On Mon, Jan 21, 2013 at 8:03 AM, Mario Maio
<address@hidden> wrote:
I use lsode to solve a simple standard vibration problem with Octave 3.6.1:
function ydot=f(y,t) % 2nd order equation conversion to a 1st order system
ydot(1)=y(2);
ydot(2)=eqd(t,y(1),y(2));
end
function xdd = eqd(t,x,xd) % generic vibration
m=1;
K=1;
omega=sqrt(K/m); % pulsazione naturale oscillatore
fattore_smorzamento=0.07;
S=2*fattore_smorzamento*m*omega;
ampiezza_forzante=1;
Omega=2.5; % pulsazione forzante
forzante=ampiezza_forzante/m*sin(Omega*t);
xdd=(-S*xd-K*x+forzante)/m;
end
y=lsode("f",[0;0],(t=(0:0.1:20*pi)'));
figure(1);plot(t,y(:,2))
But the result is qualitatively different from a manual Adam-Moulton corrector implementation which agrees with the text book the example was taken from.
Add the following code to the previous:
function [x,xd,xdd]=pred_corr(dt,tp,xp,xdp,xddp,tol)
% tp, xdp, xddp are values of t, xd and xdd at previous step
xddg=xddp; % as initial guess xdd is taken same as xddp
for j=1:100
xd=xdp+dt/2*(xddp+xddg);
x=xp+dt/2*(xdp+xd);
xdd=eqd(tp+dt,x,xd);
if abs(xdd-xddg)<tol
break;
else
xddg=xdd;
end
end
end
dt=.1;
tv=0:dt:20*pi;
t=tv(1);
x=0; % initial values
xd=0;
xdd=eqd(t,x,xd);
xv=[x];
for t=tv(1:end-1)
[x,xd,xdd]=pred_corr(dt,t,x,xd,xdd,.000001);
%display([t+dt x xd xdd])
xv(end+1)=x;
end
figure(2);plot(tv,xv)
Is lsode unprecise? I have to change some settings to get more precision from lsode? (actually I already tried to change some settings but the result is the same)
Thanks.
_______________________________________________
Help-octave mailing list
address@hidden
https://mailman.cae.wisc.edu/listinfo/help-octave