[Top][All Lists]
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Help-glpk] infeasible optimal solution
From: |
Chen Jiusheng |
Subject: |
[Help-glpk] infeasible optimal solution |
Date: |
Sat, 14 Apr 2007 11:02:35 +0800 |
Dear GLPK people,
Thanks for GLPK, it is great work.
GLPK 4.15 API routines were used in my application, the result is:
*******************Starting Optimization*******************
Objective: Max dr_glc6P
Status: solution is optimal.
Optimal objective value 0.031883 is found at:
Reaction NET XCH
Glucupt 1 0
hxi 0.968 0
pfk 0.8453 0
eno 1.354 0
pyk 0.4634 0
gdh1 0.0001 0
gdh2 0.0001 0
rpe -0.1117 0
rpi 0.1118 0
tk2 -0.08394 0
tk1 -0.02779 0
tal -0.02779 0
pdh1a 0.02293 0
pdh1b 0.02293 0
pdh2 -1.917e-015 0
glta -0.196 0
icd1 0.1679 0
icd2 0.1679 0
akd1 0.0001 0
akd2 0.0001 0
akd3 0.0001 0
fumA 0.0001 0
fumB 0.0001 0
fumC 0.364 0
mdh -0.7279 0
gs1 -0.3639 0
gs2 -0.3639 0
ppc -4.19 0
pck -5 0
mez 0.0001 0
dr_oaa1 0.2779 0
dr_rib5p 0.1396 0
dr_gap1 0.2527 0
dr_gap3 0.2527 0
dr_gap4 0.2527 0
GAP_DPG 1.354 0
AcCoA_Ac 1.104e-017 0
Pyr_Lac -1.593e-015 0
dr_glc6P 0.03188 0
dr_fru6P 0.01103 0
dr_accoa 0.5829 0
dr_pyr1 0.4406 0
dr_akg 0.1678 0
dr_akge 3.903e-015 0
dr_oaa2 0.2779 0
dr_oaa3 1.833e-015 0
dr_rib5p2aux 0.1396 0
dr_e4p 0.05615 0
dr_pep 0.08073 0
dr_gly -2.002e-015 0
dr_gap2 0 0
dr_gap3_aux 0 0
bs_co2 1.562e-016 0
Lac_ex -1.593e-015 0
Ac_ex 1.104e-017 0
Form_ex -1.917e-015 0
Eth_ex -3.614e-016 0
0: objval = -1.974571374e+000 infeas = 1.000000000e+000 (0)
29: objval = 2.830773108e-002 infeas = 0.000000000e+000 (0)
* 29: objval = 2.830773108e-002 infeas = 0.000000000e+000 (0)
* 30: objval = 3.188329160e-002 infeas = 1.332267630e-015 (0)
OPTIMAL SOLUTION FOUND
The result shows there exists optimal solution, consequently the optimal
solution is assumed to be feasible.
However, there are small violations to the feasibility, such as that net value
of Eth_ex (-3.614e-016), Form_ex (-1.917e-015), Lac_ex (-1.593e-015) and dr_gly
(-2.002e-015), which should be >= 0.
Although they are extremely small discrepancies, it is not acceptable in my
application, absolutely feasible must be guaranteed.
Is there any method can be adopted to circumvent my problem?
Any ideas will be greatly appreciated.
Many thanks,
J.S.Chen
- [Help-glpk] infeasible optimal solution,
Chen Jiusheng <=