
Running head: GNU HURD: DESIGN & FUTURE PROSPECTS 1

GNU Hurd: Design, Implementation, and Future Prospects
of the Microkernel-Based Operating System

Cameron C. Crowson, Ph.D.
Department of Computer Science, Texas A&M Commerce

GNU HURD: DESIGN & FUTURE PROSPECTS 2

Abstract

This literature review aims to conduct a comprehensive and critical analysis
of the existing research on GNU Hurd, which is a microkernel-based
operating system. The review focuses on aspects such as the design,
implementation, advantages, disadvantages, complexities, and cost
considerations of GNU Hurd. Moreover, it examines the involvement of
companies in the GNU Hurd ecosystem and explores future trends along
with the potential developments of the operating system. This is followed by
a discussion of the theoretical and conceptual framework of GNU Hurd,
including its object-based architecture and multi-server structure. The
objectives of this review were achieved through a systematic literature
search that encompassed relevant research databases, applying predefined
selection criteria. Through the examination of theoretical foundations,
practical applications, and potential implications of GNU Hurd, a holistic
understanding of this innovative operating system has been formulated.

Keywords: GNU Hurd, microkernel operating system, design and
implementation, object-based architecture, multi-server structure,
extensibility and integration, complexity and cost, usability, future trends

GNU HURD: DESIGN & FUTURE PROSPECTS 3

Table of Contents

List of Tables..4

INTRODUCTION...5

What is GNU Hurd?...5

Historical Timeline and Perspectives of GNU Hurd....................................5

Purpose of the Study..7

Research Questions...7

Vocabulary: Key Terminology and Definitions...7

Nature of the Study..9

Summary..9

LITERATURE REVIEW..9

Literature Search Procedure...10

Theoretical and Conceptual Framework..11

Object-Based Architecture...11

Multi-Server Structure...11

Extensibility and Integration...12

User Empowerment...12

Goals and Purposes of GNU Hurd...12

Subcomponents of GNU Hurd and their Functions...................................13

Interconnections and Support among GNU Hurd Subcomponents...........13

Interfaces...14

Procedures...15

Protocols..15

Complexities and Costs of Implementing GNU Hurd................................16

Pros and Cons of GNU Hurd..17

Future Trends of GNU Hurd..17

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS......................18

Summary of Findings...18

Interpretation of the Findings...18

Recommendations for GNU Hurd..20

Conclusion..20

REFERENCES...22

GNU HURD: DESIGN & FUTURE PROSPECTS 4

List of Tables

Table 1. List GNU Hurd Interfaces...15

Table 2. List of GNU Hurd Procedures...16

Table 3. List of GNU Hurd Protocols..16

Table 4. List of the Basic Pros and Cons of the GNU Hurd System..............18

GNU HURD: DESIGN & FUTURE PROSPECTS 5

INTRODUCTION

What is GNU Hurd?

GNU Hurd is a microkernel-based operating system designed to
overcome limitations that afflict Unix and Linux. According to Walfield and
Brinkmann [2007], GNU Hurd features an object-based architecture and
interfaces that enhance extensibility, integration, and usability. Further, it is
built upon the Mach microkernel and adopts a multi-server structure with a
distributed naming framework [1]. Fault isolation is ensured in GNU Hurd
by implementing objects as closures within user-space servers, while
communication between these objects is facilitated through secure and
unforgeable references called capabilities, which allows the use of canonical
interfaces for tasks such as file system operations, I/O, authentication, and
process management [1].

As part of the ongoing community project, Debian GNU/Hurd is an
operating system that is currently being developed as a platform for
development as well as server and desktop usage. Although it is still under
active development and lacks the performance and stability of a production
system, efforts are underway to port 75% of Debian packages to GNU/Hurd
[2]. Furthermore, individuals can install Debian GNU/Hurd, familiarize
themselves with the system, and engage with the mailing lists to understand
the current state of development, along with offering assistance [2].

GNU Hurd aims to develop a versatile kernel that is suitable for the
GNU operating system in order to empower users and programs by
providing them extensive control over their computing environment. Its goal
is to provide a practical solution for everyday use, thus ensuring that users
can maximize their level of control and customization [3].

Historical Timeline and Perspectives of GNU Hurd

The following timeline reveals several historical developments in the
GNU Hurd microkernel system, providing a comprehensive outline of the
project’s evolution [4, 5]:

 1983: Richard Stallman launches the GNU project with the goal of
creating a complete operating system.

 Late 1980s: The GNU project is missing a suitable kernel for its
operating system.

 1986: The Free Software Foundation (FSF) starts working on
implementing the changes needed in TRIX, a primitive kernel
mentioned in the GNU Manifesto.

 1987: Richard Stallman suggests developing a kernel based on the
Mach microkernel, which would later be known as “Hurd.”

 1990: The FSF expresses interest in a multi-process kernel running on
top of Mach, with the hopes of using it for the GNU system.

 1991: The FSF announces that the Hurd running on Mach is GNU’s
official kernel.

GNU HURD: DESIGN & FUTURE PROSPECTS 6

 1992: Linus Torvalds and Andrew Tanenbaum engage in a debate
about microkernels versus monolithic kernels, with Linux eventually
overshadowing Hurd.

 1996: GNU Hurd 0.1 is released.
 1997: GNU Mach 1.0, 1.1, 1.1.1, and 1.1.2 are released.
 1998–2003: Development updates start, and personal views of Marcus

Brinkmann on Hurd development are published.
 2002: GNU MIG 1.3, libio-based glibc, GNU Mach 1.3, and Hurd L4

development starts.
 2003: Crosshurd and Hurd/L4 developments start.
 2005: Hurd/L4 at Libre Software Meeting
 2007: FOSDEM participation, Hurd critique and position paper, Hurd

on Xen, and more
 2008: Successful Google Summer of Code (GSoC) projects and

Hurd/Viengoos development
 2009: GSoC projects on unionmount translator and Device Drivers in

Userspace; significant progress in building Debian packages
 2010: Arch Hurd, Nix port, DDE, GSoC projects, and increased

package build percentage
 2011: GNU Hurd 0.401 release, XKB development, attention from the

press, GSoC projects, and increased package build percentage
 2012: DDE progress, continuous testing with Nix, improved

debugging, and more
 2013: GNU Hurd 0.5, GNU Mach 1.4, and GNU MIG 1.4 are released.
 2013: Debian GNU/Hurd 2013 (“wheezy”) is released, bringing new

energy to the Hurd project.
 2015: Debian GNU/Hurd 2015 (“jessie”) is released, marking another

milestone for the Hurd project.
 2016: GNU Hurd 0.8, GNU Mach 1.7, GNU MIG 1.7, GNU Hurd 0.9,

GNU Mach 1.8, and GNU MIG 1.8 are released.
 2017: Debian GNU/Hurd 2017 (“stretch”) is released, leading to

further improvements and updates to the operating system.
 2021: Debian GNU/Hurd 2021 (“bullseye”) is released, showcasing

ongoing development efforts and providing an updated version of the
Hurd operating system.

When discussing the evolution of microkernels into the 21st century, four
key perspectives can provide additional context for the design,
implementation, and future prospects of the microkernel-based operating
system. These are as follows:

1. Technical Perspective: This perspective focuses on the technical
aspects of a system and involves understanding how people and
processes interact while managing different technical elements. It
encompasses the structure of entities, roles, and processes, which
include computational components such as storage, servers, and

GNU HURD: DESIGN & FUTURE PROSPECTS 7

databases. Further, it provides patterns for effectively using these
components [6].

2. Community Perspective: This perspective stresses the importance of
actively participating and leading in our respective communities. It
recognizes the challenges of isolation and emphasizes the need to
break free from self-centered concerns. By becoming community
leaders, individuals can experience personal growth, develop skills,
and make a positive impact on the world. Moreover, engaging in
community work connects diverse individuals, fosters skill acquisition,
and inspires others to create change [7].

3. Historical Perspective: This perspective involves understanding and
interpreting the past by considering the social, cultural, intellectual,
and emotional contexts that shape people’s lives and decisions. It
challenges contemporary assumptions by recognizing the differences
between historical societies and our own. A historical perspective
allows for a deeper understanding of human experiences, thus
providing alternative viewpoints for the evaluation of current
concerns [8].

4. Future Perspective: This perspective involves understanding as well
as projecting the potential developments and trends that are expected
to shape the future, particularly in the field of higher education. It
relies on examining experiences of the recent past and incorporating
insights from various experts to form an informed view of what lies
ahead. Additionally, it helps anticipate and prepare for future changes
in the educational landscape [9].

With the help of the aforementioned timeline, we can observe the historical
unveiling of the GNU Hurd microkernel system. This project began in 1983,
and its evolution is still ongoing into the 21st century. The timeline also
discusses the technological efforts made as part of the ongoing
development, such as the release of GNU Hurd, GNU Mach, and GNU MIG.
Moreover, as part of the community involvement initiative, the Debian
GNU/Hurd distributions were released in 2013 and continue to the present
day. We can consider the future trends of the GNU Hurd project on the basis
of its current uses in a collection of servers, network protocols, file access
control, and other features through integration into Unix and Linux systems
[3].

Purpose of the Study

This literature review aims to conduct a comprehensive and critical
analysis of the existing research on GNU Hurd. The review is concerned
with (1) identifying and defining current knowledge concerning GNU Hurd;
(2) exploring the design, implementation, and functions of GNU Hurd; (3)
evaluating the advantages, disadvantages, complexities, and cost of
implementing GNU Hurd; (4) examining the involvement of various

GNU HURD: DESIGN & FUTURE PROSPECTS 8

companies in the use of the GNU Hurd system; and (5) identifying the
future trends and potential developments of GNU Hurd.

Research Questions

The main research question is as follows: “What is the current state of
the knowledge, design, implementation, advantages, disadvantages, and
future trends concerning GNU Hurd as a microkernel-based operating
system?”

This leads us to consider the following sub-questions:

1. How does the design and implementation of GNU Hurd, with its
object-based architecture and multi-server structure, overcome the
limitations that afflict the Unix and Linux systems?

2. What are the key subcomponents of GNU Hurd?
3. What are the complexities and costs associated with implementing

GNU Hurd; moreover, what are the advantages and disadvantages of
using this microkernel-based operating system?

4. How do various companies contribute to the GNU Hurd ecosystem,
and what is their involvement in developing and supporting the
operating system?

5. What are the future trends and potential developments in GNU Hurd,
and what advancements can be expected in terms of its functionality,
stability, and performance?

Vocabulary: Key Terminology and Definitions

 Canonical Interfaces: This is a standardized mechanism that allows
diverse data models or systems to integrate and interact. It provides a
common vocabulary and functions to map and manipulate data across
different databases, ensuring interoperability and facilitating
information exchange [10].

 Debian GNU Hurd: Debian GNU/Hurd is an operating system created
by the Debian project that employs the GNU Hurd suite of servers on
the GNU Mach microkernel as its foundation, which distinguishes it
from Debian GNU/Linux. It strives to provide an extensive array of
software applications and establish compatibility with Debian
GNU/Linux in due course [11].

 Extensibility: Extensibility refers to a system’s ability to expand and
enhance its functionality. Unlike Unix, which lacks extensive support
for system call interception and modification, the GNOME and KDE
projects have developed separate interfaces to provide users with a
more integrated experience to overcome these limitations [12].

 Fault isolation: This approach involves confining untrusted code to a
specific section of memory known as the fault domain. It restricts the
code’s ability to affect or interfere with other parts of the system,
effectively containing any potential faults or errors within the isolated
boundaries [13].

GNU HURD: DESIGN & FUTURE PROSPECTS 9

 GNU Hurd: GNU Hurd is a kernel created by the GNU project to serve
as a replacement for the Unix kernel. It comprises a collection of
servers that operate on the Mach microkernel, thereby enabling the
implementation of various functionalities such as file systems,
network protocols, file access control, and other features that are
commonly associated with Unix or Linux kernels [3].

 Mach Microkernel: The GNU Mach microkernel forms the core of a
GNU Hurd system, providing a means for the Hurd to establish
communication between processes and define interfaces for the
implementation of essential operating system services using a
distributed, multi-server approach. GNU Mach 1.8, which is
maintained by the GNU project’s Hurd developers, is the latest
release. It is compatible with x86 machines and incorporates Linux
2.0 device drivers through the glue code [14]

 Microkernel: This refers to a streamlined kernel design approach that
focuses on minimizing the core components of an operating system
while maximizing implementation flexibility. It originated in the work
of Per Brinch-Hansen and has since been explored further by
researchers such as Liedtke, Úlfar Erlingsson, and Athanasios
Kyparlis, all of who have contributed to the understanding and
development of microkernel concepts [15].

 Multi-server Structure: This refers to an architectural design where
multiple servers collaborate to perform the functions that are typically
handled by a single monolithic kernel. This setup enables efficient
resource management, real-time capabilities, and quality service.
However, it also necessitates mechanisms to account for resources,
prevents denial-of-resource attacks, and introduces the concept of
resource containers for secure allocation and recovery. These
considerations stem from the distributed nature of a multi-server
system, the requirement for accurate prediction and control of
resource access, and the need to ensure secure and controlled
resource allocation at a global scale [1].

 Object-based architecture: Object-based architecture refers to a
design approach adopted by the Hurd operating system that is
characterized by its ability to evolve and adapt while maintaining its
core principles. This architecture allows Hurd to undergo significant
changes and enhancements without requiring a complete rewrite.
Furthermore, it offers compatibility with existing programming and
user environments, scalability for efficient performance on various
hardware configurations, extensibility for kernel modifications and
experimentation, stability through isolated kernel component
development, and availability as a functional and usable software in
the present [16].

 Porting: This entails modifying and adapting software programs from
the Debian archive to ensure their successful compilation and
functionality on the Hurd platform. It involves resolving build failures,

GNU HURD: DESIGN & FUTURE PROSPECTS 10

analyzing errors, collaborating through mailing lists and task
trackers, and utilizing available guidelines and resources for effective
porting [17].

 Usability: This refers to its practicality and functionality for everyday
use. While it offers a complete and usable experience, it may not be
suitable for production due to existing bugs and missing features,
even though it serves as a solid foundation for further development
and non-critical application usage [18].

Nature of the Study

This literature review hopes to provide a comprehensive and critical
analysis of the existing research on GNU Hurd. This study examined a
range of scholarly works, technical documents, and relevant sources with
the aim of synthesizing and evaluating the available literature to gain a
thorough understanding of GNU Hurd. The analysis encompasses various
aspects of GNU Hurd, including its goals and purposes, the standards and
platform governing it, its design and implementation approaches, its
subcomponents and their functions, its complexity and cost considerations,
and its associated pros and cons. Furthermore, a thorough analysis was
performed concerning the theoretical and conceptual frameworks,
encompassing relevant theories and applications related to the microkernel
architecture and structure, the existing extensibility and integration, and
user empowerment.

Summary

GNU Hurd is a microkernel-based operating system that aims to
overcome the limitations that afflict Unix and Linux by adopting an object-
based architecture and a multi-server structure. Although it offers
extensibility, fault isolation, and canonical interfaces, it is still under active
development and lacks the stability and performance of a production
system. However, it serves as a solid foundation for further development
and non-critical application usage, with ongoing efforts to port Debian
packages to GNU/Hurd and provide a practical solution for everyday use.

The rest of the paper provides an overview of the design and
implementation of GNU Hurd, including the approaches and techniques
used. Moreover, it delves into the subcomponents of GNU Hurd such as
GNU Mach, memory manager, process manager, inter-process
communication (IPC), dynamic data exchange (DDE) Kit, device driver
development libraries, device driver framework, Hurd servers, GNU Hurd
libc, system console, and translators in order to provide insights into their
functions and interconnections. The complexities and costs associated with
the implementation of GNU Hurd are discussed, followed by an analysis of
the pros and cons associated with the system. The involvement of various
companies in the GNU Hurd ecosystem is also explored. Furthermore,
future trends of GNU Hurd are also examined, highlighting potential

GNU HURD: DESIGN & FUTURE PROSPECTS 11

developments and advancements. Finally, the paper concludes with a
summary of the findings.

LITERATURE REVIEW

The literature review has a twofold objective, which is to synthesize as
well as analyze the existing research on the theoretical and conceptual
framework of GNU Hurd. This review encompasses a wide range of aspects
related to GNU Hurd, delving into the goals and purposes of GNU Hurd, the
standards and platform that govern its operations, and the various design
and implementation strategies and techniques employed by it. Further, this
review examines the functions of the subcomponents within GNU Hurd,
exploring their interconnections and the support they provide to the system
as a whole. It also explores the complexities and cost considerations
associated with the implementation of GNU Hurd by identifying the
advantages as well as the disadvantages of adopting this system.

Furthermore, this literature review investigates the involvement of
companies in the GNU Hurd ecosystem, along with the potential future
trends that may shape the development and adoption of GNU Hurd. This
comprehensive examination encompasses not only the technical aspects of
GNU Hurd but also the communal, historical, and future perspectives
surrounding this innovative operating system. Thus, by exploring these
multiple dimensions, the review aims to provide a holistic understanding of
GNU Hurd, shedding light on its theoretical foundations, practical
applications, and potential implications for the broader computing
landscape.

Literature Search Procedure

The literature search procedure employed for this review ensured a
systematic and comprehensive approach to gathering relevant sources. For
this, the following steps were implemented:

1. Scope and Timeframe: A clear scope of the study was defined to
determine the boundaries of the literature search. The timeframe for
selecting relevant technical literature was carefully established to
include the most recent and influential publications in the field.

2. Keywords and Phrases: Appropriate keywords and phrases were
identified to effectively search research databases and retrieve
relevant scholarly articles, technical reports, and other valuable
sources. The selection of keywords and phrases was based on a
thorough understanding of the research topic and the terminology
commonly used in the domain of GNU Hurd.

3. Research Databases: A range of reputable research databases,
relevant to the field of GNU Hurd, were selected for the literature
search. These databases provide access to a wide array of scholarly
resources, which ensures a comprehensive coverage of the literature.

GNU HURD: DESIGN & FUTURE PROSPECTS 12

4. Selection Criteria: Specific criteria were predefined to govern the
selection of literature for this review. These criteria encompass
various factors to ensure the inclusion of high-quality and relevant
sources. Considerations included the alignment with the research
topic, the robustness of the research methodology employed, the
credibility and reliability of the sources, and the currency of the
publication. By adhering to these well-defined criteria, the literature
review guarantees the inclusion of scholarly works that contribute
significantly to the theoretical and conceptual framework of GNU
Hurd.

To identify relevant literature on the topic, the researcher conducted
a thorough search across specified online databases such as IEEE Xplore,
ACM Digital Library, ScienceDirect, Google Scholar, ACM SIGOPS
Operating Systems Review, the official GNU Hurd website, and Usenix
Association. The search was guided by carefully chosen keywords and
phrases, such as “theoretical framework of microkernel operating systems,”
“standards and platforms governing GNU Hurd,” “design and
implementation of GNU Hurd,” “implementation approaches and
techniques,” “subcomponents of GNU Hurd and their functions,”
“complexity and cost considerations in implementing GNU Hurd,” “pros and
cons of GNU Hurd,” “companies involved in the GNU Hurd ecosystem,” and
“future trends of GNU Hurd.”

The search process encompassed a diverse range of scholarly
research articles, technical reports, and other valuable sources,
contributing to a comprehensive understanding of the microkernel-based
operating system. It is important to note that this rigorous approach has
been consistently applied throughout all subsequent sections of this
literature review.

Theoretical and Conceptual Framework

The theoretical framework of GNU Hurd encompasses a set of core
principles and conceptual foundations that define its design, development,
and operation. This framework addresses limitations in Unix by adopting
the following [1]:

a) an object-based architecture
b) a multi-server structure
c) enabling extensibility and integration
d) user empowerment

Thus, the theoretical framework of GNU Hurd aims to overcome the
limitations of traditional operating systems and serve as a foundation for
understanding its standards, implementation approaches, subcomponents,
complexities, and future trends [1]:

GNU HURD: DESIGN & FUTURE PROSPECTS 13

Object-Based Architecture

In the early to mid-1980s, the concept of object-based architecture
emerged as a means to reduce execution overhead in object-oriented
languages. Dally and Kajiya [1985] proposed that this architecture
incorporates hardware mechanisms and abstract instructions to provide
instruction safety, late binding, and extensibility to optimize the execution of
object-oriented code [19]. Moreover, the proposed architecture introduces
abstract instructions, floating-point addresses, and hardware support for
context allocation [19]. As for the implementation process, this architecture
utilizes a communication-oriented processor (COM), which is a specialized
processor optimized for communication systems, after considering factors
such as data rates, algorithm complexity, adaptability, and support for
various interfaces and applications, along with a specific focus on the
challenges in the physical layer design [20].

The object-based architecture offers a raised level of hardware and
software interface, improved software design methodology, integration of
system management and control, flexibility and extensibility, enhanced
program environments and intercommunication, efficient object addressing
and protection, and object-oriented instruction interface [21] Because of the
proposed benefits, several applications have adopted object-based
architecture due to its ability to offer a high-level description, support for a
variety of capabilities, and serve as a basis for system protection [22]. These
include companies such as IBM System 38, Carnegie-Mellon experimental
C.mmp/Hydra, and Intel iAPX 432.

Multi-Server Structure

The multi-server architecture involves the replication of content
across multiple servers, with the replication process including the
downloading of modified files from the parent server to subordinate servers
[23]. In contrast, the single server configuration consolidates all server
components on a single computer, where clients connect through a listener
that forwards requests to the appropriate server components, offering
options for load balancing at the listener or read/write instances [24].
Moreover, the choice between the two structures heavily depends on factors
such as scalability, resource utilization, and the specific requirements of the
environment.

As for the examples of the utilization of a multi-server structure, the
City University of Hong Kong described the uses of a multi-server structure
in their application called CyberWalk. This application utilizes adaptive data
partitioning, allowing multiple servers to handle increasing user numbers in
a distributed virtual walkthrough system by managing specific regions of
the virtual environment and dynamically balancing the load [25]. Another
example was proposed by Zhang et al. [2023], which involves the use of a
multi-server-assisted data-sharing structure that is utilized for a metaverse
healthcare system [26]. This system involves the use of multiple servers to

GNU HURD: DESIGN & FUTURE PROSPECTS 14

assist in encryption and decryption operations, providing several benefits
such as reduced computational overhead, independent encryption overhead,
and assisted encryption and decryption [26].

Overall, the benefits of a multi-server structure are evident in these
examples. It offers scalability to accommodate growing user numbers, load
balancing to ensure efficient distribution of workload, fault tolerance to
maintain system availability, performance optimization through specialized
server assignments, encryption options for enhanced security, modular and
flexible design for easy integration and maintenance, and improved overall
system security.

Extensibility and Integration

Extensibility refers to the ability of a technology or software system to
seamlessly integrate new elements and features without significant
modifications to its existing structure [27]. Conversely, integration involves
combining system components into a unified and interconnected
framework, facilitating efficient resource sharing, extensibility, and the
flexibility to replace or extend system services and, consequently, enhancing
usability and promoting collaboration [27].

User Empowerment

User empowerment is a fundamental principle for the creation of a
highly user-friendly system that emphasizes the active involvement of
individuals with disabilities in all stages of technology design and
development, surpassing their mere participation in user studies [28]. By
prioritizing user empowerment, the goal is to establish a comprehensive
framework that fosters inclusivity and empowerment for all users.

Goals and Purposes of GNU Hurd

The following key aspects were identified while addressing the goals
and purposes of GNU Hurd:

1. Overcoming Limitations: GNU Hurd aims to surpass the limitations
that afflict traditional Unix and Linux systems. By adopting an object-
based architecture and a multi-server structure, it strives to enhance
extensibility, integration, and usability.

2. Extensive Control and Customization: GNU Hurd seeks to empower
users and programs by providing extensive control over their
computing environment. It endeavors to offer practical solutions that
enable users to maximize their control and customization options.

3. Practical Everyday Usage: While GNU Hurd is still under active
development and may not yet possess the stability and performance of
a production system, it aspires to provide a complete and usable
experience for non-critical applications. Efforts are underway to port
Debian packages to GNU/Hurd to make it suitable for everyday use.

GNU HURD: DESIGN & FUTURE PROSPECTS 15

4. Community Involvement: GNU Hurd is developed as part of an
ongoing community project. Users can install Debian GNU/Hurd,
participate in mailing lists, and contribute to the development efforts.
The project encourages active engagement and collaboration within
the community.

Subcomponents of GNU Hurd and their Functions

In Mignot’s [2005] talk, the microkernel-based design of the GNU
Hurd system is described, comprising the following subcomponents [29]:

1. Microkernel (GNU Mach): This forms the foundation of the GNU Hurd
system, thereby providing essential services such as task
management, memory management, IPC, basic I/O primitives, and
device drivers.

2. Servers: These include the IPC Server for inter-process
communication, Scheduler Server for task scheduling and resource
allocation, Memory Server for memory management, File System
Servers for file operations and access, Network Servers for
networking, and additional potential servers for various
functionalities.

3. Libraries: These are used to enhance the capabilities and services
accessible to user programs, enabling easier interaction with servers
and utilization of system resources and, thus, benefiting the
applications running on the system.

4. Interfaces: These are the components of the system that act as
communication protocols and application programming interfaces
(APIs), facilitating seamless interaction between various components
such as servers, libraries, and user programs, thereby ensuring the
smooth and efficient operation of the system.

5. Translators: These are vital components of the GNU Hurd system that
serve as intermediaries between user programs and the underlying
resources by associating with nodes in the virtual file system (VFS).
They play a crucial role in handling requests, translating them into
suitable actions, and granting access to specific servers or services
based on the requested file or resource.

Mignot [2005] argued that this microkernel-based design approach
offers enhanced modularity, flexibility, and user freedom while also
effectively addressing the limitations and drawbacks associated with
monolithic kernel-based systems [29].

Interconnections and Support among GNU Hurd Subcomponents

The GNU Hurd is an operating system designed with a microkernel-
based architecture. It follows a modular approach where essential services
are separated into a minimalistic kernel, whereas most functionalities are
implemented as user-space servers. The system offers two design

GNU HURD: DESIGN & FUTURE PROSPECTS 16

approaches: mono-server systems, where a single server handles all kernel
functions, and multi-server systems, where features are split into
communicating processes [29]. Moreover, GNU Hurd emphasizes flexible
access control, secure collaboration, and persistence. It achieves this
through the use of translators to extend the namespace, as well as the
mechanisms for identity-based access control and system state restoration
[1].

The design and implementation of GNU Hurd are supported by a
robust network of interconnections established through the use of a
comprehensive set of interfaces, procedures, and protocols. These
components seamlessly enable a wide range of functionalities, including
access control, identity management, device drivers, file system operations,
and process management. Furthermore, crucial procedures such as
distributed naming hierarchy, exec_server, exec_thread, ioctl_handler, and
standard_exec_entry play indispensable roles in establishing naming
hierarchies, executing programs, managing threads, handling specific
IOCTL operations, and managing program entry points. Additionally,
protocols such as authentication, identity-based access control,
ioctl_handler, reverse authentication, remote procedure call (RPC), and
translator are instrumental in ensuring secure user/process verification,
identity-based access control, efficient handling of mobile code, inter-
program communication, and seamless translation between different
naming and access conventions.

Interfaces

Table 1 presents the comprehensive analyses conducted by Walfield
and Brinkmann [2007] and Hammar [2010], outlining the essential GNU
Hurd interfaces that significantly contribute to the functionality,
management, and interaction within the microkernel-based operating
system [1, 30]. From a thorough analysis of this research, these interfaces
can further be classified into six distinct categories, namely, access control,
file system, input/output, process management, system fundamentals, and
name resolution. These categories effectively illustrate the diverse aspects
of system functionality, encompassing access control, file system operations,
input/output operations, process management, system fundamentals, and
name resolution within the GNU Hurd microkernel operating system [1, 30].

Table 1.
List GNU Hurd Interfaces

GNU Hurd interface Explanation
Access control Mechanisms for regulating and managing the

permissions and privileges associated with
accessing system resources

Auth interface Used for managing identities and supporting
identity-based access control

GNU HURD: DESIGN & FUTURE PROSPECTS 17

Device drivers Interfaces for interacting with specific devices
Dir lookup interface Used to resolve names relative to referenced

objects, such as the root directory or current
working directory

Exec interface Used for instantiating programs
fs interface Used for examining as well as manipulating

directory and file metadata
fsys interface Used for whole file system operations and

obtaining file handles
IO interface Used for reading from data sources and writing to

data sinks
IO control (ioctl) A system call interface that provides device-

specific operations to files that are hard to express
through normal file operations

Mach 3 Kernel
Interface

Encompasses the set of interfaces and protocols
through which user-level processes interact with
the Mach 3 microkernel, including task ports,
access control mechanisms, and inter-process
communication protocols

Process interface Used for process management, including process
identifiers (PIDs) and signal delivery

Virtual filesystem An abstraction layer that provides a unified view of
different filesystems, enabling consistent access
and manipulation of directory and file metadata

Note. Adapted from A Critique of the GNU Hurd Multi-Server Operating
System by Walfield and Brinkmann [2007] and Generalizing Mobility for the
Hurd by Hammar [2010] [1, 30]

Procedures

Table 2 presents the comprehensive analyses conducted by Walfield
and Brinkmann [2007] and Hammar [2010], highlighting the crucial GNU
Hurd procedures that contributed significantly to the system’s functionality
[1, 30]. These procedures can be categorized as file system management,
process management, threading and concurrency, device and driver
management, or program execution. They play a vital role in managing
naming hierarchies, executing programs, handling program execution
within threads, managing device-specific operations, and facilitating the
entry point of executable programs within the GNU Hurd operating system
[1, 30].

Table 2.
List of GNU Hurd Procedures

GNU Hurd
procedure

Explanation

GNU HURD: DESIGN & FUTURE PROSPECTS 18

Distributed naming
hierarchy

Used to create a commonly understood
naming hierarchy without special privileges

exec_server A procedure responsible for executing
programs

exec_thread A procedure that handles the execution of a
program within a thread

ioctl_handler A procedure or function responsible for
handling a specific range of IOCTL operations;
used in the GNU C Library to handle IOCTL
requests that cannot be converted into RPCs

standard_exec_entry A procedure that handles the entry point for
an executable program

Note. Adapted from A Critique of the GNU Hurd Multi-Server Operating
System by Walfield and Brinkmann [2007] and Generalizing Mobility for the
Hurd by Hammar [2010] [1, 30]

Protocols

Table 3 presents the comprehensive analyses conducted by Walfield
and Brinkmann [2007], Mignot [2005], and Hammar [2010], outlining the
essential GNU Hurd protocols [1, 29, 30]. These protocols significantly
contribute to various aspects of the GNU Hurd system, including secure
authentication, user validation, identity-based access control, handling of
mobile code IOCTL operations, communication between client programs,
and translation between different naming and access conventions. These
protocols and procedures are categorized as authentication and access
control, device and driver management, communication and interaction, or
naming and translation. These play a crucial role in ensuring security,
efficiency, and seamless functionality within the GNU Hurd system [1, 29,
30].

Table 3.
List of GNU Hurd Protocols

GNU Hurd
protocol

Explanation

Authentication protocol A set of rules and procedures for
verifying the authenticity and validity of
users or processes in a secure manner

Identify-based access control
protocol

Supports identity-based access control
(IBAC) and secure collaboration
between entities

ioctl_handler protocol A specific protocol introduced in the
implementation of mobile code IOCTL
handlers in the Hurd; includes three
new messages in addition to the four

GNU HURD: DESIGN & FUTURE PROSPECTS 19

messages used by the standard
authentication protocol

Reverse authentication protocol A protocol used in the implementation of
the mobile code IOCTL handlers;
involves obtaining a port to a file’s
IOCTL handler module using a series of
messages exchanged between the client
and the server

RPC Used as a way to enable client programs
to request tasks from several programs
and receive responses, with stub-code
generators simplifying the development
process by handling the encoding and
decoding of parameters and results

Translator protocol Allows the linking of translators, which
translate between different naming and
access conventions

Note. Adapted from A Critique of the GNU Hurd Multi-Server Operating
System by Walfield and Brinkmann [2007] The GNU Hurd by G.L. Mignot
[2005], and Generalizing Mobility for the Hurd by Hammar [2010] [1, 29,
30].

Complexities and Costs of Implementing GNU Hurd

When discussing the complexities and costs associated with
implementing GNU Hurd, it is important to consider several key factors.
GNU Hurd is primarily developed and maintained by the FSF, with
contributions from a dedicated community of developers, enthusiasts, and
organizations who are passionate about free software and open-source
principles [31]. Moreover, GNU Hurd follows an open-source model, which
means that the development process is characterized by transparency and
community involvement. Besides, the open nature of the project fosters
innovation and encourages the sharing of ideas and solutions. It is worth
noting that the FSF and the wider community strive to minimize costs by
leveraging existing infrastructure and collaborative tools [31].

As regards the costs of implementing GNU Hurd, this mainly revolves
around the essential resources required to support the development
process. The utilization of the object-based architecture framework, multi-
server structure, and the system’s capacity to extend and integrate with
other frameworks may also contribute to these costs. According to Rattner
and Cox [1980], the object-based architecture framework is known to
emphasize integrated data abstraction and domain-based protection by
utilizing capability-based addressing and supporting high-level system
functions [21]. Furthermore, promoting effective software design
methodology enhances reliability and reduces the overall cost of the
software’s life cycle [21]. All this contributes to a lower cost and

GNU HURD: DESIGN & FUTURE PROSPECTS 20

comprehensive software design methodology. The cost arises from the
association with rich abstractions, while the cost associated with the rich
abstractions provided in GNU Hurd arises from the potential circumvention
of these abstractions for flexibility or efficiency [1].

According to Walfield and Brinkmann [2007], the implementation of a
multi-server structure in operating systems introduces costs related to
message passing, resource scheduling, and accounting, whereas the
absence of transparent resource management and real-time support in such
systems can result in inefficient resource utilization, reduced usability, and
potential security vulnerabilities [1]. Consequently, the perceived cost of
utilizing a multi-server structure is considered to be significant [1].

Pros and Cons of GNU Hurd

An extensive literature review was carried out to formulate an
inclusive compilation of the strengths and weaknesses of the GNU Hurd
system. The resulting list is presented in Table 4, which provides an
overview of the fundamental pros and cons associated with this
microkernel-based operating system. The next sections of this study explore
the strategies for addressing the identified drawbacks.

Table 4.
List of the Basic Pros and Cons of the GNU Hurd System

Pros Cons
Community-based development Cost considerations for multi-server

structure
Comprehensive design

methodology
Compatibility challenges

Extensibility and integration Cost of rich abstractions
Open-source (free software) Dependency on community support
Performance of multi-server

structure
Inefficient resource utilization

Object-based architecture Still in the development stages
Overcoming limitations with Linux Limited adoption

User empowerment with the
system

Some performance issues

Note. Adapted from a comprehensive review of the literature (various
scholarly articles published between 1980 and 2023)

Future Trends of GNU Hurd

The GNU Hurd microkernel operating system showcases its versatility
and potential across diverse industries by effectively addressing identified
drawbacks. These applications not only utilize GNU Hurd but also leverage
its strengths to enhance its performance and overcome its limitations. Tsai

GNU HURD: DESIGN & FUTURE PROSPECTS 21

et al. [2014] proposed that incorporating software solutions such as Library
OSes and Graphene presents a promising approach for efficient application
execution, which offers advantages such as security isolation and reduced
memory usage [32]. These solutions align with the goals of GNU Hurd,
which aims to optimize performance and support multi-process APIs [32].
Moreover, applications such as myThOS strive to follow a similar structure
to GNU Hurd by emphasizing efficiency, parallelism, adaptability, and
effective utilization of hardware resources [33].

King and Wilson [34] compared the evaluation and usage of object-
oriented languages in the context of evaluating RAID systems. This study
highlights the significance of GNU’s flexible and open-source nature in
assessing the performance and functionality of complex algorithms such as
Yex, which is a novel solution for the emulation of IPv7 that addresses the
challenges of distributed communication as well as demonstrates the
importance of networking in large-scale configurations [34].

Therefore, the future trend of microkernel-based operating systems is
focused on enhancing versatility and performance while addressing the
identified limitations. This includes leveraging software solutions such as
Library OSes and Graphene for efficient application execution, emphasizing
security isolation, reduced memory usage, and support for multi-process
APIs.

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS

This section provides a concise summary of the literature review and
explores its implications while offering recommendations for the GNU Hurd
system. The section encompasses the following key topics: (a) summarizing
the findings derived from the literature review, (b) interpreting the
significance of these findings, (c) providing recommendations for the
advancement of GNU Hurd, and (d) concluding the study. These aspects
have been addressed to gain a comprehensive understanding of the GNU
Hurd system and its potential implications.

Summary of Findings

The purpose of this literature review was to conduct a comprehensive
and critical analysis of the existing research on GNU Hurd. The review
aimed to achieve the following objectives: (1) identify and define the
existing literature on GNU Hurd; (2) explore the design, implementation,
and functionalities of GNU Hurd; (3) evaluate the advantages,
disadvantages, complexities, and implementation costs associated with
GNU Hurd; (4) examine the involvement of various companies in utilizing
the GNU Hurd system; and (5) identify future trends and potential
developments related to GNU Hurd.

This study attempted to enhance our understanding of the theoretical
and conceptual framework of GNU Hurd. The investigation yielded valuable
insights into the goals and purposes of GNU Hurd, the subcomponents of

GNU HURD: DESIGN & FUTURE PROSPECTS 22

the system and their respective functions, the interconnections and support
mechanisms among these subcomponents, the intricacies and costs involved
in implementing GNU Hurd, the companies that are actively engaged in its
utilization, and the pros as well as cons associated with GNU Hurd.
Additionally, the review aimed to shed light on the future trends and
potential advancements within the GNU Hurd ecosystem.

Interpretation of the Findings

This review underscores the significance of extensibility, integration,
and user empowerment within the GNU Hurd framework, highlighting how
these factors contribute to its effectiveness and adaptability. Collectively,
the findings of this review contribute to a comprehensive interpretation of
GNU Hurd and its importance in the field of operating systems.

This review also offers a critical analysis of the existing research in
this area in response to the following research questions addressed in this
study:

1. How does the design and implementation of GNU Hurd, with its
object-based architecture and multi-server structure, overcome the
limitations that afflict Unix and Linux?

2. What are the key subcomponents of GNU Hurd?
3. What are the complexities and costs associated with implementing

GNU Hurd, and what are the advantages and disadvantages of using
this microkernel-based operating system?

4. How do various companies contribute to the GNU Hurd ecosystem,
and what is their involvement in the development and support of the
operating system?

5. What are the future trends and potential developments in GNU Hurd,
and what advancements can be expected in terms of its functionality,
stability, and performance?

In this literature review, these research questions have been critically
analyzed, providing valuable insights into each aspect. The review (1) offers
a comprehensive evaluation of how GNU Hurd's design and implementation
overcome limitations found in Unix and Linux systems; (2) identifies and
explores the key subcomponents of GNU Hurd; (3) discusses the complexity,
cost, advantages, and disadvantages associated with implementing this
microkernel-based operating system; (4) examines the involvement of
various companies in the GNU Hurd ecosystem; and (5) explores the
potential future trends and advancements in terms of functionality, stability,
and performance.

First, the design and implementation of GNU Hurd with its object-
based architecture and multi-server structure overcome the limitations that
afflict the Unix and Linux systems by providing greater flexibility and
extensibility [1, 21, 34]. The microkernel design allows for better modularity
and isolation of components, leading to improved fault tolerance and easier

GNU HURD: DESIGN & FUTURE PROSPECTS 23

debugging. Further, the multi-server structure enables different services to
run independently, allowing for better resource utilization and scalability
[5]. Additionally, the object-oriented approach facilitates easier development
and maintenance of the system [21, 34].

Second, the key subcomponents of GNU Hurd include the microkernel
(Mach), the GNU servers, and the Hurd-specific utilities. The microkernel
provides essential abstractions and low-level services, whereas the GNU
servers handle higher-level functionality such as file systems, networking,
and device drivers [1, 3]. Further, the Hurd-specific utilities provide tools
for system administration and user interactions [3, 28].

Third, implementing GNU Hurd can be complex and costly due to its
unique design and relatively limited user base. The microkernel
architecture requires careful design and implementation, and the
development of compatible GNU servers can be a time-consuming process
[1]. Moreover, since GNU Hurd is not as widely used as Unix or Linux, there
may be a lack of readily available documentation, support, and software
compatibility. However, the advantages of using GNU Hurd include its
flexibility, extensibility, and potential for customization. It also offers a
unique development platform and can be tailored to specific needs.

Fourth, various individuals contribute to the GNU Hurd ecosystem
through development, support, and collaboration. Because this is an open-
source software, individuals may provide financial support to the GNU
project or allocate resources to contribute code and improvements [31].
Additionally, individuals that rely on GNU Hurd for their software
applications may have dedicated teams working on the development and
maintenance of the operating system. Besides, the involvement of
companies can help drive the development of GNU Hurd, bring in expertise
from different domains, and increase the overall adoption of and support for
the operating system [31].

Finally, advancements in functionality, stability, and performance can
be expected through ongoing development efforts. This could include
improvements in the compatibility with existing software, enhancements to
the Hurd-specific utilities, and optimizations in the microkernel and GNU
servers. Moreover, the development community may also focus on
addressing user feedback, security vulnerabilities, and expanding the
ecosystem of supported hardware and software [25, 32, 34]. This has been
explored in the leveraging software solutions such as myThOS, Library
OSes, Graphene, and Lex, as well as in applications such as the metaverse
healthcare system.

Recommendations for GNU Hurd

To ensure the long-term success and competitiveness of GNU Hurd,
attention should be paid to software and hardware design aspects.
Moreover, addressing security vulnerabilities and ensuring the
implementation of robust security measures are crucial. By learning from
the practices employed by popular operating systems such as Apple OS and

GNU HURD: DESIGN & FUTURE PROSPECTS 24

Windows OS, GNU Hurd should invest in software solutions that support
mainframe vulnerabilities, thereby enhancing the reliability and
trustworthiness of the system’s software and hardware communication.
Furthermore, efforts should be made to expand hardware and software
compatibility. By working closely with hardware manufacturers and
developers, GNU Hurd can ensure that a wider range of devices and
applications can effectively utilize the system. This expansion will not only
increase the overall usability and market adoption of GNU Hurd but also
stimulate innovation and development within the ecosystem.

Additionally, GNU Hurd can greatly benefit from improvements in
documentation, support, and collaboration. To enhance the usability of the
microkernel-based operating system, comprehensive documentation and
user-friendly resources should be provided. Clear and well-documented
instructions can help users navigate the system effectively and troubleshoot
issues more easily. Further, GNU Hurd should actively seek collaboration
with companies and organizations to bring in diverse perspectives and
resources. While bringing individual developers can contribute to the
ecosystem, establishing partnerships with companies and organizations can
lead to additional expertise and funding. Collaborative efforts can lead to
the development of new features, improved compatibility with existing
software, and the expansion of hardware support. Besides, by fostering a
collaborative environment, GNU Hurd can benefit from a wider range of
perspectives, accelerate development, and attract more users and
contributors to the system.

By focusing on these areas of improvement in documentation,
support, collaboration, software design, and hardware compatibility, GNU
Hurd can strengthen its position as a reliable and competitive microkernel-
based operating system, meeting the needs of users and attracting a
broader community of developers and supporters.

Conclusion

In conclusion, this study has provided a comprehensive analysis of
GNU Hurd, along with its design, implementation, functionalities, and
potential implications. The literature review yielded valuable insights into
the goals and purposes of GNU Hurd, the subcomponents of the system and
their functions, the advantages and disadvantages associated with GNU
Hurd, the involvement of various companies in its utilization, and the future
trends and potential advancements within the GNU Hurd ecosystem.

The findings of this study highlight the significance of GNU Hurd’s
design and implementation, which overcome limitations found in Unix and
Linux through its object-based architecture and multi-server structure.
Further, the study identified key subcomponents of GNU Hurd, which
include the microkernel, GNU servers, and Hurd-specific utilities. It also
provided insights into the complexities and costs associated with
implementing GNU Hurd, along with the advantages and disadvantages of

GNU HURD: DESIGN & FUTURE PROSPECTS 25

using it. Additionally, the study examined the involvement of various
companies in the GNU Hurd ecosystem and explored potential future trends
and advancements.

Overall, the GNU Hurd system incorporates a unique and promising
structure for the development of microkernel-based operating systems by
offering flexibility, extensibility, and user empowerment. With continued
development and support, GNU Hurd has the potential to make significant
contributions to the field of microkernel-based operating systems and
provide users with greater control over their computing environments.

GNU HURD: DESIGN & FUTURE PROSPECTS 26

REFERENCES

[1] N. Walfield and M. Brinkmann, 2007. A critique of the GNU hurd multi-
server operating system. Operating Systems Review 41, 4 (July, 2007),
30–39. https://doi.org/10.1145/1278901.1278907

[2] Debian, 2019. Debian GNU/Hurd. (March, 2019).
https://www.debian.org/ports/hurd/

[3] GNU Hurd, 2016. GNU Hurd. (December, 2016).
https://www.gnu.org/software/hurd/#:~:text=What%20is%20the
%20GNU%20Hurd,kernels%20(such%20as%20Linux)

[4]

Linux New Media USA, LLC, 2023. Exploring GNU/Hurd – The Lost
Operating System. (2023).
https://www.linux-magazine.com/index.php/layout/set/print/Issues/2013/154/
Exploring-the-Hurd/(tagID)/39#article_i10

[5] GNU Hurd, 2018. GNU Hurd/Open Issues/Anatomy of a Hurd System.
(November, 2018)
https://darnassus.sceen.net/~hurd-web/open_issues/anatomy_of_a_hur
d_system/

[6] D. W. Enstrom (2018). Guideline: Technical Perspective. Retrieved from
https://www.unified-am.com/UAM/UAM/guidances/guidelines/uam_tec
hnical_pers_C469D0B5.html#:~:text=The%20Technical
%20Perspective%20defines%20the,and%20use%20(technical
%20entities)

[7] A. Ahmed, 2023. The Importance of Developing a Community
Perspective. https://blogs.illinois.edu/view/8605/748590137

[8] The Historical Thinking Project, 2023. Historical Perspectives.
https://historicalthinking.ca/historical-perspectives#:~:text=Taking
%20historical%20perspective%20means%20understanding,and
%20actions%20in%20the%20past.

[9] U. Teichler, 2022. Globalization and the shifting geopolitics of education.
International Encyclopedia of Education 1, (2023), 239–249.
https://doi.org/10.1016/B978-0-12-818630-5.02001-7

[10] M. Manukyan and G. Gevorgyan, 2016. Canonical data model for data
warehouse? East European Conference on Advances in Databases and
Information Systems, (August, 2016), 72–79.
https://doi.org/10.1007/978-3-319-44066-8_8

https://doi.org/10.1016/B978-0-12-818630-5.02001-7

GNU HURD: DESIGN & FUTURE PROSPECTS 27

[11] Debian, 2021. Debian_GNUHurd. (September, 2021).
https://wiki.debian.org/Debian_GNU/Hurd

[12] GNU Hurd, 2010. GNU Hurd/Extensibility. (November, 2010).
https://www.gnu.org/software/hurd/extensibility.html

[13] GNU Hurd, 2009. GNU Hurd/sfi. (May, 2009).
https://www.gnu.org/software/hurd/sfi.html

[14] GNU Hurd, 2016. GNU Hurd/Microkernel/Mach/Gnumach. (December,
2016).
https://www.gnu.org/software/hurd/microkernel/mach/gnumach.html

[15] GNU Hurd, 2013. GNU Hurd/Microkernel. (September, 2013).
https://www.gnu.org/software/hurd/microkernel.html

[16] GNU Hurd, 2015. GNU Hurd/Advantages. (March, 2015).
https://www.gnu.org/software/hurd/advantages.html

[17] GNU Hurd, 2011. GNU Hurd/Hurd/Running/Debian/Debian Packages
That Need Porting. (July, 2011).
https://www.gnu.org/software/hurd/hurd/running/debian/porting.html

[18] GNU Hurd, 2015. GNU Hurd/Hurd/Status. (May, 2015).
https://www.gnu.org/software/hurd/hurd/status.html

[19] W. J. Dally and J. T. Kajiya, 1985. An object oriented architecture.
SIGARCH Comput. Archit 13, 3 (June, 1985), 154–161.
https://doi.org/10.1145/327070.327151

[20] S. Rajagopal and J. R. Cavallaro, 2005. Communication Processors.
(July, 2005).
https://scholarship.rice.edu/bitstream/handle/1911/20241/Raj2005Jul1
0Communica.PDF?sequence=1

[21] J. Rattner and G. Cox, 1980. Object-based Computer Architecture.
Computer Architecture News 8, 6 (1980).
https://dl.acm.org/doi/pdf/10.1145/641914.641915

[22] Oxford University Press, 2019. Object-oriented Architecture. (2019).
https://www.encyclopedia.com/computing/dictionaries-thesauruses-
pictures-and-press-releases/object-oriented-
architecture#:~:text=Examples%20of%20object%2Doriented
%20architecture,and%20the%20Intel%20iAPX%20432.

[23] IBM, 2021. Multiple Server Architecture. (March, 2021).
https://www.ibm.com/docs/en/tpmfod/7.1.1.3?topic=guide-multiple-
server-architecture

GNU HURD: DESIGN & FUTURE PROSPECTS 28

[24] IBM, 2021. Single Server Configuration. (March, 2021).
https://www.ibm.com/docs/en/contentclassificatio/8.8?
topic=architecture-single-server-configuration

[25] B. Ng, A. Si, R. W. Lau, and F. W. Li, 2002. A Multi-server Architecture
for Distributed Virtual Walkthrough. VRST '02: Proceedings of the
ACM symposium on Virtual reality software and technology,
(November, 2002), 163 - 170. https://doi.org/10.1145/585740.585768

[26] T. Zhang, J. Shen, C.-F. Lai, S. Ji, and Y. Ren, 2023. Multi-server assisted
data sharing supporting secure deduplication for metaverse
healthcare systems. Future Generation Computer Systems 140,
(March, 2023), 299–310. https://doi.org/10.1016/j.future.2022 .10.031

[27] R. Kazman, S. Echeverria, and J. Ivers, 2022. Extensibility. Carnegie
Mellon University. (April, 2022). http://doi.org/10.1184/R1/18863639

[28] R. E. Ladner, 2015. Design for user empowerment. Interactions 22, 2
(March, 2015), 24–29. https://doi.org/10.1145/2723869

[29] Mignot, G. L. (2005). The GNU Hurd. Libre Software Meeting.

[30] Hammar, F. (2010). Generalizing Mobility for the Hurd. (2010).
https://citeseerx.ist.psu.edu/document?
repid=rep1&type=pdf&doi=4cce9abb177cc58c199e13b82d498f3701
0c2bfc

[31] GNU, 2023. Home. Retrieved from https://www.gnu.org/home.en.html

[32] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, . . . D. E.
Porter, 2014. Cooperation and security isolation of library OSes for
multi-process applications. EuroSys '14: Proceedings of the Ninth
European Conference on Computer Systems, (April, 2014), 1–14.
https://doi.org/10.1145/2592798.2592812

[33] R. Rotta, J. Nolte, V. Nikolov, L. Schubert, S. Bonfert, and S. Wesner,
2016. MyThOS — Scalable os design for extremely parallel
applications. In 2016 Intl IEEE Conferences on Ubiquitous
Intelligence & Computing. Toulouse, France, 1165-1172.
https://doi.org/ 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0179

[34] J. King and L. Wilson, 2018. Decoupling model checking from raid in 64
bit architectures. Journal of Computer Science and Software
Engineering 10, 1 (2018). 1-6.

GNU HURD: DESIGN & FUTURE PROSPECTS 29

	List of Tables
	INTRODUCTION
	What is GNU Hurd?
	Historical Timeline and Perspectives of GNU Hurd
	Purpose of the Study
	Research Questions
	Vocabulary: Key Terminology and Definitions
	Nature of the Study
	Summary

	LITERATURE REVIEW
	Literature Search Procedure
	Theoretical and Conceptual Framework
	Object-Based Architecture
	Multi-Server Structure
	Extensibility and Integration
	User Empowerment
	Goals and Purposes of GNU Hurd
	Subcomponents of GNU Hurd and their Functions
	Interconnections and Support among GNU Hurd Subcomponents
	Interfaces
	Procedures
	Protocols
	Complexities and Costs of Implementing GNU Hurd
	Pros and Cons of GNU Hurd
	Future Trends of GNU Hurd

	DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS
	Summary of Findings
	Interpretation of the Findings
	Recommendations for GNU Hurd
	Conclusion

	REFERENCES

