----- Original Message -----
From: Thomas D. Dean
To: help-octave
Cc:
Date: 2015/6/15, Mon 15:18
Subject: Equation Display or Problem
Back to my previous problem. I expected to bet the same system from either the
zpk or equation representation. But, they are different
octave:1869> clear all
octave:1870> a0 = 1e5;
octave:1871> w1 = 1e4;
octave:1872> w2 = 1e6;
octave:1873> s = tf('s');
octave:1874> a_eqn = a0/(1+s/w1)/(1+s/w2)
Transfer function 'a_eqn' from input 'u1' to output ...
1e+05
y1: --------------------------
1e-10 s^2 + 0.000101 s + 1
Continuous-time model.
octave:1875> a_zpk = zpk([],[w1,w2],a0)
Transfer function 'a_zpk' from input 'u1' to output ...
1e+05
y1: ------------------------
s^2 - 1.01e+06 s + 1e+10
Continuous-time model.
octave:1876> a_eqn(w1)
ans = 4.9495e+04 - 5.0495e+04i
octave:1877> a_zpk(w1)
ans = 4.9495e-06 + 5.0495e-06i
Is this correct? What am I doing wrong?
I am not familiar with control theory but I did experiments.
Why did you define "a_eqn" as "a0/(1+s/w1)/(1+s/w2)"?
instead of help
a_eqn = a0/(s+w1)/(s+w2)
a_eqn = a0/(s+w1)/(s+w2)
Transfer function 'a_eqn' from input 'u1' to output ...
1e+005
y1: --------------------------
s^2 + 1.01e+006 s + 1e+010
a_eqn(w1)
ans = 4.9495e-006 - 5.0495e-006i
a_zpk = zpk([],[w1,w2],a0)
Transfer function 'a_zpk' from input 'u1' to output ...
1e+005
y1: --------------------------
s^2 - 1.01e+006 s + 1e+010
a_zpk(w1)
ans = 4.9495e-006 + 5.0495e-006i
The sign of coefficient of first order in s is different.
Thus a_eqn(w1) and a_zpk(w1) are complex conjugate
help zpk
Function File: SYS = zpk (SYS)
<snip>
Create transfer function model from zero-pole-gain data.
"zero-pole-gain"
Are not this correct?
a_zpk = zpk([],[-w1,-w2],a0)
Tatsuro