go.)

Character sets can be sensibly defined since they no longer have to all be isomorphic. Thus,
for example, on the 202 the ‘‘printout’’ font

This one

includes a complete ASCII alphabet. All of the characters have the same width, even the word
space (defined by the spacewidth attribute in the font description file). Thus this font is suit-
able for printing program listings without any special precautions. On the other hand, some
fonts are rather small, containing only a handful of characters.

Larger and smaller point sizes are available, although there are still some limitations. For
example, \s72 is still parsed as a 7 point 2, since changing this would affect at least EQN and
probably other programs as well. (Sadly, EQN had to be changed anyway — it also accepts an
option of the form -Txxx.) But .ps 72 works fine: each input size is mapped into the closest
legal size for the current typesetter. Fractional point sizes are not allowed and may never be.

Character height and slant may be set independently of character width, for those typeset-
ters that allow these operations. \H’n’ sets the character height to n points, \H’±n’ sets it to ±n
from the current point size, and \H’0’ restores it to normal height. \S’n’ sets the slant to n
degrees positive or negative; if n is zero, slanting is turned off.

Some obsolete commands have been eliminated (e.g., .fz, .li; the command line options
for constant-size printing and suppressing boustrophedon; all code related to GCOS).

A new command .sy has been added to permit calling another program from within
TROFF:

.sy command line

causes command line to be executed. The output is not automatically collected anywhere, but the
new number register \n($$ (the process id of the TROFF process) can be used to create unique file
names to be picked up with subsequent .so commands. The built-in string *(.T contains the
name of the current typesetter obtained from the -T argument or its default.

7. Graphics Commands

The most significant new facility is the ability to draw simple graphical objects — diagonal
lines, circles, ellipses, arcs, and splines — in TROFF.

The new graphical commands are

- 11 -

\D’l dh dv’ draw line from current position by dh, dv
\D’c d’ draw circle of diameter d with left side at current position
\D’e d1 d2’ draw ellipse of diameters d1 d2
\D’a dh1 dv1 dh2 dv2’

draw arc from current position to dh1+dh2 dv1+dv2,
with center at dh1 dv1 from current position

\D’˜ dh1 dv1 dh2 dv2 ...’
draw B-spline from current position by dh1 dv1
then by dh2 dv2, then by dh2, dv2, then ...

For example, the input \D’e0.2i 0.1i’ draws the ellipse , and the input \D’l.2i
-.1i’\D’l.1i .1i’ will draw the line . The position after a graphical object has been
drawn is at its ‘‘end’’, where for circles and ellipses, the end is at the right side. As with other
commands, default units are ems horizontally and line spaces vertically.

Realistically, these commands are not intended for direct use, but for preprocessors like PIC

and IDEAL.

The output generated by these commands is shown in the discussion of the TROFF output
language in an earlier section. Rather than drawing the shape in TROFF, a command with the
proper parameters is passed through to the device post-processor, which does whatever it can
with the request.

8. Loose Ends

This version of TROFF has been in use since September of 1979. Most of our experience with
it has been on the 202 and Tektronix scopes, but the CAT and APS-5 drivers have been exercised
to some degree.

As mentioned, there are some obvious things that could be improved or that remain to be
added. For instance, TROFF’s bracket-building function \b really ought to be implemented by
postprocessor, so that typesetters like the 202 can draw a character like { directly instead of syn-
thesizing it from pieces. It also appears to be necessary to add ‘‘modes’’ to permit graphical
objects to be dotted, dashed, etc.

Efficiency is always a problem, and is likely to be so forever, especially with the prolifera-
tion of preprocessors generating ever more complicated input. Small improvements (perhaps 10
percent) can be had from artifices like better table searching. Placing the temporary file upon
which TROFF stores macro definitions in memory is good for another 10-20 percent on machines
like the VAX that have enough memory. But no order-of-magnitude speedup is likely without a
gross revision of the basic design.

It is clear that TROFF ought to be replaced by something better, but, as I said above, it is far
from clear how to do the job a lot better. So for better or worse, TROFF is likely to be with us for a
long time.

Acknowledgements

I am deeply indebted to Ken Thompson and Joe Condon, without whose efforts in taming
the Mergenthaler Linotron 202 the TROFF modifications discussed here would be irrelevant.
Thompson also provided most of the character-generating software. I am also grateful to Chris
Van Wyk for the line and circle drawing algorithms and to Theo Pavlidis for the spline algorithm
used by all the postprocessors.

1. Donald E. Knuth, ‘‘Mathematical typography,’’ Bulletin (New Series) of the American Mathe-
matical Society 1(2) (1979).

2. J. F. Ossanna, ‘‘NROFF/TROFF User’s Manual,’’ Comp. Sci. Tech. Rep. 54, Bell Laborato-
ries, Murray Hill, NJ (October 1976).

3. Brian W. Kernighan, ‘‘PIC — A Crude Graphics Language for Typesetting,’’ Comp. Sci.
Tech. Rep. 85, Bell Laboratories, Murray Hill, NJ. Also in SIGPLAN Symposium on Text

- 12 -

Manipulation, Portland, June 1981.

4. Christopher J. Van Wyk, ‘‘A Graphics Typesetting Language,’’ SIGPLAN Symposium on
Text Manipulation, Portland (June, 1981).

- 13 -

Appendix: Summary of Language Changes

This appendix enumerates the changes to the TROFF language since the last printing of the
manual.

Command line arguments

The argument -Txxx loads parameters and character definitions for typesetter xxx, which
at the moment is typically one of 202, aps or cat.

-Fxxx causes font information to be loaded from directory xxx instead of the default
/usr/lib/font/dev202.

Graphics commands

As described in section 7.

Other new commands

.sy commandline executes the command, then returns. Output is not captured anyplace.

.cf file copies file into the TROFF output file at this point, uninterpreted. Havoc ensues
unless the motions in the file restore current horizontal and vertical position. This command
hasn’t been used much, and is probably a bad idea anyway.

.pi program (pipe the output into program) now works in TROFF as well as NROFF, since it
makes somewhat more sense to allow it.

\H’n’ sets the character height to n points. A height of the form ±n is an increment on the
current point size; a height of zero restores the height to the point size.

\S’n’ sets the slant to n degrees. n may be negative.

The number register $$ contains the process id of the TROFF process.

The string .T contains the name of the current typesetter (e.g., 202, aps, cat).

The .fp command accepts a third argument that causes the data for the font to be loaded
from that directory. This has been added as a first step to allowing dynamic character defini-
tions.

The .ft command causes the named font to be loaded on font position 0 (which is in all
other ways inaccessible) if the font exists and is not currently mounted by default or by a .fp
command. The font must be still or again in position 0 when the line is printed.

Transparent mode (\!) has been fixed so that transparent output actually appears in the
output; thus special commands can be passed through to postprocessors by witchcraft like

.if "*(.T"202" \!x ...

(If this makes no sense to you, you shouldn’t be using it anyway.)

Deletions

The .fz and .li commands are no more. The -p, -g and +n command line arguments
have also been eliminated, as has the hp number register.

