[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [Help-glpk] Error: unable to factorize the basis matrix
From: |
Andrew Makhorin |
Subject: |
Re: [Help-glpk] Error: unable to factorize the basis matrix |
Date: |
Thu, 29 Aug 2013 22:17:27 +0400 |
On Thu, 2013-08-29 at 17:41 +0100, Cherif Mouaouia Bouzid wrote:
> Hello
>
>
> Thank you for what you are doing.
>
>
> I have a recurrent problem when solving mixed-integer LPs.
>
>
> Attached are an LP file example and its corresponding Output file.
>
> Here is the glpsol's terminal output:
>
> GLPSOL: GLPK LP/MIP Solver, v4.45
> Parameter(s) specified in the command line:
> --lp example.lp --output example.out
> Reading problem data from `example.lp'...
> example.lp:1282: warning: missing final end of line
> 952 rows, 634 columns, 2536 non-zeros
> 317 integer variables, all of which are binary
> 1282 lines were read
> GLPK Integer Optimizer, v4.45
> 952 rows, 634 columns, 2536 non-zeros
> 317 integer variables, all of which are binary
> Preprocessing...
> 952 rows, 634 columns, 2536 non-zeros
> 317 integer variables, all of which are binary
> Scaling...
> A: min|aij| = 1.000e+00 max|aij| = 4.134e+04 ratio = 4.134e+04
> GM: min|aij| = 1.655e-01 max|aij| = 6.043e+00 ratio = 3.652e+01
> EQ: min|aij| = 2.738e-02 max|aij| = 1.000e+00 ratio = 3.652e+01
> 2N: min|aij| = 3.027e-02 max|aij| = 1.262e+00 ratio = 4.167e+01
> Constructing initial basis...
> Size of triangular part = 952
> Solving LP relaxation...
> GLPK Simplex Optimizer, v4.45
> 952 rows, 634 columns, 2536 non-zeros
> 0: obj = 6.675300000e+03 infeas = 2.794e+02 (0)
> 500: obj = 9.252882224e+03 infeas = 1.295e+02 (0)
> Error: unable to factorize the basis matrix (2)
> Sorry, basis recovery procedure not implemented yet
> glp_intopt: cannot solve LP relaxation
> Time used: 0.0 secs
> Memory used: 1.0 Mb (1026045 bytes)
> Writing MIP solution to `example.out'...
>
>
>
> I'm using Ubuntu 12.04.
>
> Regards
>
>
> --
>
> Cherif, Algeria
>
Please use the most recent version of glpk, which is 4.52; see
http://ftp.gnu.org/gnu/glpk/ . There have been made some essential
improvements in the basis factorization routines, and now glpsol solves
your mip successfully:
GLPSOL: GLPK LP/MIP Solver, v4.52
Parameter(s) specified in the command line:
--lp example.lp --log example.log
Reading problem data from 'example.lp'...
example.lp:1282: warning: missing final end of line
952 rows, 634 columns, 2536 non-zeros
317 integer variables, all of which are binary
1282 lines were read
GLPK Integer Optimizer, v4.53
952 rows, 634 columns, 2536 non-zeros
317 integer variables, all of which are binary
Preprocessing...
952 rows, 634 columns, 2536 non-zeros
317 integer variables, all of which are binary
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 4.134e+04 ratio = 4.134e+04
GM: min|aij| = 1.655e-01 max|aij| = 6.043e+00 ratio = 3.652e+01
EQ: min|aij| = 2.738e-02 max|aij| = 1.000e+00 ratio = 3.652e+01
2N: min|aij| = 1.514e-02 max|aij| = 1.240e+00 ratio = 8.194e+01
Constructing initial basis...
Size of triangular part is 952
Solving LP relaxation...
GLPK Simplex Optimizer, v4.53
952 rows, 634 columns, 2536 non-zeros
0: obj = 6.675300000e+03 infeas = 1.388e+02 (0)
500: obj = 8.180770197e+03 infeas = 7.211e+01 (0)
* 634: obj = 1.185575775e+04 infeas = 0.000e+00 (0)
* 957: obj = 7.589768643e+02 infeas = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
+ 957: mip = not found yet >= -inf (1; 0)
+ 1291: mip = not found yet >= 1.314220420e+03 (273; 0)
+ 1371: >>>>> 8.712560000e+03 >= 1.314220420e+03 84.9% (301; 0)
+ 1482: >>>>> 4.443280000e+03 >= 1.358039358e+03 69.4% (304; 6)
+ 1511: >>>>> 2.317350000e+03 >= 1.444905676e+03 37.6% (158; 164)
+ 1511: mip = 2.317350000e+03 >= tree is empty 0.0% (0; 619)
INTEGER OPTIMAL SOLUTION FOUND
Time used: 7.2 secs
Memory used: 1.5 Mb (1615938 bytes)