[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Help-glpk] Problem infeasible is feasible for glpsol
From: |
Nicolo Giorgetti |
Subject: |
[Help-glpk] Problem infeasible is feasible for glpsol |
Date: |
Fri, 22 Apr 2005 15:00:06 +0200 |
Dear All,
Find below a very simple problem (outpb.lp) which is infeasible by
construction (row r_1 defines x_1 >=0 whereas r_6 x_1<=-1e-006).
Although there is no feasible solution for x_1 glpsol gives the
following output:
$ glpsol --cpxlp outpb.lp -o sol
lpx_read_cpxlp: reading problem data from `outpb.lp'...
lpx_read_cpxlp: 8 rows, 2 columns, 8 non-zeros
lpx_read_cpxlp: 20 lines were read
lpx_simplex: original LP has 8 rows, 2 columns, 8 non-zeros
Objective value = 0
OPTIMAL SOLUTION FOUND BY LP PRESOLVER
Time used: 0.0 secs
Memory used: 0.1M (66340 bytes)
Solution is attached below.
I don't understand why glpsol returns a feasible solution. Could
anybody give me an explanation? Thanks!
Regards,
Nicolo Giorgetti.
-------------- outpb.lp ----------------------------------------
\* Problem: Unknown *\
Minimize
obj: 0 x_1
Subject To
r_1: - x_1 <= 0
r_2: + 0.1 x_1 <= 1.000001
r_3: + 0.0633975908526212 x_2 <= 1.000001
r_4: - 0.0633975908526212 x_2 <= 1.000001
r_5: - 0.1 x_1 <= 1.000001
r_6: + x_1 <= -1e-006
r_7: - 0.0633975908526212 x_2 <= 1.000001
r_8: + 0.0633975908526212 x_2 <= 1.000001
Bounds
-10 <= x_1 <= 10
-10 <= x_2 <= 10
End
-------------- outpb.lp ----------------------------------------
-------------- sol ---------------------------------------------
Problem:
Rows: 8
Columns: 2
Non-zeros: 8
Status: OPTIMAL
Objective: obj = 0 (MINimum)
No. Row name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
1 r_1 NU 0 0 < eps
2 r_2 B 0 1
3 r_3 B -0.633976 1
4 r_4 B 0.633976 1
5 r_5 B 0 1
6 r_6 B 0 -1e-006
7 r_7 B 0.633976 1
8 r_8 B -0.633976 1
No. Column name St Activity Lower bound Upper bound Marginal
------ ------------ -- ------------- ------------- ------------- -------------
1 x_1 B 0 -10 10
2 x_2 NL -10 -10 10 < eps
Karush-Kuhn-Tucker optimality conditions:
KKT.PE: max.abs.err. = 0.00e+000 on row 0
max.rel.err. = 0.00e+000 on row 0
High quality
KKT.PB: max.abs.err. = 1.00e-006 on row 6
max.rel.err. = 1.00e-006 on row 6
Medium quality
KKT.DE: max.abs.err. = 0.00e+000 on column 0
max.rel.err. = 0.00e+000 on column 0
High quality
KKT.DB: max.abs.err. = 0.00e+000 on row 0
max.rel.err. = 0.00e+000 on row 0
High quality
End of output
-------------- sol ---------------------------------------------
- [Help-glpk] Problem infeasible is feasible for glpsol,
Nicolo Giorgetti <=