[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: [PATCH v3 2/5] ppc/pnv: Extend SPI model
From: |
Miles Glenn |
Subject: |
Re: [PATCH v3 2/5] ppc/pnv: Extend SPI model |
Date: |
Tue, 21 May 2024 09:21:52 -0500 |
On Tue, 2024-05-21 at 08:18 +0200, Cédric Le Goater wrote:
> On 5/21/24 08:11, Chalapathi V wrote:
> > On 18-05-2024 01:24, Miles Glenn wrote:
> > > Chalapathi,
> > >
> > > I'm having trouble seeing the benefit of breaking this commit out
> > > from
> > > patch 1/5. It seems like the two should be merged into a single
> > > commit
> > > responsible for adding the PNV SPI Controller model.
> > >
> > > -Glenn
> > I thought combining this with patch 1/5 will make it big. Hence
> > made a logical partition.
>
> I think it is fine to have 2 patches. One for the high level HW
> interface
> and one for the lowlevel operation sequencer. This makes the review
> easier.
>
>
> Thanks,
>
> C.
>
Ah, ok. I didn't realize it was split along high level and low level.
Thanks,
-Glenn
>
>
> > >
> > > On Thu, 2024-05-16 at 11:33 -0500, Chalapathi V wrote:
> > > > In this commit SPI shift engine and sequencer logic is
> > > > implemented.
> > > > Shift engine performs serialization and de-serialization
> > > > according to
> > > > the
> > > > control by the sequencer and according to the setup defined in
> > > > the
> > > > configuration registers. Sequencer implements the main control
> > > > logic
> > > > and
> > > > FSM to handle data transmit and data receive control of the
> > > > shift
> > > > engine.
> > > >
> > > > Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
> > > > ---
> > > > include/hw/ssi/pnv_spi.h | 28 +
> > > > hw/ppc/pnv_spi_controller.c | 1074
> > > > +++++++++++++++++++++++++++++++++++
> > > > hw/ppc/trace-events | 15 +
> > > > 3 files changed, 1117 insertions(+)
> > > >
> > > > diff --git a/include/hw/ssi/pnv_spi.h
> > > > b/include/hw/ssi/pnv_spi.h
> > > > index 244ee1cfc0..6e2bceab3b 100644
> > > > --- a/include/hw/ssi/pnv_spi.h
> > > > +++ b/include/hw/ssi/pnv_spi.h
> > > > @@ -8,6 +8,14 @@
> > > > * This model Supports a connection to a single SPI
> > > > responder.
> > > > * Introduced for P10 to provide access to SPI seeproms, TPM,
> > > > flash
> > > > device
> > > > * and an ADC controller.
> > > > + *
> > > > + * All SPI function control is mapped into the SPI register
> > > > space to
> > > > enable
> > > > + * full control by firmware.
> > > > + *
> > > > + * SPI Controller has sequencer and shift engine. The SPI
> > > > shift
> > > > engine
> > > > + * performs serialization and de-serialization according to
> > > > the
> > > > control by
> > > > + * the sequencer and according to the setup defined in the
> > > > configuration
> > > > + * registers and the SPI sequencer implements the main control
> > > > logic.
> > > > */
> > > > #include "hw/ssi/ssi.h"
> > > > @@ -29,6 +37,25 @@ typedef struct PnvSpiController {
> > > > MemoryRegion xscom_spic_regs;
> > > > /* SPI controller object number */
> > > > uint32_t spic_num;
> > > > + uint8_t transfer_len;
> > > > + uint8_t responder_select;
> > > > + /* To verify if shift_n1 happens prior to shift_n2 */
> > > > + bool shift_n1_done;
> > > > + /* Loop counter for branch operation opcode Ex/Fx */
> > > > + uint8_t loop_counter_1;
> > > > + uint8_t loop_counter_2;
> > > > + /* N1/N2_bits specifies the size of the N1/N2 segment of a
> > > > frame
> > > > in bits.*/
> > > > + uint8_t N1_bits;
> > > > + uint8_t N2_bits;
> > > > + /* Number of bytes in a payload for the N1/N2 frame
> > > > segment.*/
> > > > + uint8_t N1_bytes;
> > > > + uint8_t N2_bytes;
> > > > + /* Number of N1/N2 bytes marked for transmit */
> > > > + uint8_t N1_tx;
> > > > + uint8_t N2_tx;
> > > > + /* Number of N1/N2 bytes marked for receive */
> > > > + uint8_t N1_rx;
> > > > + uint8_t N2_rx;
> > > > /* SPI Controller registers */
> > > > uint64_t error_reg;
> > > > @@ -40,5 +67,6 @@ typedef struct PnvSpiController {
> > > > uint64_t receive_data_reg;
> > > > uint8_t
> > > > sequencer_operation_reg[SPI_CONTROLLER_REG_SIZE]
> > > > ;
> > > > uint64_t status_reg;
> > > > +
> > > > } PnvSpiController;
> > > > #endif /* PPC_PNV_SPI_CONTROLLER_H */
> > > > diff --git a/hw/ppc/pnv_spi_controller.c
> > > > b/hw/ppc/pnv_spi_controller.c
> > > > index 11b119cf0f..e87f583074 100644
> > > > --- a/hw/ppc/pnv_spi_controller.c
> > > > +++ b/hw/ppc/pnv_spi_controller.c
> > > > @@ -19,6 +19,1072 @@
> > > > #include "hw/irq.h"
> > > > #include "trace.h"
> > > > +/* PnvXferBuffer */
> > > > +typedef struct PnvXferBuffer {
> > > > +
> > > > + uint32_t len;
> > > > + uint8_t *data;
> > > > +
> > > > +} PnvXferBuffer;
> > > > +
> > > > +/* pnv_spi_xfer_buffer_methods */
> > > > +static PnvXferBuffer *pnv_spi_xfer_buffer_new(void)
> > > > +{
> > > > + PnvXferBuffer *payload = g_malloc0(sizeof(*payload));
> > > > +
> > > > + return payload;
> > > > +}
> > > > +
> > > > +static void pnv_spi_xfer_buffer_free(PnvXferBuffer *payload)
> > > > +{
> > > > + free(payload->data);
> > > > + free(payload);
> > > > +}
> > > > +
> > > > +static uint8_t *pnv_spi_xfer_buffer_write_ptr(PnvXferBuffer
> > > > *payload,
> > > > + uint32_t offset, uint32_t length)
> > > > +{
> > > > + if (payload->len < (offset + length)) {
> > > > + payload->len = offset + length;
> > > > + payload->data = g_realloc(payload->data, payload-
> > > > >len);
> > > > + }
> > > > + return &payload->data[offset];
> > > > +}
> > > > +
> > > > +static bool does_rdr_match(PnvSpiController *s)
> > > > +{
> > > > + /*
> > > > + * According to spec, the mask bits that are 0 are
> > > > compared and
> > > > the
> > > > + * bits that are 1 are ignored.
> > > > + */
> > > > + uint16_t rdr_match_mask =
> > > > GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_MASK,
> > > > + s-
> > > > >memory_mapping_reg);
> > > > + uint16_t rdr_match_val =
> > > > GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_VAL,
> > > > + s-
> > > > >memory_mapping_reg);
> > > > +
> > > > + if ((~rdr_match_mask & rdr_match_val) ==
> > > > ((~rdr_match_mask) &
> > > > + GETFIELD(PPC_BITMASK(48, 63), s-
> > > > >receive_data_reg))) {
> > > > + return true;
> > > > + }
> > > > + return false;
> > > > +}
> > > > +
> > > > +static uint8_t get_from_offset(PnvSpiController *s, uint8_t
> > > > offset)
> > > > +{
> > > > + uint8_t byte;
> > > > +
> > > > + /*
> > > > + * Offset is an index between 0 and
> > > > SPI_CONTROLLER_REG_SIZE - 1
> > > > + * Check the offset before using it.
> > > > + */
> > > > + if (offset < SPI_CONTROLLER_REG_SIZE) {
> > > > + byte = (s->transmit_data_reg >> (56 - offset * 8)) &
> > > > 0xFF;
> > > > + } else {
> > > > + /*
> > > > + * Log an error and return a 0xFF since we have to
> > > > assign
> > > > something
> > > > + * to byte before returning.
> > > > + */
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Invalid offset = %d
> > > > used to
> > > > get byte "
> > > > + "from TDR\n", offset);
> > > > + byte = 0xff;
> > > > + }
> > > > + return byte;
> > > > +}
> > > > +
> > > > +static uint8_t read_from_frame(PnvSpiController *s, uint8_t
> > > > *read_buf,
> > > > + uint8_t nr_bytes, uint8_t ecc_count, uint8_t
> > > > shift_in_count)
> > > > +{
> > > > + uint8_t byte;
> > > > + int count = 0;
> > > > +
> > > > + while (count < nr_bytes) {
> > > > + shift_in_count++;
> > > > + if ((ecc_count != 0) &&
> > > > + (shift_in_count == (SPI_CONTROLLER_REG_SIZE +
> > > > ecc_count))) {
> > > > + shift_in_count = 0;
> > > > + } else {
> > > > + byte = read_buf[count];
> > > > + trace_pnv_spi_shift_rx(byte, count);
> > > > + s->receive_data_reg = (s->receive_data_reg << 8) |
> > > > byte;
> > > > + }
> > > > + count++;
> > > > + } /* end of while */
> > > > + return shift_in_count;
> > > > +}
> > > > +
> > > > +static void spi_response(PnvSpiController *s, int bits,
> > > > + PnvXferBuffer *rsp_payload)
> > > > +{
> > > > + uint8_t ecc_count;
> > > > + uint8_t shift_in_count;
> > > > +
> > > > + /*
> > > > + * Processing here must handle:
> > > > + * - Which bytes in the payload we should move to the RDR
> > > > + * - Explicit mode counter configuration settings
> > > > + * - RDR full and RDR overrun status
> > > > + */
> > > > +
> > > > + /*
> > > > + * First check that the response payload is the exact same
> > > > + * number of bytes as the request payload was
> > > > + */
> > > > + if (rsp_payload->len != (s->N1_bytes + s->N2_bytes)) {
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Invalid response
> > > > payload
> > > > size in "
> > > > + "bytes, expected %d, got %d\n",
> > > > + (s->N1_bytes + s->N2_bytes),
> > > > rsp_payload-
> > > > > len);
> > > > + } else {
> > > > + uint8_t ecc_control;
> > > > + trace_pnv_spi_rx_received(rsp_payload->len);
> > > > + trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s-
> > > > >N1_tx,
> > > > + s->N1_rx, s->N2_bits, s->N2_bytes, s-
> > > > >N2_tx,
> > > > s->N2_rx);
> > > > + /*
> > > > + * Adding an ECC count let's us know when we have
> > > > found a
> > > > payload byte
> > > > + * that was shifted in but cannot be loaded into RDR.
> > > > Bits
> > > > 29-30 of
> > > > + * clock_config_reset_control register equal to either
> > > > 0b00
> > > > or 0b10
> > > > + * indicate that we are taking in data with ECC and
> > > > either
> > > > applying
> > > > + * the ECC or discarding it.
> > > > + */
> > > > + ecc_count = 0;
> > > > + ecc_control = GETFIELD(PPC_BITMASK(29, 30),
> > > > + s-
> > > > >clock_config_reset_control);
> > > > + if (ecc_control == 0 || ecc_control == 2) {
> > > > + ecc_count = 1;
> > > > + }
> > > > + /*
> > > > + * Use the N1_rx and N2_rx counts to control shifting
> > > > data
> > > > from the
> > > > + * payload into the RDR. Keep an overall count of the
> > > > number of bytes
> > > > + * shifted into RDR so we can discard every 9th byte
> > > > when
> > > > ECC is
> > > > + * enabled.
> > > > + */
> > > > + shift_in_count = 0;
> > > > + /* Handle the N1 portion of the frame first */
> > > > + if (s->N1_rx != 0) {
> > > > + trace_pnv_spi_rx_read_N1frame();
> > > > + shift_in_count = read_from_frame(s, &rsp_payload-
> > > > > data[0],
> > > > + s->N1_bytes, ecc_count,
> > > > shift_in_count);
> > > > + }
> > > > + /* Handle the N2 portion of the frame */
> > > > + if (s->N2_rx != 0) {
> > > > + trace_pnv_spi_rx_read_N2frame();
> > > > + shift_in_count = read_from_frame(s,
> > > > + &rsp_payload->data[s->N1_bytes],
> > > > s-
> > > > > N2_bytes,
> > > > + ecc_count, shift_in_count);
> > > > + }
> > > > + if ((s->N1_rx + s->N2_rx) > 0) {
> > > > + /*
> > > > + * Data was received so handle RDR status.
> > > > + * It is easier to handle RDR_full and RDR_overrun
> > > > status here
> > > > + * since the RDR register's shift_byte_in method
> > > > is
> > > > called
> > > > + * multiple times in a row. Controlling RDR status
> > > > is
> > > > done here
> > > > + * instead of in the RDR scoped methods for that
> > > > reason.
> > > > + */
> > > > + if (GETFIELD(STATUS_REG_RDR_FULL, s->status_reg)
> > > > == 1) {
> > > > + /*
> > > > + * Data was shifted into the RDR before having
> > > > been
> > > > read
> > > > + * causing previous data to have been overrun.
> > > > + */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_RDR_OVERRUN,
> > > > + s->status_reg, 1);
> > > > + } else {
> > > > + /*
> > > > + * Set status to indicate that the received
> > > > data
> > > > register is
> > > > + * full. This flag is only cleared once the
> > > > RDR is
> > > > unloaded.
> > > > + */
> > > > + s->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
> > > > + s->status_reg, 1);
> > > > + }
> > > > + }
> > > > + } /* end of else */
> > > > +} /* end of spi_response() */
> > > > +
> > > > +static void transfer(PnvSpiController *s, PnvXferBuffer
> > > > *payload)
> > > > +{
> > > > + uint32_t tx;
> > > > + uint32_t rx;
> > > > + PnvXferBuffer *rsp_payload = NULL;
> > > > +
> > > > + rsp_payload = pnv_spi_xfer_buffer_new();
> > > > + for (int offset = 0; offset < payload->len; offset += s-
> > > > > transfer_len) {
> > > > + tx = 0;
> > > > + for (int i = 0; i < s->transfer_len; i++) {
> > > > + if ((offset + i) >= payload->len) {
> > > > + tx <<= 8;
> > > > + } else {
> > > > + tx = (tx << 8) | payload->data[offset + i];
> > > > + }
> > > > + }
> > > > + rx = ssi_transfer(s->ssi_bus, tx);
> > > > + for (int i = 0; i < s->transfer_len; i++) {
> > > > + if ((offset + i) >= payload->len) {
> > > > + break;
> > > > + }
> > > > + *(pnv_spi_xfer_buffer_write_ptr(rsp_payload,
> > > > rsp_payload->len, 1)) =
> > > > + (rx >> (8 * (s->transfer_len - 1) - i *
> > > > 8)) &
> > > > 0xFF;
> > > > + }
> > > > + }
> > > > + if (rsp_payload != NULL) {
> > > > + spi_response(s, s->N1_bits, rsp_payload);
> > > > + }
> > > > +}
> > > > +
> > > > +static inline uint8_t get_seq_index(PnvSpiController *s)
> > > > +{
> > > > + return GETFIELD(STATUS_REG_SEQUENCER_INDEX, s-
> > > > >status_reg);
> > > > +}
> > > > +
> > > > +static inline void next_sequencer_fsm(PnvSpiController *s)
> > > > +{
> > > > + uint8_t seq_index = get_seq_index(s);
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX, s-
> > > > > status_reg,
> > > > + (seq_index + 1));
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM, s-
> > > > > status_reg,
> > > > +
> > > > SEQ_STATE_INDEX_INCREMENT);
> > > > +}
> > > > +
> > > > +/*
> > > > + * Calculate the N1 counters based on passed in opcode and
> > > > + * internal register values.
> > > > + * The method assumes that the opcode is a Shift_N1 opcode
> > > > + * and doesn't test it.
> > > > + * The counters returned are:
> > > > + * N1 bits: Number of bits in the payload data that are
> > > > significant
> > > > + * to the responder.
> > > > + * N1_bytes: Total count of payload bytes for the N1 (portion
> > > > of
> > > > the) frame.
> > > > + * N1_tx: Total number of bytes taken from TDR for N1
> > > > + * N1_rx: Total number of bytes taken from the payload for N1
> > > > + */
> > > > +static void calculate_N1(PnvSpiController *s, uint8_t opcode)
> > > > +{
> > > > + /*
> > > > + * Shift_N1 opcode form: 0x3M
> > > > + * Implicit mode:
> > > > + * If M != 0 the shift count is M bytes and M is the
> > > > number of
> > > > tx bytes.
> > > > + * Forced Implicit mode:
> > > > + * M is the shift count but tx and rx is determined by the
> > > > count
> > > > control
> > > > + * register fields. Note that we only check for forced
> > > > Implicit
> > > > mode when
> > > > + * M != 0 since the mode doesn't make sense when M = 0.
> > > > + * Explicit mode:
> > > > + * If M == 0 then shift count is number of bits defined in
> > > > the
> > > > + * Counter Configuration Register's shift_count_N1 field.
> > > > + */
> > > > + if (GETFIELD(PPC_BITMASK8(4, 7), opcode) == 0) {
> > > > + /* Explicit mode */
> > > > + s->N1_bits =
> > > > GETFIELD(COUNTER_CONFIG_REG_SHIFT_COUNT_N1,
> > > > + s->counter_config_reg);
> > > > + s->N1_bytes = ceil(s->N1_bits / 8);
> > > > + s->N1_tx = 0;
> > > > + s->N1_rx = 0;
> > > > + /* If tx count control for N1 is set, load the tx
> > > > value */
> > > > + if (GETFIELD(PPC_BIT(50), s->counter_config_reg) == 1)
> > > > {
> > > > + s->N1_tx = s->N1_bytes;
> > > > + }
> > > > + /* If rx count control for N1 is set, load the rx
> > > > value */
> > > > + if (GETFIELD(PPC_BIT(51), s->counter_config_reg) == 1)
> > > > {
> > > > + s->N1_rx = s->N1_bytes;
> > > > + }
> > > > + } else {
> > > > + /* Implicit mode/Forced Implicit mode, use M field
> > > > from
> > > > opcode */
> > > > + s->N1_bytes = GETFIELD(PPC_BITMASK8(4, 7), opcode);
> > > > + s->N1_bits = s->N1_bytes * 8;
> > > > + /*
> > > > + * Assume that we are going to transmit the count
> > > > + * (pure Implicit only)
> > > > + */
> > > > + s->N1_tx = s->N1_bytes;
> > > > + s->N1_rx = 0;
> > > > + /* Let Forced Implicit mode have an effect on the
> > > > counts */
> > > > + if (GETFIELD(PPC_BIT(49), s->counter_config_reg) == 1)
> > > > {
> > > > + /*
> > > > + * If Forced Implicit mode and count control
> > > > doesn't
> > > > + * indicate transmit then reset the tx count to 0
> > > > + */
> > > > + if (GETFIELD(PPC_BIT(50), s->counter_config_reg)
> > > > == 0) {
> > > > + s->N1_tx = 0;
> > > > + }
> > > > + /* If rx count control for N1 is set, load the rx
> > > > value
> > > > */
> > > > + if (GETFIELD(PPC_BIT(51), s->counter_config_reg)
> > > > == 1) {
> > > > + s->N1_rx = s->N1_bytes;
> > > > + }
> > > > + }
> > > > + }
> > > > + /*
> > > > + * Enforce an upper limit on the size of N1 that is equal
> > > > to the
> > > > known size
> > > > + * of the shift register, 64 bits or 72 bits if ECC is
> > > > enabled.
> > > > + * If the size exceeds 72 bits it is a user error so log
> > > > an
> > > > error,
> > > > + * cap the size at a max of 64 bits or 72 bits and set the
> > > > sequencer FSM
> > > > + * error bit.
> > > > + */
> > > > + uint8_t ecc_control = GETFIELD(PPC_BITMASK(29, 30),
> > > > + s-
> > > > >clock_config_reset_control);
> > > > + if (ecc_control == 0 || ecc_control == 2) {
> > > > + if (s->N1_bytes > (SPI_CONTROLLER_REG_SIZE + 1)) {
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1
> > > > shift
> > > > size when "
> > > > + "ECC enabled, bytes = 0x%x, bits =
> > > > 0x%x\n",
> > > > + s->N1_bytes, s->N1_bits);
> > > > + s->N1_bytes = SPI_CONTROLLER_REG_SIZE + 1;
> > > > + s->N1_bits = s->N1_bytes * 8;
> > > > + }
> > > > + } else if (s->N1_bytes > SPI_CONTROLLER_REG_SIZE) {
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift
> > > > size, "
> > > > + "bytes = 0x%x, bits = 0x%x\n",
> > > > + s->N1_bytes, s->N1_bits);
> > > > + s->N1_bytes = SPI_CONTROLLER_REG_SIZE;
> > > > + s->N1_bits = s->N1_bytes * 8;
> > > > + }
> > > > +} /* end of calculate_N1 */
> > > > +
> > > > +/*
> > > > + * Shift_N1 operation handler method
> > > > + */
> > > > +static bool operation_shiftn1(PnvSpiController *s, uint8_t
> > > > opcode,
> > > > + PnvXferBuffer **payload, bool
> > > > send_n1_alone)
> > > > +{
> > > > + uint8_t n1_count;
> > > > + bool stop = false;
> > > > +
> > > > + /*
> > > > + * If there isn't a current payload left over from a
> > > > stopped
> > > > sequence
> > > > + * create a new one.
> > > > + */
> > > > + if (*payload == NULL) {
> > > > + *payload = pnv_spi_xfer_buffer_new();
> > > > + }
> > > > + /*
> > > > + * Use a combination of N1 counters to build the N1
> > > > portion of
> > > > the
> > > > + * transmit payload.
> > > > + * We only care about transmit at this time since the
> > > > request
> > > > payload
> > > > + * only represents data going out on the controller output
> > > > line.
> > > > + * Leave mode specific considerations in the calculate
> > > > function
> > > > since
> > > > + * all we really care about are counters that tell use
> > > > exactly
> > > > how
> > > > + * many bytes are in the payload and how many of those
> > > > bytes to
> > > > + * include from the TDR into the payload.
> > > > + */
> > > > + calculate_N1(s, opcode);
> > > > + trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s-
> > > > >N1_tx,
> > > > + s->N1_rx, s->N2_bits, s->N2_bytes, s-
> > > > >N2_tx, s-
> > > > > N2_rx);
> > > > + /*
> > > > + * Zero out the N2 counters here in case there is no N2
> > > > operation following
> > > > + * the N1 operation in the sequencer. This keeps leftover
> > > > N2
> > > > information
> > > > + * from interfering with spi_response logic.
> > > > + */
> > > > + s->N2_bits = 0;
> > > > + s->N2_bytes = 0;
> > > > + s->N2_tx = 0;
> > > > + s->N2_rx = 0;
> > > > + /*
> > > > + * N1_bytes is the overall size of the N1 portion of the
> > > > frame
> > > > regardless of
> > > > + * whether N1 is used for tx, rx or both. Loop over the
> > > > size to
> > > > build a
> > > > + * payload that is N1_bytes long.
> > > > + * N1_tx is the count of bytes to take from the TDR and
> > > > "shift"
> > > > into the
> > > > + * frame which means append those bytes to the payload for
> > > > the
> > > > N1 portion
> > > > + * of the frame.
> > > > + * If N1_tx is 0 or if the count exceeds the size of the
> > > > TDR
> > > > append 0xFF to
> > > > + * the frame until the overall N1 count is reached.
> > > > + */
> > > > + n1_count = 0;
> > > > + while (n1_count < s->N1_bytes) {
> > > > + /*
> > > > + * Assuming that if N1_tx is not equal to 0 then it is
> > > > the
> > > > same as
> > > > + * N1_bytes.
> > > > + */
> > > > + if ((s->N1_tx != 0) && (n1_count <
> > > > SPI_CONTROLLER_REG_SIZE))
> > > > {
> > > > +
> > > > + if (GETFIELD(STATUS_REG_TDR_FULL, s->status_reg)
> > > > == 1) {
> > > > + /*
> > > > + * Note that we are only appending to the
> > > > payload IF
> > > > the TDR
> > > > + * is full otherwise we don't touch the
> > > > payload
> > > > because we are
> > > > + * going to NOT send the payload and instead
> > > > tell
> > > > the sequencer
> > > > + * that called us to stop and wait for a TDR
> > > > write
> > > > so we have
> > > > + * data to load into the payload.
> > > > + */
> > > > + uint8_t n1_byte = 0x00;
> > > > + n1_byte = get_from_offset(s, n1_count);
> > > > + trace_pnv_spi_tx_append("n1_byte", n1_byte,
> > > > n1_count);
> > > > + *(pnv_spi_xfer_buffer_write_ptr(*payload,
> > > > (*payload)->len, 1)) =
> > > > + n1_byte;
> > > > + } else {
> > > > + /*
> > > > + * We hit a shift_n1 opcode TX but the TDR is
> > > > empty,
> > > > tell the
> > > > + * sequencer to stop and break this loop.
> > > > + */
> > > > + trace_pnv_spi_sequencer_stop_requested("Shift
> > > > N1"
> > > > + "set for transmit but TDR is
> > > > empty");
> > > > + stop = true;
> > > > + break;
> > > > + }
> > > > + } else {
> > > > + /*
> > > > + * Cases here:
> > > > + * - we are receiving during the N1 frame segment
> > > > and
> > > > the RDR
> > > > + * is full so we need to stop until the RDR is
> > > > read
> > > > + * - we are transmitting and we don't care about
> > > > RDR
> > > > status
> > > > + * since we won't be loading RDR during the
> > > > frame
> > > > segment.
> > > > + * - we are receiving and the RDR is empty so we
> > > > allow
> > > > the operation
> > > > + * to proceed.
> > > > + */
> > > > + if ((s->N1_rx != 0) &&
> > > > (GETFIELD(STATUS_REG_RDR_FULL,
> > > > + s->status_reg) ==
> > > > 1)) {
> > > > + trace_pnv_spi_sequencer_stop_requested("shift
> > > > N1"
> > > > + "set for receive but RDR is
> > > > full");
> > > > + stop = true;
> > > > + break;
> > > > + } else {
> > > > + trace_pnv_spi_tx_append_FF("n1_byte");
> > > > + *(pnv_spi_xfer_buffer_write_ptr(*payload,
> > > > (*payload)->len, 1))
> > > > + = 0xff;
> > > > + }
> > > > + }
> > > > + n1_count++;
> > > > + } /* end of while */
> > > > + /*
> > > > + * If we are not stopping due to an empty TDR and we are
> > > > doing
> > > > an N1 TX
> > > > + * and the TDR is full we need to clear the TDR_full
> > > > status.
> > > > + * Do this here instead of up in the loop above so we
> > > > don't log
> > > > the message
> > > > + * in every loop iteration.
> > > > + * Ignore the send_n1_alone flag, all that does is defer
> > > > the TX
> > > > until the N2
> > > > + * operation, which was found immediately after the
> > > > current
> > > > opcode. The TDR
> > > > + * was unloaded and will be shifted so we have to clear
> > > > the
> > > > TDR_full status.
> > > > + */
> > > > + if (!stop && (s->N1_tx != 0) &&
> > > > + (GETFIELD(STATUS_REG_TDR_FULL, s->status_reg) == 1)) {
> > > > + s->status_reg = SETFIELD(STATUS_REG_TDR_FULL, s-
> > > > >status_reg,
> > > > 0);
> > > > + }
> > > > + /*
> > > > + * There are other reasons why the shifter would stop,
> > > > such as a
> > > > TDR empty
> > > > + * or RDR full condition with N1 set to receive. If we
> > > > haven't
> > > > stopped due
> > > > + * to either one of those conditions then check if the
> > > > send_n1_alone flag is
> > > > + * equal to False, indicating the next opcode is an N2
> > > > operation, AND if
> > > > + * the N2 counter reload switch (bit 0 of the N2 count
> > > > control
> > > > field) is
> > > > + * set. This condition requires a pacing write to "kick"
> > > > off
> > > > the N2
> > > > + * shift which includes the N1 shift as well when
> > > > send_n1_alone
> > > > is False.
> > > > + */
> > > > + if (!stop && !send_n1_alone &&
> > > > + (GETFIELD(PPC_BIT(52), s->counter_config_reg) == 1)) {
> > > > + trace_pnv_spi_sequencer_stop_requested("N2 counter
> > > > reload "
> > > > + "active, stop N1 shift, TDR_underrun
> > > > set to
> > > > 1");
> > > > + stop = true;
> > > > + s->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, s-
> > > > > status_reg, 1);
> > > > + }
> > > > + /*
> > > > + * If send_n1_alone is set AND we have a full TDR then
> > > > this is
> > > > the first and
> > > > + * last payload to send and we don't have an N2 frame
> > > > segment to
> > > > add to the
> > > > + * payload.
> > > > + */
> > > > + if (send_n1_alone && !stop) {
> > > > + /* We have a TX and a full TDR or an RX and an empty
> > > > RDR */
> > > > + trace_pnv_spi_tx_request("Shifting N1 frame",
> > > > (*payload)-
> > > > > len);
> > > > + transfer(s, *payload);
> > > > + /* The N1 frame shift is complete so reset the N1
> > > > counters
> > > > */
> > > > + s->N2_bits = 0;
> > > > + s->N2_bytes = 0;
> > > > + s->N2_tx = 0;
> > > > + s->N2_rx = 0;
> > > > + pnv_spi_xfer_buffer_free(*payload);
> > > > + *payload = NULL;
> > > > + }
> > > > + return stop;
> > > > +} /* end of operation_shiftn1() */
> > > > +
> > > > +/*
> > > > + * Calculate the N2 counters based on passed in opcode and
> > > > + * internal register values.
> > > > + * The method assumes that the opcode is a Shift_N2 opcode
> > > > + * and doesn't test it.
> > > > + * The counters returned are:
> > > > + * N2 bits: Number of bits in the payload data that are
> > > > significant
> > > > + * to the responder.
> > > > + * N2_bytes: Total count of payload bytes for the N2 frame.
> > > > + * N2_tx: Total number of bytes taken from TDR for N2
> > > > + * N2_rx: Total number of bytes taken from the payload for N2
> > > > + */
> > > > +static void calculate_N2(PnvSpiController *s, uint8_t opcode)
> > > > +{
> > > > + /*
> > > > + * Shift_N2 opcode form: 0x4M
> > > > + * Implicit mode:
> > > > + * If M!=0 the shift count is M bytes and M is the number
> > > > of rx
> > > > bytes.
> > > > + * Forced Implicit mode:
> > > > + * M is the shift count but tx and rx is determined by the
> > > > count
> > > > control
> > > > + * register fields. Note that we only check for Forced
> > > > Implicit
> > > > mode when
> > > > + * M != 0 since the mode doesn't make sense when M = 0.
> > > > + * Explicit mode:
> > > > + * If M==0 then shift count is number of bits defined in
> > > > the
> > > > + * Counter Configuration Register's shift_count_N1 field.
> > > > + */
> > > > + if (GETFIELD(PPC_BITMASK8(4, 7), opcode) == 0) {
> > > > + /* Explicit mode */
> > > > + s->N2_bits =
> > > > GETFIELD(COUNTER_CONFIG_REG_SHIFT_COUNT_N2,
> > > > + s->counter_config_reg);
> > > > + s->N2_bytes = ceil(s->N2_bits / 8);
> > > > + s->N2_tx = 0;
> > > > + s->N2_rx = 0;
> > > > + /* If tx count control for N2 is set, load the tx
> > > > value */
> > > > + if (GETFIELD(PPC_BIT(54), s->counter_config_reg) == 1)
> > > > {
> > > > + s->N2_tx = s->N2_bytes;
> > > > + }
> > > > + /* If rx count control for N2 is set, load the rx
> > > > value */
> > > > + if (GETFIELD(PPC_BIT(55), s->counter_config_reg) == 1)
> > > > {
> > > > + s->N2_rx = s->N2_bytes;
> > > > + }
> > > > + } else {
> > > > + /* Implicit mode/Forced Implicit mode, use M field
> > > > from
> > > > opcode */
> > > > + s->N2_bytes = GETFIELD(PPC_BITMASK8(4, 7), opcode);
> > > > + s->N2_bits = s->N2_bytes * 8;
> > > > + /* Assume that we are going to receive the count */
> > > > + s->N2_rx = s->N2_bytes;
> > > > + s->N2_tx = 0;
> > > > + /* Let Forced Implicit mode have an effect on the
> > > > counts */
> > > > + if (GETFIELD(PPC_BIT(53), s->counter_config_reg) == 1)
> > > > {
> > > > + /*
> > > > + * If Forced Implicit mode and count control
> > > > doesn't
> > > > + * indicate a receive then reset the rx count to 0
> > > > + */
> > > > + if (GETFIELD(PPC_BIT(55), s->counter_config_reg)
> > > > == 0) {
> > > > + s->N2_rx = 0;
> > > > + }
> > > > + /* If tx count control for N2 is set, load the tx
> > > > value
> > > > */
> > > > + if (GETFIELD(PPC_BIT(54), s->counter_config_reg)
> > > > == 1) {
> > > > + s->N2_tx = s->N2_bytes;
> > > > + }
> > > > + }
> > > > + }
> > > > + /*
> > > > + * Enforce an upper limit on the size of N1 that is equal
> > > > to the
> > > > + * known size of the shift register, 64 bits or 72 bits if
> > > > ECC
> > > > + * is enabled.
> > > > + * If the size exceeds 72 bits it is a user error so log
> > > > an
> > > > error,
> > > > + * cap the size at a max of 64 bits or 72 bits and set the
> > > > sequencer FSM
> > > > + * error bit.
> > > > + */
> > > > + uint8_t ecc_control = GETFIELD(PPC_BITMASK(29, 30),
> > > > + s-
> > > > >clock_config_reset_control);
> > > > + if (ecc_control == 0 || ecc_control == 2) {
> > > > + if (s->N2_bytes > (SPI_CONTROLLER_REG_SIZE + 1)) {
> > > > + /* Unsupported N2 shift size when ECC enabled */
> > > > + s->N2_bytes = SPI_CONTROLLER_REG_SIZE + 1;
> > > > + s->N2_bits = s->N2_bytes * 8;
> > > > + }
> > > > + } else if (s->N2_bytes > SPI_CONTROLLER_REG_SIZE) {
> > > > + /* Unsupported N2 shift size */
> > > > + s->N2_bytes = SPI_CONTROLLER_REG_SIZE;
> > > > + s->N2_bits = s->N2_bytes * 8;
> > > > + }
> > > > +} /* end of calculate_N2 */
> > > > +
> > > > +/*
> > > > + * Shift_N2 operation handler method
> > > > + */
> > > > +
> > > > +static bool operation_shiftn2(PnvSpiController *s, uint8_t
> > > > opcode,
> > > > + PnvXferBuffer **payload)
> > > > +{
> > > > + uint8_t n2_count;
> > > > + bool stop = false;
> > > > +
> > > > + /*
> > > > + * If there isn't a current payload left over from a
> > > > stopped
> > > > sequence
> > > > + * create a new one.
> > > > + */
> > > > + if (*payload == NULL) {
> > > > + *payload = pnv_spi_xfer_buffer_new();
> > > > + }
> > > > + /*
> > > > + * Use a combination of N2 counters to build the N2
> > > > portion of
> > > > the
> > > > + * transmit payload.
> > > > + */
> > > > + calculate_N2(s, opcode);
> > > > + trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s-
> > > > >N1_tx,
> > > > + s->N1_rx, s->N2_bits, s->N2_bytes, s-
> > > > >N2_tx, s-
> > > > > N2_rx);
> > > > + /*
> > > > + * The only difference between this code and the code for
> > > > shift
> > > > N1 is
> > > > + * that this code has to account for the possible presence
> > > > of N1
> > > > transmit
> > > > + * bytes already taken from the TDR.
> > > > + * If there are bytes to be transmitted for the N2 portion
> > > > of
> > > > the frame
> > > > + * and there are still bytes in TDR that have not been
> > > > copied
> > > > into the
> > > > + * TX data of the payload, this code will handle
> > > > transmitting
> > > > those
> > > > + * remaining bytes.
> > > > + * If for some reason the transmit count(s) add up to more
> > > > than
> > > > the size
> > > > + * of the TDR we will just append 0xFF to the transmit
> > > > payload
> > > > data until
> > > > + * the payload is N1 + N2 bytes long.
> > > > + */
> > > > + n2_count = 0;
> > > > + while (n2_count < s->N2_bytes) {
> > > > + /*
> > > > + * If the RDR is full and we need to RX just bail out,
> > > > letting the
> > > > + * code continue will end up building the payload
> > > > twice in
> > > > the same
> > > > + * buffer since RDR full causes a sequence stop and
> > > > restart.
> > > > + */
> > > > + if ((s->N2_rx != 0) &&
> > > > + (GETFIELD(STATUS_REG_RDR_FULL, s->status_reg) ==
> > > > 1)) {
> > > > + trace_pnv_spi_sequencer_stop_requested("shift N2
> > > > set"
> > > > + "for receive but RDR is full");
> > > > + stop = true;
> > > > + break;
> > > > + }
> > > > + if ((s->N2_tx != 0) && ((s->N1_tx + n2_count) <
> > > > + SPI_CONTROLLER_REG_SIZE)) {
> > > > + /* Always append data for the N2 segment if it is
> > > > set
> > > > for TX */
> > > > + uint8_t n2_byte = 0x00;
> > > > + n2_byte = get_from_offset(s, (s->N1_tx +
> > > > n2_count));
> > > > + trace_pnv_spi_tx_append("n2_byte", n2_byte, (s-
> > > > >N1_tx +
> > > > n2_count));
> > > > + *(pnv_spi_xfer_buffer_write_ptr(*payload,
> > > > (*payload)-
> > > > > len, 1))
> > > > + = n2_byte;
> > > > + } else {
> > > > + /*
> > > > + * Regardless of whether or not N2 is set for TX
> > > > or RX,
> > > > we need
> > > > + * the number of bytes in the payload to match the
> > > > overall length
> > > > + * of the operation.
> > > > + */
> > > > + trace_pnv_spi_tx_append_FF("n2_byte");
> > > > + *(pnv_spi_xfer_buffer_write_ptr(*payload,
> > > > (*payload)-
> > > > > len, 1))
> > > > + = 0xff;
> > > > + }
> > > > + n2_count++;
> > > > + } /* end of while */
> > > > + if (!stop) {
> > > > + /* We have a TX and a full TDR or an RX and an empty
> > > > RDR */
> > > > + trace_pnv_spi_tx_request("Shifting N2 frame",
> > > > (*payload)-
> > > > > len);
> > > > + transfer(s, *payload);
> > > > + /*
> > > > + * If we are doing an N2 TX and the TDR is full we
> > > > need to
> > > > clear the
> > > > + * TDR_full status. Do this here instead of up in the
> > > > loop
> > > > above so we
> > > > + * don't log the message in every loop iteration.
> > > > + */
> > > > + if ((s->N2_tx != 0) &&
> > > > + (GETFIELD(STATUS_REG_TDR_FULL, s->status_reg) ==
> > > > 1)) {
> > > > + s->status_reg = SETFIELD(STATUS_REG_TDR_FULL, s-
> > > > > status_reg, 0);
> > > > + }
> > > > + /*
> > > > + * The N2 frame shift is complete so reset the N2
> > > > counters.
> > > > + * Reset the N1 counters also in case the frame was a
> > > > combination of
> > > > + * N1 and N2 segments.
> > > > + */
> > > > + s->N2_bits = 0;
> > > > + s->N2_bytes = 0;
> > > > + s->N2_tx = 0;
> > > > + s->N2_rx = 0;
> > > > + s->N1_bits = 0;
> > > > + s->N1_bytes = 0;
> > > > + s->N1_tx = 0;
> > > > + s->N1_rx = 0;
> > > > + pnv_spi_xfer_buffer_free(*payload);
> > > > + *payload = NULL;
> > > > + }
> > > > + return stop;
> > > > +} /* end of operation_shiftn2()*/
> > > > +
> > > > +static void operation_sequencer(PnvSpiController *s)
> > > > +{
> > > > + /*
> > > > + * Loop through each sequencer operation ID and perform
> > > > the
> > > > requested
> > > > + * operations.
> > > > + * Flag for indicating if we should send the N1 frame or
> > > > wait to
> > > > combine
> > > > + * it with a preceding N2 frame.
> > > > + */
> > > > + bool send_n1_alone = true;
> > > > + bool stop = false; /* Flag to stop the sequencer */
> > > > + uint8_t opcode = 0;
> > > > + uint8_t masked_opcode = 0;
> > > > +
> > > > + /*
> > > > + * PnvXferBuffer for containing the payload of the SPI
> > > > frame.
> > > > + * This is a static because there are cases where a
> > > > sequence has
> > > > to stop
> > > > + * and wait for the target application to unload the RDR.
> > > > If
> > > > this occurs
> > > > + * during a sequence where N1 is not sent alone and
> > > > instead
> > > > combined with
> > > > + * N2 since the N1 tx length + the N2 tx length is less
> > > > than the
> > > > size of
> > > > + * the TDR.
> > > > + */
> > > > + static PnvXferBuffer *payload;
> > > > +
> > > > + if (payload == NULL) {
> > > > + payload = pnv_spi_xfer_buffer_new();
> > > > + }
> > > > + /*
> > > > + * Clear the sequencer FSM error bit -
> > > > general_SPI_status[3]
> > > > + * before starting a sequence.
> > > > + */
> > > > + s->status_reg = SETFIELD(PPC_BIT(35), s->status_reg, 0);
> > > > + /*
> > > > + * If the FSM is idle set the sequencer index to 0
> > > > + * (new/restarted sequence)
> > > > + */
> > > > + if (GETFIELD(STATUS_REG_SEQUENCER_FSM, s->status_reg) ==
> > > > + SEQ_STATE_IDLE) {
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg, 0);
> > > > + }
> > > > + /*
> > > > + * There are only 8 possible operation IDs to iterate
> > > > through
> > > > though
> > > > + * some operations may cause more than one frame to be
> > > > sequenced.
> > > > + */
> > > > + while (get_seq_index(s) < 8) {
> > > > + opcode = s->sequencer_operation_reg[get_seq_index(s)];
> > > > + /* Set sequencer state to decode */
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM, s-
> > > > > status_reg,
> > > > + SEQ_STATE_DECODE);
> > > > + /*
> > > > + * Only the upper nibble of the operation ID is needed
> > > > to
> > > > know what
> > > > + * kind of operation is requested.
> > > > + */
> > > > + masked_opcode = opcode & 0xF0;
> > > > + switch (masked_opcode) {
> > > > + /*
> > > > + * Increment the operation index in each case instead
> > > > of
> > > > just
> > > > + * once at the end in case an operation like the
> > > > branch
> > > > + * operation needs to change the index.
> > > > + */
> > > > + case SEQ_OP_STOP:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + /* A stop operation in any position stops the
> > > > sequencer
> > > > */
> > > > + trace_pnv_spi_sequencer_op("STOP",
> > > > get_seq_index(s));
> > > > +
> > > > + stop = true;
> > > > + s->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > s-
> > > > > status_reg,
> > > > + FSM_IDLE);
> > > > + s->loop_counter_1 = 0;
> > > > + s->loop_counter_2 = 0;
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_IDLE);
> > > > + break;
> > > > +
> > > > + case SEQ_OP_SELECT_SLAVE:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + trace_pnv_spi_sequencer_op("SELECT_SLAVE",
> > > > get_seq_index(s));
> > > > + /*
> > > > + * This device currently only supports a single
> > > > responder
> > > > + * connection at position 0. De-selecting a
> > > > responder
> > > > is fine
> > > > + * and expected at the end of a sequence but
> > > > selecting
> > > > any
> > > > + * responder other than 0 should cause an error.
> > > > + */
> > > > + s->responder_select = opcode & 0x0F;
> > > > + if (s->responder_select == 0) {
> > > > + trace_pnv_spi_shifter_done();
> > > > + qemu_set_irq(s->cs_line[0], 1);
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg,
> > > > (get_seq_index(s) +
> > > > 1));
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg,
> > > > FSM_DONE);
> > > > + } else if (s->responder_select != 1) {
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Slave
> > > > selection
> > > > other than 1 "
> > > > + "not supported, select =
> > > > 0x%x\n",
> > > > + s->responder_select);
> > > > +
> > > > trace_pnv_spi_sequencer_stop_requested("invalid "
> > > > + "responder select");
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg,
> > > > FSM_IDLE);
> > > > + stop = true;
> > > > + } else {
> > > > + /*
> > > > + * Only allow an FSM_START state when a
> > > > responder is
> > > > + * selected
> > > > + */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg,
> > > > FSM_START);
> > > > + trace_pnv_spi_shifter_stating();
> > > > + qemu_set_irq(s->cs_line[0], 0);
> > > > + /*
> > > > + * A Shift_N2 operation is only valid after a
> > > > Shift_N1
> > > > + * according to the spec. The spec doesn't say
> > > > if
> > > > that means
> > > > + * immediately after or just after at any
> > > > point. We
> > > > will track
> > > > + * the occurrence of a Shift_N1 to enforce
> > > > this
> > > > requirement in
> > > > + * the most generic way possible by assuming
> > > > that
> > > > the rule
> > > > + * applies once a valid responder select has
> > > > occurred.
> > > > + */
> > > > + s->shift_n1_done = false;
> > > > + next_sequencer_fsm(s);
> > > > + }
> > > > + break;
> > > > +
> > > > + case SEQ_OP_SHIFT_N1:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + trace_pnv_spi_sequencer_op("SHIFT_N1",
> > > > get_seq_index(s));
> > > > + /*
> > > > + * Only allow a shift_n1 when the state is not
> > > > IDLE or
> > > > DONE.
> > > > + * In either of those two cases the sequencer is
> > > > not in
> > > > a proper
> > > > + * state to perform shift operations because the
> > > > sequencer has:
> > > > + * - processed a responder deselect (DONE)
> > > > + * - processed a stop opcode (IDLE)
> > > > + * - encountered an error (IDLE)
> > > > + */
> > > > + if ((GETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg) == FSM_IDLE) ||
> > > > + (GETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg) == FSM_DONE)) {
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N1 not
> > > > allowed
> > > > in "
> > > > + "shifter state = 0x%llx",
> > > > GETFIELD(
> > > > + STATUS_REG_SHIFTER_FSM, s-
> > > > >status_reg));
> > > > + /*
> > > > + * Set sequencer FSM error bit 3
> > > > (general_SPI_status[3])
> > > > + * in status reg.
> > > > + */
> > > > + s->status_reg = SETFIELD(PPC_BIT(35), s-
> > > > >status_reg,
> > > > 1);
> > > > +
> > > > trace_pnv_spi_sequencer_stop_requested("invalid
> > > > shifter state");
> > > > + stop = true;
> > > > + } else {
> > > > + /*
> > > > + * Look for the special case where there is a
> > > > shift_n1 set for
> > > > + * transmit and it is followed by a shift_n2
> > > > set for
> > > > transmit
> > > > + * AND the combined transmit length of the two
> > > > operations is
> > > > + * less than or equal to the size of the TDR
> > > > register. In this
> > > > + * case we want to use both this current
> > > > shift_n1
> > > > opcode and the
> > > > + * following shift_n2 opcode to assemble the
> > > > frame
> > > > for
> > > > + * transmission to the responder without
> > > > requiring a
> > > > refill of
> > > > + * the TDR between the two operations.
> > > > + */
> > > > + if ((s-
> > > > >sequencer_operation_reg[get_seq_index(s) +
> > > > 1] & 0xF0)
> > > > + == SEQ_OP_SHIFT_N2) {
> > > > + send_n1_alone = false;
> > > > + }
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg, FSM_SHIFT_N1);
> > > > + stop = operation_shiftn1(s, opcode, &payload,
> > > > send_n1_alone);
> > > > + if (stop) {
> > > > + /*
> > > > + * The operation code says to stop, this
> > > > can
> > > > occur if:
> > > > + * (1) RDR is full and the N1 shift is set
> > > > for
> > > > receive
> > > > + * (2) TDR was empty at the time of the N1
> > > > shift
> > > > so we need
> > > > + * to wait for data.
> > > > + * (3) Neither 1 nor 2 are occurring and
> > > > we
> > > > aren't sending
> > > > + * N1 alone and N2 counter reload is set
> > > > (bit 0
> > > > of the N2
> > > > + * counter reload field). In this case
> > > > TDR_underrun will
> > > > + * will be set and the Payload has been
> > > > loaded
> > > > so it is
> > > > + * ok to advance the sequencer.
> > > > + */
> > > > + if (GETFIELD(STATUS_REG_TDR_UNDERRUN, s-
> > > > > status_reg)) {
> > > > + s->shift_n1_done = true;
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s-
> > > > >status_reg,
> > > > +
> > > > FSM_SHIFT_N2);
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg,
> > > > (get_seq_index(s) + 1));
> > > > + } else {
> > > > + /*
> > > > + * This is case (1) or (2) so the
> > > > sequencer
> > > > needs to
> > > > + * wait and NOT go to the next
> > > > sequence yet.
> > > > + */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s-
> > > > >status_reg,
> > > > FSM_WAIT);
> > > > + }
> > > > + } else {
> > > > + /* Ok to move on to the next index */
> > > > + s->shift_n1_done = true;
> > > > + next_sequencer_fsm(s);
> > > > + }
> > > > + }
> > > > + break;
> > > > +
> > > > + case SEQ_OP_SHIFT_N2:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + trace_pnv_spi_sequencer_op("SHIFT_N2",
> > > > get_seq_index(s));
> > > > + if (!s->shift_n1_done) {
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N2 is
> > > > not
> > > > allowed if a "
> > > > + "Shift_N1 is not done, shifter
> > > > state =
> > > > 0x%llx",
> > > > + GETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg));
> > > > + /*
> > > > + * In case the sequencer actually stops if an
> > > > N2
> > > > shift is
> > > > + * requested before any N1 shift is done. Set
> > > > sequencer FSM
> > > > + * error bit 3 (general_SPI_status[3]) in
> > > > status
> > > > reg.
> > > > + */
> > > > + s->status_reg = SETFIELD(PPC_BIT(35), s-
> > > > >status_reg,
> > > > 1);
> > > > +
> > > > trace_pnv_spi_sequencer_stop_requested("shift_n2 "
> > > > + "w/no shift_n1 done");
> > > > + stop = true;
> > > > + } else {
> > > > + /* Ok to do a Shift_N2 */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg,
> > > > FSM_SHIFT_N2);
> > > > + stop = operation_shiftn2(s, opcode, &payload);
> > > > + /*
> > > > + * If the operation code says to stop set the
> > > > shifter state to
> > > > + * wait and stop
> > > > + */
> > > > + if (stop) {
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg,
> > > > FSM_WAIT);
> > > > + } else {
> > > > + /* Ok to move on to the next index */
> > > > + next_sequencer_fsm(s);
> > > > + }
> > > > + }
> > > > + break;
> > > > +
> > > > + case SEQ_OP_BRANCH_IFNEQ_RDR:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_RDR",
> > > > get_seq_index(s));
> > > > + /*
> > > > + * The memory mapping register RDR match value is
> > > > compared against
> > > > + * the 16 rightmost bytes of the RDR (potentially
> > > > with
> > > > masking).
> > > > + * Since this comparison is performed against the
> > > > contents of the
> > > > + * RDR then a receive must have previously
> > > > occurred
> > > > otherwise
> > > > + * there is no data to compare and the operation
> > > > cannot
> > > > be
> > > > + * completed and will stop the sequencer until RDR
> > > > full
> > > > is set to
> > > > + * 1.
> > > > + */
> > > > + if (GETFIELD(STATUS_REG_RDR_FULL, s->status_reg)
> > > > == 1) {
> > > > + bool rdr_matched = false;
> > > > + rdr_matched = does_rdr_match(s);
> > > > + if (rdr_matched) {
> > > > + trace_pnv_spi_RDR_match("success");
> > > > + /* A match occurred, increment the
> > > > sequencer
> > > > index. */
> > > > + next_sequencer_fsm(s);
> > > > + } else {
> > > > + trace_pnv_spi_RDR_match("failed");
> > > > + /*
> > > > + * Branch the sequencer to the index coded
> > > > into
> > > > the op
> > > > + * code.
> > > > + */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg,
> > > > (opcode
> > > > & 0x7));
> > > > + }
> > > > + /*
> > > > + * Regardless of where the branch ended up we
> > > > want
> > > > the
> > > > + * sequencer to continue shifting so we have
> > > > to
> > > > clear
> > > > + * RDR_full.
> > > > + */
> > > > + s->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
> > > > + s->status_reg, 0);
> > > > + } else {
> > > > + trace_pnv_spi_sequencer_stop_requested("RDR
> > > > not"
> > > > + "full for 0x6x opcode");
> > > > + stop = true;
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > + s->status_reg,
> > > > FSM_WAIT);
> > > > + }
> > > > + break;
> > > > +
> > > > + case SEQ_OP_TRANSFER_TDR:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + qemu_log_mask(LOG_GUEST_ERROR, "Transfer TDR is
> > > > not
> > > > supported\n");
> > > > + next_sequencer_fsm(s);
> > > > + break;
> > > > +
> > > > + case SEQ_OP_BRANCH_IFNEQ_INC_1:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_INC_1",
> > > > get_seq_index(s));
> > > > + /*
> > > > + * The spec says the loop should execute count
> > > > compare +
> > > > 1 times.
> > > > + * However we learned from engineering that we
> > > > really
> > > > only loop
> > > > + * count_compare times, count compare = 0 makes
> > > > this op
> > > > code a
> > > > + * no-op
> > > > + */
> > > > + if (s->loop_counter_1 !=
> > > > + GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
> > > > + s->counter_config_reg)) {
> > > > + /*
> > > > + * Next index is the lower nibble of the
> > > > branch
> > > > operation ID,
> > > > + * mask off all but the first three bits so we
> > > > don't
> > > > try to
> > > > + * access beyond the sequencer_operation_reg
> > > > boundary.
> > > > + */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg,
> > > > (opcode &
> > > > 0x7));
> > > > + s->loop_counter_1++;
> > > > + } else {
> > > > + /* Continue to next index if loop counter is
> > > > reached
> > > > */
> > > > + next_sequencer_fsm(s);
> > > > + }
> > > > + break;
> > > > +
> > > > + case SEQ_OP_BRANCH_IFNEQ_INC_2:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_INC_2",
> > > > get_seq_index(s));
> > > > + uint8_t condition2 =
> > > > GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE2,
> > > > + s->counter_config_reg);
> > > > + /*
> > > > + * The spec says the loop should execute count
> > > > compare +
> > > > 1 times.
> > > > + * However we learned from engineering that we
> > > > really
> > > > only loop
> > > > + * count_compare times, count compare = 0 makes
> > > > this op
> > > > code a
> > > > + * no-op
> > > > + */
> > > > + if (s->loop_counter_2 != condition2) {
> > > > + /*
> > > > + * Next index is the lower nibble of the
> > > > branch
> > > > operation ID,
> > > > + * mask off all but the first three bits so we
> > > > don't
> > > > try to
> > > > + * access beyond the sequencer_operation_reg
> > > > boundary.
> > > > + */
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg,
> > > > + (opcode & 0x7));
> > > > + s->loop_counter_2++;
> > > > + } else {
> > > > + /* Continue to next index if loop counter is
> > > > reached
> > > > */
> > > > + next_sequencer_fsm(s);
> > > > + }
> > > > + break;
> > > > +
> > > > + default:
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_EXECUTE);
> > > > + /* Ignore unsupported operations. */
> > > > + next_sequencer_fsm(s);
> > > > + break;
> > > > + } /* end of switch */
> > > > + /*
> > > > + * If we used all 8 opcodes without seeing a 00 - STOP
> > > > in
> > > > the sequence
> > > > + * we need to go ahead and end things as if there was
> > > > a STOP
> > > > at the
> > > > + * end.
> > > > + */
> > > > + if (get_seq_index(s) == 8) {
> > > > + /* All 8 opcodes completed, sequencer idling */
> > > > + s->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> > > > s-
> > > > > status_reg,
> > > > + FSM_IDLE);
> > > > + s->status_reg =
> > > > SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> > > > + s->status_reg, 0);
> > > > + s->loop_counter_1 = 0;
> > > > + s->loop_counter_2 = 0;
> > > > + s->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> > > > + s->status_reg,
> > > > SEQ_STATE_IDLE);
> > > > + break;
> > > > + }
> > > > + /* Break the loop if a stop was requested */
> > > > + if (stop) {
> > > > + break;
> > > > + }
> > > > + } /* end of while */
> > > > + return;
> > > > +} /* end of operation_sequencer() */
> > > > +
> > > > +/*
> > > > + * The SPIC engine and its internal sequencer can be
> > > > interrupted and
> > > > reset by
> > > > + * a hardware signal, the sbe_spicst_hard_reset bits from
> > > > Pervasive
> > > > + * Miscellaneous Register of sbe_register_bo device.
> > > > + * Reset immediately aborts any SPI transaction in progress
> > > > and
> > > > returns the
> > > > + * sequencer and state machines to idle state.
> > > > + * The configuration register values are not changed. The
> > > > status
> > > > register is
> > > > + * not reset. The engine registers are not reset.
> > > > + * The SPIC engine reset does not have any affect on the
> > > > attached
> > > > devices.
> > > > + * Reset handling of any attached devices is beyond the scope
> > > > of the
> > > > engine.
> > > > + */
> > > > +static void do_reset(DeviceState *dev)
> > > > +{
> > > > + PnvSpiController *s = PNV_SPICONTROLLER(dev);
> > > > +
> > > > + trace_pnv_spi_reset();
> > > > +
> > > > + /* Reset all N1 and N2 counters, and other constants */
> > > > + s->N2_bits = 0;
> > > > + s->N2_bytes = 0;
> > > > + s->N2_tx = 0;
> > > > + s->N2_rx = 0;
> > > > + s->N1_bits = 0;
> > > > + s->N1_bytes = 0;
> > > > + s->N1_tx = 0;
> > > > + s->N1_rx = 0;
> > > > + s->loop_counter_1 = 0;
> > > > + s->loop_counter_2 = 0;
> > > > + /* Disconnected from responder */
> > > > + qemu_set_irq(s->cs_line[0], 1);
> > > > +}
> > > > +
> > > > static uint64_t pnv_spi_controller_read(void *opaque, hwaddr
> > > > addr,
> > > > unsigned size)
> > > > {
> > > > @@ -49,6 +1115,10 @@ static uint64_t
> > > > pnv_spi_controller_read(void
> > > > *opaque, hwaddr addr,
> > > > val = s->receive_data_reg;
> > > > trace_pnv_spi_read_RDR(val);
> > > > s->status_reg = SETFIELD(STATUS_REG_RDR_FULL, s-
> > > > >status_reg,
> > > > 0);
> > > > + if (GETFIELD(STATUS_REG_SHIFTER_FSM, s->status_reg) ==
> > > > FSM_WAIT) {
> > > > + trace_pnv_spi_start_sequencer();
> > > > + operation_sequencer(s);
> > > > + }
> > > > break;
> > > > case SEQUENCER_OPERATION_REG:
> > > > val = 0;
> > > > @@ -120,6 +1190,8 @@ static void pnv_spi_controller_write(void
> > > > *opaque, hwaddr addr,
> > > > trace_pnv_spi_write_TDR(val);
> > > > s->status_reg = SETFIELD(STATUS_REG_TDR_FULL, s-
> > > > >status_reg,
> > > > 1);
> > > > s->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, s-
> > > > > status_reg, 0);
> > > > + trace_pnv_spi_start_sequencer();
> > > > + operation_sequencer(s);
> > > > break;
> > > > case RECEIVE_DATA_REG:
> > > > s->receive_data_reg = val;
> > > > @@ -155,6 +1227,7 @@ static const MemoryRegionOps
> > > > pnv_spi_controller_xscom_ops = {
> > > > static Property pnv_spi_controller_properties[] = {
> > > > DEFINE_PROP_UINT32("spic_num", PnvSpiController,
> > > > spic_num, 0),
> > > > + DEFINE_PROP_UINT8("transfer_len", PnvSpiController,
> > > > transfer_len, 4),
> > > > DEFINE_PROP_END_OF_LIST(),
> > > > };
> > > > @@ -206,6 +1279,7 @@ static void
> > > > pnv_spi_controller_class_init(ObjectClass *klass, void *data)
> > > > dc->desc = "PowerNV SPI Controller";
> > > > dc->realize = pnv_spi_controller_realize;
> > > > + dc->reset = do_reset;
> > > > device_class_set_props(dc,
> > > > pnv_spi_controller_properties);
> > > > }
> > > > diff --git a/hw/ppc/trace-events b/hw/ppc/trace-events
> > > > index b8e494ffc5..4b08311160 100644
> > > > --- a/hw/ppc/trace-events
> > > > +++ b/hw/ppc/trace-events
> > > > @@ -115,6 +115,21 @@ pnv_spi_read(uint64_t addr, uint64_t val)
> > > > "addr
> > > > 0x%" PRIx64 " val 0x%" PRIx64
> > > > pnv_spi_write(uint64_t addr, uint64_t val) "addr 0x%" PRIx64
> > > > " val
> > > > 0x%" PRIx64
> > > > pnv_spi_read_RDR(uint64_t val) "data extracted = 0x%" PRIx64
> > > > pnv_spi_write_TDR(uint64_t val) "being written, data written
> > > > = 0x%"
> > > > PRIx64
> > > > +pnv_spi_start_sequencer(void) ""
> > > > +pnv_spi_reset(void) "spic engine sequencer configuration and
> > > > spi
> > > > communication"
> > > > +pnv_spi_sequencer_op(const char* op, uint8_t index) "%s at
> > > > index =
> > > > 0x%x"
> > > > +pnv_spi_shifter_stating(void) "pull CS line low"
> > > > +pnv_spi_shifter_done(void) "pull the CS line high"
> > > > +pnv_spi_log_Ncounts(uint8_t N1_bits, uint8_t N1_bytes, uint8_t
> > > > N1_tx, uint8_t N1_rx, uint8_t N2_bits, uint8_t N2_bytes,
> > > > uint8_t
> > > > N2_tx, uint8_t N2_rx) "N1_bits = %d, N1_bytes = %d, N1_tx = %d,
> > > > N1_rx
> > > > = %d, N2_bits = %d, N2_bytes = %d, N2_tx = %d, N2_rx = %d"
> > > > +pnv_spi_tx_append(const char* frame, uint8_t byte, uint8_t
> > > > tdr_index) "%s = 0x%2.2x to payload from TDR at index %d"
> > > > +pnv_spi_tx_append_FF(const char* frame) "%s to Payload"
> > > > +pnv_spi_tx_request(const char* frame, uint32_t payload_len)
> > > > "%s,
> > > > payload len = %d"
> > > > +pnv_spi_rx_received(uint32_t payload_len) "payload len = %d"
> > > > +pnv_spi_rx_read_N1frame(void) ""
> > > > +pnv_spi_rx_read_N2frame(void) ""
> > > > +pnv_spi_shift_rx(uint8_t byte, uint32_t index) "byte = 0x%2.2x
> > > > into
> > > > RDR from payload index %d"
> > > > +pnv_spi_sequencer_stop_requested(const char* reason) "due to
> > > > %s"
> > > > +pnv_spi_RDR_match(const char* result) "%s"
> > > > # ppc.c
> > > > ppc_tb_adjust(uint64_t offs1, uint64_t offs2, int64_t diff,
> > > > int64_t
> > > > seconds) "adjusted from 0x%"PRIx64" to 0x%"PRIx64", diff
> > > > %"PRId64"
> > > > (%"PRId64"s)"