help-glpk
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Help-glpk] glp_intopt runs forever


From: Dušan Plavák
Subject: [Help-glpk] glp_intopt runs forever
Date: Fri, 9 Jun 2017 16:49:57 +0200

Hi guys,

I would like to ask you for a help with one lp problem. We are using version 4.61 with the following code:

glp_write_lp(lp, 0, "problem.lp");

glp_iocp parm;
glp_init_iocp(&parm);
parm.msg_lev = GLP_MSG_OFF;
parm.presolve = GLP_ON;

glp_intopt(lp, &parm);


and glp_intopt() call runs "forever". I was reading docs and found note there:
Note that the GLPK branch-and-cut solver is not perfect, so it is unable to solve hard or very large scale MIP instances for a reasonable time.

The lp problem on which it freezes is following:


\* Problem: amounts *\

Minimize
 obj: + 0.03 x_6 + 0.0375 x_7 + 0.1 x_8 + 0.0333333333333333 x_9

Subject To
 r_1: + 9.281400000008 x_5 + 2.548 x_4 + 0.17905 x_3 + 2.9625 x_2
 + 1.0491 x_1 - ~r_1 = -80000
 r_2: + 9.2814 x_5 + 0.744 x_4 + 0.02325 x_3 + 0.34875 x_2 + 0.0651 x_1
 - ~r_2 = -32000
 r_3: + 4e-12 x_5 + 0.369 x_4 + 0.10291 x_3 + 1.99875 x_2 + 0.0082 x_1
 - ~r_3 = -12000
 r_4: + 4e-12 x_5 + 1.435 x_4 + 0.05289 x_3 + 0.615 x_2 + 0.9758 x_1
 - ~r_4 = -36000
 r_5: + x_5 + 10 x_4 + x_3 + 18.75 x_2 + x_1 <= 800
 r_6: + x_6 + 9.281400000008 x_5 + 2.548 x_4 + 0.17905 x_3 + 2.9625 x_2
 + 1.0491 x_1 >= 400
 r_7: - x_6 + 9.281400000008 x_5 + 2.548 x_4 + 0.17905 x_3 + 2.9625 x_2
 + 1.0491 x_1 <= 400
 r_8: + x_7 + 9.2814 x_5 + 0.744 x_4 + 0.02325 x_3 + 0.34875 x_2
 + 0.0651 x_1 >= 160
 r_9: - x_7 + 9.2814 x_5 + 0.744 x_4 + 0.02325 x_3 + 0.34875 x_2
 + 0.0651 x_1 <= 160
 r_10: + x_8 + 4e-12 x_5 + 0.369 x_4 + 0.10291 x_3 + 1.99875 x_2
 + 0.0082 x_1 >= 60
 r_11: - x_8 + 4e-12 x_5 + 0.369 x_4 + 0.10291 x_3 + 1.99875 x_2
 + 0.0082 x_1 <= 60
 r_12: + x_9 + 4e-12 x_5 + 1.435 x_4 + 0.05289 x_3 + 0.615 x_2
 + 0.9758 x_1 >= 180
 r_13: - x_9 + 4e-12 x_5 + 1.435 x_4 + 0.05289 x_3 + 0.615 x_2
 + 0.9758 x_1 <= 180

Bounds
 0 <= ~r_1 <= 160000
 0 <= ~r_2 <= 64000
 0 <= ~r_3 <= 24000
 0 <= ~r_4 <= 72000
 100 <= x_1 <= 400
 8 <= x_2 <= 16
 2 <= x_3 <= 400
 4 <= x_4 <= 20
 4 <= x_5 <= 30

Generals
 x_1
 x_2
 x_3
 x_4
 x_5

End


It does not seems to be large scale, and I am not sure if this is classified as hard problem? Also the interesting part is that on the older version of glpk it was solved without any problems.

Thanks for help.
--
S pozdravom Dušan Plavák

reply via email to

[Prev in Thread] Current Thread [Next in Thread]