
QuadgF, an Octave subroutine to integrate strongly oscillatory

functions.

September 23, 2019

1 Introduction

In order to perform di�raction calculations it is necessary to integrate numerically functions of type∫
f (x) exp {i · k · g (x)} dx

with values of parameter k of the order of 104, which gives rise to a strongly oscillating integrant, that the
standard squares of octave do not handle properly. As I didn't �nd any octave/matlab function already
made to integrate strongly oscillatory functions, I decided to write one myself.

Browsing the bibliography on the subject, I found an article by L.F. Shampine, reference [1], which
describes an algorithm that seemed easy to implement to me. In fact, the proposed algorithm is an
improvement of the SSP method [2, 3], which possibly Mr. Shampine did not know, since he does not
mention it in his bibliography.

In his article, Professor Shampine talks about a function he implemented, quadgF, based on the
algorithm, but as much as I looked for it I couldn't �nd it -quadgF.m-. So I implemented it as well as I
could, trying to vectorize it as much as possible, and kept the name used in [1].

1.1 Function use:

• [q, num_iter] = quadgF(f, g, limI, limS)

• [q, num_iter] = quadgF(f, g, limI, limS, tol)

• [q, num_iter] = quadgF(f, g, limI, limS, tol, max_iter)

Input variables:

• f and g are function handles. Both functions must be vectorized and return a vector of output
values when given a vector of input values

• lim_I and lim_S are the lower and upper limits of integration. Both limits must be �nite.

• The optional argument tol de�nes the absolute tolerance with which to perform the integration.
The default value is 1e-6.

• The optional argument max_iter de�nes the maximum number of iterations the principal loop
performs. The default is 5. The user can set a higher number, but a very large number of num_iter

means the algoritm used in this function is not suitable for calculating the integral.

Output variables

• The result of the integration is returned in q, a scalar comples or real number.

• The optional output num_iter, a positive integer, indicates the number of iterations the principal
loop performs.

1



2 Algorithm

The quadgF function evaluates numerically integrals of type:

I =

∫ limS

limI

f (x) exp {ig (x)} dx (1)

by means of an adaptive, strongly vectorized quadrature described in [1]. To do this, it divides the
integration interval, [limI, limS] into sub-intervals and approximates the functions f (x) and g (x) by
cubic splines in each of the sub-intervals:

I ≈
N∑
m=1

Qm =

N∑
m=1

∫ xm+1

xm

S (x) eis(x)dx =

N∑
m=1

∫ h

0

S (t) eis(t)dt (2)

being: h = xm+1 − xm, t = x− xm and

S (t) = b1 + b2t+ b3t
2 s (x) = a1 + a2t+ a3t

2 (3)

where the coe�cients ai and bi are given in each sub-intervals by:

b1 = fm b2 =
4fm+1/2 − 3fm − fm+1

h
b3 =

2fm − 4fm+1/2 + 2fm+1

h

a1 = gm a2 =
4gm+1/2 − 3gm − gm+1

h
a3 =

2gm − 4gm+1/2 + 2gm+1

h

(4)

being fm = f (xm) , gm+1/2 = g
(
xm+1/2

)
. . .

2.1 Size of sub-intervals and iteration

In principle the integration range [limI, limS] is divided into 32 sub-intervals of the same width. In
each sub-intervals 5 equi-spaced points are considered: xm, xm+1/4, xm+1/2, xm+3/4, xm+1 in which the
functions f and g are evaluated: fm, fm+1/4, fm+1/2, fm+3/4, fm+1 and gm, gm+1/4, gm+1/2, gm+3/4, gm+1.
The last element of these quintets is the �rst element of the following quintet, corresponding to the
following sub-interval, so that the total of points initially considered is 129 = 32-4 + 1.

With the elements 1, 3 and 5 of each quintet the coe�cients of the splines are calculated, eq. 4.
Whereas elements 2 and 4 serve to estimate the error that is made in approximating the f and g functions
by cubic splines. Thus, using the notation: Hf (x) = [f (x)− S (x)]

2
, the absolute error made by using

the approximation in a given sub-interval can be approached by:∫ xm+1

xm

Hf (x) dx ≈ 256

945
h
[
Hf

(
xm+1/4

)
+Hf

(
xm+3/4

)]
(5)

and the condition to consider that the sub-interval is well approximated by the spline is:∫ xm+1

xm

Hf (x) dx ≤ tol2 ‖f (x)‖2 h

b− a
(6)

A reasonable estimate of the general size of f (x) is obtained by applying Simpson's rule on each sub-
interval:

‖f (x)‖2 =

32∑
m=1

∫ xm+1

xm

f2 (x) dx =

32∑
m=1

xm+1 − xm
3

[
f2m + 4f2m+1/4 + 2f2m+1/2 + 4f2m+3/4 + f2m+1

]
.

For the sub-intervals where the condition 6 is met, the integral is calculated as explained in section
2.2, and the results are added to the Q �gure. Meanwhile, the other intervals are saved for the next
iteration.

In the next iteration the intervals that remain to be integrated are divided in two equal parts. The
superscript 0 is used to denote the old subinterval, while the two new ones are denoted by 1 and 2, ex.
h1 = h2 = 1

2h
0. Now the quintets of values corresponding to each sub-interval are made up, taking

advantage of the values that were already evaluated and calculating the missing ones. So for the values
of variable x:

2



x1m = x0m x2m = x0m+1/2

x1m+1/4 = x0m + h1

4 x2m+1/4 = x0m+1/2 + h2

4

x1m+1/2 = x0m+1/4 x2m+1/2 = x0m+3/4

x1m+3/4 = x0m + 3h1

4 x2m+3/4 = x0m+3/4 + h2

4

x1m+1 = x0m+1/2 x2m+1 = x0m+1

for the values of function f (x):

f1m = f0m f2m = f0m+1/2

f1m+1/4 = f
(
x1m+1/4

)
f2m+1/4 = f

(
x2m+1/4

)
f1m+1/2 = f0m+1/4 f2m+1/2 = f0m+3/4

f1m+3/4 = f
(
x1m+3/4

)
f2m+3/4 = f

(
x2m+3/4

)
f1m+1 = f0m+1/2 f2m+1 = f0m+1

and in a similar way for the values of function g (x).
The values of the spline coe�cients are then calculated using eq. 4, and it is checked which of the

new intervals verify condition 6. For the sub-intervals that verify this condition, the value of the integral
is calculated, and the results are added to the Q �gure. The sub-intervals in which the condition does
not occur are moved to the next iteration. And so until no sub-intervals remain that do not meet 6, or
until the maximum number of iterations max_iter is reached.

2.2 Integrating the sub-intervals

2.2.1 Approximation of the phase by a constant

If in a given sub-interval the coe�cients a3 and a2 are extremely small, one can approach s (x) ≈ a1 = cte,
in which case the quadrature of the sub-intervals is:

Qm = eia1
∫ h

0

[
b1 + b2t+ b3t

2
]
dt = eia1

[
b1h+ b2

h2

2
+ b3

h3

3

]
(7)

This quadrature is used when
‖s (t)− a1‖ ≤ τ ‖s (t)‖ (8)

being τ a small enough number, an order of magnitude less than the tolerance of quadgF. Taking into
account 3,

‖s (t)‖2 =

∫ h

0

(
a1 + a2t+ a3t

2
)2
dt = a21h+ 2a1a2

h2

2
+ (2a1a3 + a3)

h3

3
+ 2a2a3

h4

4
+ a23

h5

5
(9)

and

‖s (t)− a1‖2 =

∫ h

0

(
a2t+ a3t

2
)2
dt = a22

h3

3
+ 2a2a3

h4

4
+ a23

h5

5
(10)

2.2.2 Linear phase approximation

If in a given sub-interval the coe�cient a3 is very small, one can use the approximation s (t) ≈ a1 + a2t,
and in this case the quadrature of the sub-intervals is given by:

Qm = eia1
∫ h

0

[
b1 + b2t+ b3t

2
]
eia2t dt (11)

Now:

•
∫ h
0
eia2t dt =

eia2t − 1

ia2

•
∫ h

0

teia2t dt =
[
(1− ia2h) eia2h − 1

]
/a22

3



•
∫ h

0

t2eia2t dt =
[(

2i+ 2a2h− ia22h2
)
eia2h − 2i

]
/a32

so the quadrature can be calculated:

Qm = eia1 [b1I1 + b2I2 + b3I3] (12)

evaluating sucessively:

I1 =
eia2t − 1

i a2
, I2 =

heia2t − I1
i a2

, I3 =
h2eia2t − 2I2

i a2
.

This approach is used when
‖s (t)− (a1 + a2t)‖ ≤ τ ‖s (t)‖ (13)

being

‖s (t)− (a1 + a2t)‖2 =

∫ h

0

a23t
4dt = a23

h5

5
. (14)

2.2.3 Cubic phase approximation

In the general case a3 cannot be considered as zero. In this instance, it is introduced the variable y = t+c2,
c2 = a2/2a3, so that:

s (y) = a1 + a2

(
y − a2

2a3

)
+ a3

(
y − a2

2a3

)2

=

(
a1 −

a22
4a3

)
+ (a2 − a2) y + a3y

2 = c1 + c3y
2 (15)

with c1 =
(
a1 − a22/4a3

)
and c3 = a3.

Futhermore
S (y) = b1 + b2 (y − c2) + b3 (y − c2)

2
= d1 + d2y + d3y

2

with

d1 = b1 −
b2a2
2a3

+
b3a

2
2

4a23
, d2 = b2 −

a2
a3
, d3 = b3 .

Then, the quadrature is written as:

Qm =

∫ h+c2

c2

(
d1 + d2y + d3y

2
)

exp
{
i
(
c1 + c3y

2
)}

dy = eic1
3∑
j=1

dj

∫ h+c2

c2

yj−1eic3y
2

dy

While both Shampine and Stamnes use Fresnel integrals to solve the previous quadrature, I have
preferred to use the complex error function, thus:

•
∫

exp
{
ic3y

2
}
dy = − 1

2

√
iπ
c3
erf
[
−
√
−ic3y

]
•
∫
y exp

{
ic3y

2
}
dy = −i

2c3
exp

{
ic3y

2
}

•
∫
y2 exp

{
ic3y

2
}
dy = −i

4c
3/2
3

[√
iπerf

(
−
√
−ic3y

)
+ 2
√
c3y exp

{
ic3y

2
}]

Now, using notation:
v (y) = erf

[
−
√
−ic3y

]
w (y) = exp

{
ic3y

2
}

we rewrite the previous integrals as:

•
∫

exp
{
ic3y

2
}
dy = − 1

2

√
iπ
c3
v (y)

•
∫
y exp

{
ic3y

2
}
dy = −i

2c3
w (y)

•
∫
y2 exp

{
ic3y

2
}
dy = −i

4c
3/2
3

[√
iπv (y) + 2

√
c3y w (y)

]
and �nally

Qm = eic1

[
−d1

2

√
iπ

c3
v (y)− id2

2c3
w (y)− id3

4c
3/2
3

[√
iπv (y) + 2

√
c3y w (y)

]]
. (16)

4



3 Some examples

In his article Shampine introduces some examples to show the behavior of quadgF. Some of his examples
are shown below, along with new ones.

It is very likely that his implementation of the function, quadgF, would be faster and more e�ective
than mine. It is also possible that the quadgk function has improved since the publication of his article in
November 2012. But the fact is that most of the examples that include reference [1] are resolved perfectly
by the standard quadgk function, with better accuracy and in less time than my implementation of the
quadgF function. Maybe this would explain why the function quadgF has dropped o� the radar.

However, these same examples, slightly modi�ed, are no longer solved by quadgk with the default
number of intervals and tolerances, but by quadgF. On the other hand, it is possible to use a larger
number of intervals and larger tolerances with quadgk and obtain a good result. As it can see in the
following examples, sometimes quadgF is faster than quadgk, but not always.

3.1 Example 1

The �rst Shampine's example is:

I =

∫ 1

0

cosh (x) exp
{
i 105x

}
dx .

This integrant can be integrated analitically, so we can obtain the exact solution:

I =
ei10

5x

1010 + 1

[
sinh (x)− i105 cosh (x)

]]1
0

= 5.5152 10−7 + i 2.5421 10−5

The following graph shows the integrant behavior in the integration interval. The function is plotted
only on a small sub-interval, x ∈ [0.5, 0.501], because if the complete interval was represented, a blur
would be seen occupying the whole graph, since the integrant oscillates very strongly.

0.5 0.5002 0.5004 0.5006 0.5008 0.501
-1.5

-1

-0.5

0

0.5

1

1.5

x

cosh(x)·cos(10⁵·x)

0.5 0.5002 0.5004 0.5006 0.5008 0.501
-1.5

-1

-0.5

0

0.5

1

1.5

x

cosh(x)·cos(10⁵·x)

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) cosh(x), @(x) 1e5*x, 0, 1);

∗ qa = 5.5152e-07 + 2.5421e-05i

∗ num_iter = 1

∗ error = 9.6e-15 - i 2.3e-16

∗ average run time = 1.4 ms

5



• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) cosh(x).*exp(i*1e5*x),0,1);

∗ warning: quadgk: maximum interval count (650) exceeded

∗ qb = 0.0011805 + 0.0024810i

∗ err = 0.34280 (Error estimated by quadgk)

∗ err = 1.2e-3 + i 2.5e-3 (Error obtained by comparing with the exact result)

• It is obvious that in order to solve this integral, quadgk needs to use more intervals, or a bigger
tolerance. Let us use more intervals:

� [qb, err] = quadgk(@(x) cosh(x).*exp(i*1e5*x),0,1,"MaxIntervalCount",100000);

∗ qb = 5.5152e-07 + 2.5421e-05i

∗ err = 6.4e-11 (Error estimated by quadgk)

∗ error = 8.4e-15 - i 5.3e-15 (Error obtained by comparing with the exact result)

∗ average run time = 0.12 s

3.2 Example 2

The second Shampine's example is:

I =

∫ 200

100

[1 + log (x)] cos (x log (x)) dx

This integrant can also be integrated analytically, so we can obtain the exact solution:

I = sin (x log (x))]
200
100 = −1.77429897490598

The following graph shows the integrant behavior in the integration interval. In order to make the �gure
clearer, the graph is plotted only on the sub-interval x ∈ [150, 160]. As it can be seem, the integrant
oscilates, but less strongly than the previous example.

150 152 154 156 158 160
-10

-5

0

5

10

x

[1+log(x)]·cos(x·log(x))

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) 1+log(x), @(x) x.*log(x), 0, 1);

∗ real(qa) = -1.77428424824785

∗ num_iter = 1

6



∗ error = 1.5e-05;

∗ average run time = 1.5 ms

• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) (1+log(x)).*cos(x.*log(x)),100,200);

∗ qb = -1.77429897490590

∗ err = 8.8e-07 (Error estimated by quadgk)

∗ err = 7.8e-14 (Error obtained by comparing with the exact result)

∗ average run time = 2.4 ms

As can be seen, quadgF does not always obtain better results than quadgk, even with strongly oscillating
integrants.

3.2.1 A little variation

Let us consider an integrant slightly di�erent from Shampine's second example:

I =

∫ 200

100

[1 + log (x)] cos (100x log (x)) dx

whose analytical solution is:

sin (100x log (x))

100

]200
100

= −0.00372073265050140

The following graph shows the integrant behavior in the integration interval. For clarity the graph is
plotted only on the sub-interval, x ∈ [150, 150.25]. As can be seen the integrant oscillates quite strongly.

150 150.05 150.1 150.15 150.2 150.25
-10

-5

0

5

10

x

[1+log(x)]·cos(100·x·log(x))

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) 1+log(x), @(x) x.*log(x), 0, 1);

∗ real(qa) = -0.00372073265050140

∗ num_iter = 2

∗ error = 2.5e-08;

∗ average run time = 6.6 ms

7



• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) (1+log(x)).*cos(x.*log(x)),100,200);

∗ warning: quadgk: maximum interval count (650) exceeded

∗ qb = -7.16438876031491

∗ err = 79.1 (Error estimated by quadgk)

∗ err = 7.2 (Error obtained by comparing with the exact result)

• Let us use more intervals and a bigger tolerance:

� [qb, err] = quadgk(@(x) (1+log(x)).*cos(x.*log(x)), 100, 200, "AbsTol", 1e-7, "MaxIntervalCount",

100000);

∗ qb = -0.00372075782559319

∗ err = 5.6e-08 (Error estimated by quadgk)

∗ error = 1.2e-12 (Error obtained by comparing with the exact result)

∗ average run time = 0.54 s

3.3 Example 3

The third Shampine's example is: ∫ 0

2

ex sin (50 cosh (x)) dx

This integral has not analytical solution. The integrant behavior in the integration interval is shown
in the following graph.

00.511.52
-10

-5

0

5

10

x

exp(x)·sin(5·10³·cosh(x))

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) exp(x), @(x) 50*cosh(x), 2, 0);

∗ imag(qa) = -0.070765

∗ num_iter = 3

∗ average run time = 6.6 ms

• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) exp(x).*sin(50*cosh(x)),2,0);

∗ qb = -0.070765

∗ err = 8.1e-09 (Error estimated by quadgk)

∗ average run time = 1.8 ms

8



3.3.1 A little variation

Let us consider an integrant slightly di�erent from Shampine's third example:∫ 0

2

ex sin
(
5 103 cosh (x)

)
dx

The following graph shows the integrant behavior in the integration interval. For clarity the graph is
plotted only on the sub-interval, x ∈ [0.8, 0]. As can be seen the integrant oscillates very strongly.

00.20.40.60.8
-3

-2

-1

0

1

2

3

x

exp(x)·sin(5·10³·x·log(x))

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) exp(x), @(x) 5e3*cosh(x), 2, 0);

∗ imag(qa) = 0.0106709818154785

∗ num_iter = 4

∗ average run time = 23.7 ms

• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) exp(x).*sin(5e3*cosh(x)),2,0);

∗ warning: quadgk: maximum interval count (650) exceeded

∗ qb = 0.0130227181068779

∗ err = 1.1 (Error estimated by quadgk)

• Let us use more intervals:

� [qb, err] = quadgk(@(x) exp(x).*sin(5e3*cosh(x)), 2, 0, "MaxIntervalCount", 10000);

∗ qb = 0.0106719656747756

∗ err = 9.9e-09 (Error estimated by quadgk)

∗ average run time = 13.7 ms

3.4 Example 4

The fourth Shampine's example

I =

∫ π

0

cos (1000 sin (x)− 3x) dx

9



has a �rst-order critical point at the point arccos
(
3 · 10−3

)
= 1.56779632229488, but this information is

not given to the quadrature functions.
In this case f (x) = 1 = cte. This kind of functions is easily included in a octave script as:

f = @(x) cte*ones(size(x));

The following graph shows the integrant behavior in the integration interval. For clarity the graph is
plotted only on the sub-interval, x ∈

[
π
4 ,

3π
4

]
. As can be seen the integrant oscillates very strongly.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
-1

-0.5

0

0.5

1

x

cos(10³·sin(x)-3·x)

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) ones(size(x)), @(x) 1e3*sin(x)-3*x, 0, π,1e-8,10);

∗ real(qa) = -0.0151657899919954

∗ num_iter = 6

∗ error = 1e-09;

∗ average run time = 0.15 s

• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) cos(1e3*sin(x)-3*x),0,π)

∗ qb = -0.0151657898002485

∗ err = 1e-09 (Error estimated by quadgk)

∗ average run time = 3.7 ms

As can be seen, quadgF does not always obtain better results than quadgk, even with strongly oscillating
integrants.

3.4.1 A little variation

Let us consider an integrant slightly di�erent from Shampine's fourth example:

I =

∫ π

0

cos (10000 sin (x)− 3x) dx .

There is a �rst-order critical point at the point arccos
(
3 · 10−4

)
≈ π/2, but this information is not given

to the quadrature functions.
The following graph shows the integrant behavior in the integration interval. For clarity the graph is

plotted only on the sub-interval, x ∈
[
7π
16 ,

9π
16

]
. As can be seen the integrant oscillates very strongly.

10



1.4 1.5 1.6 1.7
-1

-0.5

0

0.5

1

x

cos(10³·sin(x)-3·x)

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) ones(size(x)), @(x) 1e4*sin(x)-3*x, 0, π, 1e-8, 10);

∗ real(qa) = -0.0114498877548738

∗ num_iter = 7

∗ average run time = 0.27 s

• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) cos(1e3*sin(x)-3*x),0,π,"MaxIntervalCount",10000)

∗ qb = -0.0114498862831192

∗ err = 3.8e-09 (Error estimated by quadgk)

∗ average run time = 0.63 s

3.5 Example 5

Now we consider a variation of the last Shampine's is:∫ 1

0

exp
{
i 5000x5

}
dx

This integral can be expressed in terms of the incomplete Gamma function

I = −
Γ
(

1
10 ,−i 5000x5

)
10
√
−i 5000

]1
0

= 0.504642 + i 0.0801191

11



0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

x

sin(5·10⁴·x⁵)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

x

cos(5·10⁴·x⁵)

• The numerical result that gives us the quadF function is:

� [qa, num_iter] = quadgF(@(x) ones(size(x)), @(x) 5e4*x.^5,0,1,1e-8,10);

∗ real(qa) = 0.1003038290338300 + i 0.0325920589819102

∗ num_iter = 8

∗ average run time = 0.36 s

• We can compare with the result of the standard quadgk function

� [qb, err] = quadgk(@(x) exp(i*5e4*x.^5),0,1,"MaxIntervalCount",10000);

∗ qb = 0.1003038290807608 + 0.0325920607196434i

∗ err = 1.8e-08

∗ average run time = 44 ms

As can be seen, quadgF does not always obtain better results than quadgk, even with strongly oscillating
integrants.

References

[1] Shampine L.F., Integrating oscillatory functions in MATLAB, II. Electronic Transactions on Numer-

ical Analysis, volume 39, pp 403-413, 2012.

[2] Stamnes J.J., Spjelkavik B. & Pedersen H.M., Evaluation of di�raction integrals using local phase
and amplitude approximations. Opt. Acta 30, 207-222, 1983.

[3] Stamnes J.J., Waves in focal regions: propagation, di�raction and focusing of light, sound and water

waves. Adam Hilger, 1986.

12


