|
From: | andrea console |
Subject: | Re: least square solution of b = A * x with a very huge A matrix |
Date: | Sun, 2 Jun 2013 15:00:51 +0200 |
andrea console wrote
> Hi to all,If the direct method (i.e. using kind-of inversion) doesn't work, you have
> I'm not a mathematician, but I have to solve this A*x=b problem. Since I'm
> working with high resolution "fit" files (images), the related matrices
> are
> very huge but sparse. I tried x = A\b, but it gives the error: "SparseQR:
> sparse matrix QR factorization filled" that I don't understand.
alternatives with iterative methods. There are a number of variations around
the conjugate gradient method: bi-conjugate, ... Have a look at cgs, bicg,
bicgstab info pages. The difficult point is to find a good preconditionner;
Octave still lacks ilu (non-symmetric A) and ichol (symetric A), but work is
ongoing. If your matrix is diagonal dominant, a simple choice is
diag(sqrt(diag(A)))
Regards
Pascal
--
View this message in context: http://octave.1599824.n4.nabble.com/least-square-solution-of-b-A-x-with-a-very-huge-A-matrix-tp4653402p4653600.html
Sent from the Octave - General mailing list archive at Nabble.com.
_______________________________________________
Help-octave mailing list
address@hidden
https://mailman.cae.wisc.edu/listinfo/help-octave
[Prev in Thread] | Current Thread | [Next in Thread] |