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In the event that n — m = 1, there are at most two distinct extreme
points, and they are automatically adjacent since the line joining them is
the entire convex set of feasible solutions.

The above paragraphs have demonstrated that two basic feasible solu-
tions which differ from each other only in that one basic vector has been
changed to convert one solution to the other, are either adjacent extreme
points or the two solutions are degenerate and are merely different repre-
sentations of the same extreme point. Hence, when we move from one
tableau of the simplex method to the next, we either remain at the same
extreme point (fmax = 0) or move to an adjacent extreme point (0max > 0).

If in (5-12) yix < O for all 4, then (5-12) is a feasible solution for any
6 > 0. In this case, we can also show that the set of feasible solutions
(5-12) is an edge of the convex set. The proof is merely a reproduction of
the above development. However, the edge does not lead to another
extreme point, because 8 can be made arbitrarily large without driving any
variable to a negative value. The edge goes out to infinity instead. Since
either all y; < 0 or at least one yix > 0, we see that an edge emanating
from a given extreme point either leads to another extreme point or extends
to infinity.

Finally, we wish to note that the matrix A = (ay, ..., a,) performs a
linear transformation on the n-dimensional solutions space and takes it
into the m-dimensional requirements space. In particular, the convex set
of feasible solutions in the solutions space is taken into the single point b
in the requirements space.

5-7 Determination of all optimal solutions. We have shown that if k
different basic feasible solutions to a linear programming problem are
optimal, any convex combination of these basic solutions is also an optimal
solution. The simplex procedure, as we have discussed it, stops once an
optimal basic feasible solution has been obtained. It is seldom that any
effort is made to find alternative optima. In fact, most computer codes
supply a single optimum and make no provision for determining other
optimal basic feasible solutions (if there are any). Sometimes, useful
information can be obtained from the knowledge of all optimal basic
feasible solutions. Hence, it is desirable to show how they can be found.
However, there should be no economic reason for preferring one optimal
basic feasible solution to another since all optimal solutions should be
equally good. If this is not the case, then incorrect prices were assigned to
the activity vectors during the formulation of the problem.

The final simplex tableau is the starting point for finding all other
optimal basic solutions which may exist. If the optimal solution repre-
sented by the last tableau is not degenerate and if z; —.c, > 0 for each
a; not in the bas1s, then the optimal basic feasible solution is unique. No
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vector can be inserted into the basis without decreasing the value of the
objective function.

When z; — ¢; = 0 for one or more a; not in the basis, any such vector
a; can be inserted to yield a different optimal solution if y:; > 0 for at
least one ¢ and min (z3;/yij), yi; > 0, is positive. If a; enters at a zero
level, we do not obtain a different solution; the result is only a different
representation of the same degenerate extreme point. If y;; < 0 for all 4,
then a; can be inserted to give a set of optimal solutions containing at least
two variables which can be made arbitrarily large. It is also true that if
the optimal solution is degenerate, then any vector a; for which y;; = 0
for any ¢ corresponding to an xp; = 0 can be inserted into the basis. and
a new representation of the same degenerate extreme point will be obtained.
This can be done even if z; — ¢; > 0 since a; enters at a zero level.

The above paragraph suggests the procedure for finding all optimal
basic feasible solutions. Starting from the final tableau, which contains an
optimal solution to the problem, we construct a new set of tableaux, each
new tableau differing from the final tableau only in that one vector in the
basis is changed. For insertion into the basis, we consider the vectors a;
with z; — ¢; = 0 or vectors which can enter at a zero level (even if
z; — ¢; > 0). If a; enters at a positive level, we obtain an alternative
optimal basic solution. When a; enters at a zero level, we do not obtain a
different solution. However, we construct these tableaux anyway, because
in the subsequent steps they may lead to new optimal basic solutions.

We repeat the same procedure with each of the new tableaux, and obtain
some other optimal solutions which may or may not be optimal solu-
tions different from those obtained in the first step. This is continued with
each set of new tableaux until it is no longer possible to find any optimal
basic solutions different from those already obtained. It is desirable to
keep a record of all optimal basic solutions to prevent the computation of
new tableaux which only yield an optimal solution that has already been
determined. In schematic form, the process is represented by a treelike
structure, as shown for a hypothetical case in Fig. 5~7. The basic solutions
corresponding to different extreme points have different letters. and dif-
ferent degenerate basic solutions corresponding to the same extreme point
have different subscripts on the letters. In our example, there are six

———————————————————— Third set of new tableaux
--.Second set of new tahleaux

—————— First set of new tableaux

Ficure 5-7
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different optimal basic solutions (different extreme points) A, B, C, D,
E, F. After constructing a sufficient number of tableaux, we only repeat,
solutions already obtained.

Clearly, if a fair number of optimal solutions exists, a good deal of
work could be involved in determining all of them, since each change of
basis requires the computation of a whole new tableau.

If desired, the second best and third best, ete., solutions to the problem
can be found. To find the second best solution, for example, compute

J Ty

min :;/Br (25 — ¢5), z; —c¢; > 0, Yr; > 0, xgr > 0. (5-16)

This minimum is determined for each optimal tableau. Then the minimum
of all these minima is found in order to obtain the smallest possible de-
crease in z.

Let us now consider the problem whose final tableau is given in Table
4-10. To the accuracy of the computations (and this is really all that can
ever be said in numerical calculations where only a fixed number of digits
is retained) there is a vector a7 (not in the basis) with z; — ¢; = 0. Thus
the optimal solution is not unique. We know that there is one other basis
that will yield the same optimal value of the objective function. Indeed,
we can see immediately thiat there are only two basic optimal solutions.
This follows since, after a vector with z; — ¢; = 0 has been inserted into
the basis, 2; — ¢; = 2; — ¢;, and the (2; — ¢;)-row in the new tableau
with a7 in the basis will be the same as in Table 4-10. There is no vector
other than a; with z; — ¢; = 0. Furthermore, the optimal solutions are
not degenerate, and hence a vector with z; — ¢; > 0 cannot be inserted.

We can easily compute the new optimal basic solution. Note that
a7 replaces a;. Hence

0.2727
Tpy = 16.91 — 6—1-51—8- (7273) = 6.00 = Zg,
7.273
Zpe = 01818 — 40.0 = 24,
0.09091

XB3 = 6.364 + m (7273) = 100 = x3.

Of course, any convex combination of these two basic optimal solutions
will also be an optimal solution.

5-8 Unrestricted variables. Thus far our discussion of linear program-
ming has always been based on the assumption that the variables x; are
restricted to be non-negative. On ocecasions, one encounters problems of
the linear programming type in which some or all of the variables can have
any sign. Variables which can be positive, negative, or zero are called



