[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[PATCH 2/5] rust: pl011: move register definitions out of lib.rs
From: |
Paolo Bonzini |
Subject: |
[PATCH 2/5] rust: pl011: move register definitions out of lib.rs |
Date: |
Thu, 27 Feb 2025 17:45:31 +0100 |
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
---
rust/hw/char/pl011/src/device.rs | 7 +-
rust/hw/char/pl011/src/lib.rs | 509 +---------------------------
rust/hw/char/pl011/src/registers.rs | 507 +++++++++++++++++++++++++++
3 files changed, 513 insertions(+), 510 deletions(-)
create mode 100644 rust/hw/char/pl011/src/registers.rs
diff --git a/rust/hw/char/pl011/src/device.rs b/rust/hw/char/pl011/src/device.rs
index d0857b470c9..01540654cc9 100644
--- a/rust/hw/char/pl011/src/device.rs
+++ b/rust/hw/char/pl011/src/device.rs
@@ -26,10 +26,13 @@
use crate::{
device_class,
- registers::{self, Interrupt},
- RegisterOffset,
+ registers::{self, Interrupt, RegisterOffset},
};
+// TODO: You must disable the UART before any of the control registers are
+// reprogrammed. When the UART is disabled in the middle of transmission or
+// reception, it completes the current character before stopping
+
/// Integer Baud Rate Divider, `UARTIBRD`
const IBRD_MASK: u32 = 0xffff;
diff --git a/rust/hw/char/pl011/src/lib.rs b/rust/hw/char/pl011/src/lib.rs
index 1bf46c65af2..45c13ba899e 100644
--- a/rust/hw/char/pl011/src/lib.rs
+++ b/rust/hw/char/pl011/src/lib.rs
@@ -18,516 +18,9 @@
mod device;
mod device_class;
+mod registers;
pub use device::pl011_create;
pub const TYPE_PL011: &::std::ffi::CStr = c_str!("pl011");
pub const TYPE_PL011_LUMINARY: &::std::ffi::CStr = c_str!("pl011_luminary");
-
-/// Offset of each register from the base memory address of the device.
-///
-/// # Source
-/// ARM DDI 0183G, Table 3-1 p.3-3
-#[doc(alias = "offset")]
-#[allow(non_camel_case_types)]
-#[repr(u64)]
-#[derive(Debug, Eq, PartialEq, qemu_api_macros::TryInto)]
-enum RegisterOffset {
- /// Data Register
- ///
- /// A write to this register initiates the actual data transmission
- #[doc(alias = "UARTDR")]
- DR = 0x000,
- /// Receive Status Register or Error Clear Register
- #[doc(alias = "UARTRSR")]
- #[doc(alias = "UARTECR")]
- RSR = 0x004,
- /// Flag Register
- ///
- /// A read of this register shows if transmission is complete
- #[doc(alias = "UARTFR")]
- FR = 0x018,
- /// Fractional Baud Rate Register
- ///
- /// responsible for baud rate speed
- #[doc(alias = "UARTFBRD")]
- FBRD = 0x028,
- /// `IrDA` Low-Power Counter Register
- #[doc(alias = "UARTILPR")]
- ILPR = 0x020,
- /// Integer Baud Rate Register
- ///
- /// Responsible for baud rate speed
- #[doc(alias = "UARTIBRD")]
- IBRD = 0x024,
- /// line control register (data frame format)
- #[doc(alias = "UARTLCR_H")]
- LCR_H = 0x02C,
- /// Toggle UART, transmission or reception
- #[doc(alias = "UARTCR")]
- CR = 0x030,
- /// Interrupt FIFO Level Select Register
- #[doc(alias = "UARTIFLS")]
- FLS = 0x034,
- /// Interrupt Mask Set/Clear Register
- #[doc(alias = "UARTIMSC")]
- IMSC = 0x038,
- /// Raw Interrupt Status Register
- #[doc(alias = "UARTRIS")]
- RIS = 0x03C,
- /// Masked Interrupt Status Register
- #[doc(alias = "UARTMIS")]
- MIS = 0x040,
- /// Interrupt Clear Register
- #[doc(alias = "UARTICR")]
- ICR = 0x044,
- /// DMA control Register
- #[doc(alias = "UARTDMACR")]
- DMACR = 0x048,
- ///// Reserved, offsets `0x04C` to `0x07C`.
- //Reserved = 0x04C,
-}
-
-mod registers {
- //! Device registers exposed as typed structs which are backed by arbitrary
- //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
- use bilge::prelude::*;
- use qemu_api::impl_vmstate_bitsized;
-
- /// Receive Status Register / Data Register common error bits
- ///
- /// The `UARTRSR` register is updated only when a read occurs
- /// from the `UARTDR` register with the same status information
- /// that can also be obtained by reading the `UARTDR` register
- #[bitsize(8)]
- #[derive(Clone, Copy, Default, DebugBits, FromBits)]
- pub struct Errors {
- pub framing_error: bool,
- pub parity_error: bool,
- pub break_error: bool,
- pub overrun_error: bool,
- _reserved_unpredictable: u4,
- }
-
- // TODO: FIFO Mode has different semantics
- /// Data Register, `UARTDR`
- ///
- /// The `UARTDR` register is the data register.
- ///
- /// For words to be transmitted:
- ///
- /// - if the FIFOs are enabled, data written to this location is pushed
onto
- /// the transmit
- /// FIFO
- /// - if the FIFOs are not enabled, data is stored in the transmitter
- /// holding register (the
- /// bottom word of the transmit FIFO).
- ///
- /// The write operation initiates transmission from the UART. The data is
- /// prefixed with a start bit, appended with the appropriate parity bit
- /// (if parity is enabled), and a stop bit. The resultant word is then
- /// transmitted.
- ///
- /// For received words:
- ///
- /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
- /// frame, parity,
- /// and overrun) is pushed onto the 12-bit wide receive FIFO
- /// - if the FIFOs are not enabled, the data byte and status are stored in
- /// the receiving
- /// holding register (the bottom word of the receive FIFO).
- ///
- /// The received data byte is read by performing reads from the `UARTDR`
- /// register along with the corresponding status information. The status
- /// information can also be read by a read of the `UARTRSR/UARTECR`
- /// register.
- ///
- /// # Note
- ///
- /// You must disable the UART before any of the control registers are
- /// reprogrammed. When the UART is disabled in the middle of
- /// transmission or reception, it completes the current character before
- /// stopping.
- ///
- /// # Source
- /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
- #[bitsize(32)]
- #[derive(Clone, Copy, Default, DebugBits, FromBits)]
- #[doc(alias = "UARTDR")]
- pub struct Data {
- pub data: u8,
- pub errors: Errors,
- _reserved: u16,
- }
- impl_vmstate_bitsized!(Data);
-
- impl Data {
- // bilge is not very const-friendly, unfortunately
- pub const BREAK: Self = Self { value: 1 << 10 };
- }
-
- // TODO: FIFO Mode has different semantics
- /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
- ///
- /// The UARTRSR/UARTECR register is the receive status register/error clear
- /// register. Receive status can also be read from the `UARTRSR`
- /// register. If the status is read from this register, then the status
- /// information for break, framing and parity corresponds to the
- /// data character read from the [Data register](Data), `UARTDR` prior to
- /// reading the UARTRSR register. The status information for overrun is
- /// set immediately when an overrun condition occurs.
- ///
- ///
- /// # Note
- /// The received data character must be read first from the [Data
- /// Register](Data), `UARTDR` before reading the error status associated
- /// with that data character from the `UARTRSR` register. This read
- /// sequence cannot be reversed, because the `UARTRSR` register is
- /// updated only when a read occurs from the `UARTDR` register. However,
- /// the status information can also be obtained by reading the `UARTDR`
- /// register
- ///
- /// # Source
- /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
- /// UARTRSR/UARTECR
- #[bitsize(32)]
- #[derive(Clone, Copy, DebugBits, FromBits)]
- pub struct ReceiveStatusErrorClear {
- pub errors: Errors,
- _reserved_unpredictable: u24,
- }
- impl_vmstate_bitsized!(ReceiveStatusErrorClear);
-
- impl ReceiveStatusErrorClear {
- pub fn set_from_data(&mut self, data: Data) {
- self.set_errors(data.errors());
- }
-
- pub fn reset(&mut self) {
- // All the bits are cleared to 0 on reset.
- *self = Self::default();
- }
- }
-
- impl Default for ReceiveStatusErrorClear {
- fn default() -> Self {
- 0.into()
- }
- }
-
- #[bitsize(32)]
- #[derive(Clone, Copy, DebugBits, FromBits)]
- /// Flag Register, `UARTFR`
- #[doc(alias = "UARTFR")]
- pub struct Flags {
- /// CTS Clear to send. This bit is the complement of the UART clear to
- /// send, `nUARTCTS`, modem status input. That is, the bit is 1
- /// when `nUARTCTS` is LOW.
- pub clear_to_send: bool,
- /// DSR Data set ready. This bit is the complement of the UART data set
- /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
- /// `nUARTDSR` is LOW.
- pub data_set_ready: bool,
- /// DCD Data carrier detect. This bit is the complement of the UART
data
- /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
- /// 1 when `nUARTDCD` is LOW.
- pub data_carrier_detect: bool,
- /// BUSY UART busy. If this bit is set to 1, the UART is busy
- /// transmitting data. This bit remains set until the complete
- /// byte, including all the stop bits, has been sent from the
- /// shift register. This bit is set as soon as the transmit FIFO
- /// becomes non-empty, regardless of whether the UART is enabled
- /// or not.
- pub busy: bool,
- /// RXFE Receive FIFO empty. The meaning of this bit depends on the
- /// state of the FEN bit in the UARTLCR_H register. If the FIFO
- /// is disabled, this bit is set when the receive holding
- /// register is empty. If the FIFO is enabled, the RXFE bit is
- /// set when the receive FIFO is empty.
- pub receive_fifo_empty: bool,
- /// TXFF Transmit FIFO full. The meaning of this bit depends on the
- /// state of the FEN bit in the UARTLCR_H register. If the FIFO
- /// is disabled, this bit is set when the transmit holding
- /// register is full. If the FIFO is enabled, the TXFF bit is
- /// set when the transmit FIFO is full.
- pub transmit_fifo_full: bool,
- /// RXFF Receive FIFO full. The meaning of this bit depends on the
state
- /// of the FEN bit in the UARTLCR_H register. If the FIFO is
- /// disabled, this bit is set when the receive holding register
- /// is full. If the FIFO is enabled, the RXFF bit is set when
- /// the receive FIFO is full.
- pub receive_fifo_full: bool,
- /// Transmit FIFO empty. The meaning of this bit depends on the state
of
- /// the FEN bit in the [Line Control register](LineControl),
- /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
- /// transmit holding register is empty. If the FIFO is enabled,
- /// the TXFE bit is set when the transmit FIFO is empty. This
- /// bit does not indicate if there is data in the transmit shift
- /// register.
- pub transmit_fifo_empty: bool,
- /// `RI`, is `true` when `nUARTRI` is `LOW`.
- pub ring_indicator: bool,
- _reserved_zero_no_modify: u23,
- }
- impl_vmstate_bitsized!(Flags);
-
- impl Flags {
- pub fn reset(&mut self) {
- *self = Self::default();
- }
- }
-
- impl Default for Flags {
- fn default() -> Self {
- let mut ret: Self = 0.into();
- // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
- ret.set_receive_fifo_empty(true);
- ret.set_transmit_fifo_empty(true);
- ret
- }
- }
-
- #[bitsize(32)]
- #[derive(Clone, Copy, DebugBits, FromBits)]
- /// Line Control Register, `UARTLCR_H`
- #[doc(alias = "UARTLCR_H")]
- pub struct LineControl {
- /// BRK Send break.
- ///
- /// If this bit is set to `1`, a low-level is continually output on the
- /// `UARTTXD` output, after completing transmission of the
- /// current character. For the proper execution of the break command,
- /// the software must set this bit for at least two complete
- /// frames. For normal use, this bit must be cleared to `0`.
- pub send_break: bool,
- /// 1 PEN Parity enable:
- ///
- /// - 0 = parity is disabled and no parity bit added to the data frame
- /// - 1 = parity checking and generation is enabled.
- ///
- /// See Table 3-11 on page 3-14 for the parity truth table.
- pub parity_enabled: bool,
- /// EPS Even parity select. Controls the type of parity the UART uses
- /// during transmission and reception:
- /// - 0 = odd parity. The UART generates or checks for an odd number of
- /// 1s in the data and parity bits.
- /// - 1 = even parity. The UART generates or checks for an even number
- /// of 1s in the data and parity bits.
- /// This bit has no effect when the `PEN` bit disables parity checking
- /// and generation. See Table 3-11 on page 3-14 for the parity
- /// truth table.
- pub parity: Parity,
- /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
- /// are transmitted at the end of the frame. The receive
- /// logic does not check for two stop bits being received.
- pub two_stops_bits: bool,
- /// FEN Enable FIFOs:
- /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
- /// 1-byte-deep holding registers 1 = transmit and receive FIFO
- /// buffers are enabled (FIFO mode).
- pub fifos_enabled: Mode,
- /// WLEN Word length. These bits indicate the number of data bits
- /// transmitted or received in a frame as follows: b11 = 8 bits
- /// b10 = 7 bits
- /// b01 = 6 bits
- /// b00 = 5 bits.
- pub word_length: WordLength,
- /// 7 SPS Stick parity select.
- /// 0 = stick parity is disabled
- /// 1 = either:
- /// • if the EPS bit is 0 then the parity bit is transmitted and
checked
- /// as a 1 • if the EPS bit is 1 then the parity bit is
- /// transmitted and checked as a 0. This bit has no effect when
- /// the PEN bit disables parity checking and generation. See Table 3-11
- /// on page 3-14 for the parity truth table.
- pub sticky_parity: bool,
- /// 31:8 - Reserved, do not modify, read as zero.
- _reserved_zero_no_modify: u24,
- }
- impl_vmstate_bitsized!(LineControl);
-
- impl LineControl {
- pub fn reset(&mut self) {
- // All the bits are cleared to 0 when reset.
- *self = 0.into();
- }
- }
-
- impl Default for LineControl {
- fn default() -> Self {
- 0.into()
- }
- }
-
- #[bitsize(1)]
- #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
- /// `EPS` "Even parity select", field of [Line Control
- /// register](LineControl).
- pub enum Parity {
- /// - 0 = odd parity. The UART generates or checks for an odd number of
- /// 1s in the data and parity bits.
- Odd = 0,
- /// - 1 = even parity. The UART generates or checks for an even number
- /// of 1s in the data and parity bits.
- Even = 1,
- }
-
- #[bitsize(1)]
- #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
- /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
- /// register](LineControl).
- pub enum Mode {
- /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
- /// 1-byte-deep holding registers
- Character = 0,
- /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
- FIFO = 1,
- }
-
- #[bitsize(2)]
- #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
- /// `WLEN` Word length, field of [Line Control register](LineControl).
- ///
- /// These bits indicate the number of data bits transmitted or received in
a
- /// frame as follows:
- pub enum WordLength {
- /// b11 = 8 bits
- _8Bits = 0b11,
- /// b10 = 7 bits
- _7Bits = 0b10,
- /// b01 = 6 bits
- _6Bits = 0b01,
- /// b00 = 5 bits.
- _5Bits = 0b00,
- }
-
- /// Control Register, `UARTCR`
- ///
- /// The `UARTCR` register is the control register. All the bits are cleared
- /// to `0` on reset except for bits `9` and `8` that are set to `1`.
- ///
- /// # Source
- /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
- #[bitsize(32)]
- #[doc(alias = "UARTCR")]
- #[derive(Clone, Copy, DebugBits, FromBits)]
- pub struct Control {
- /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
- /// in the middle of transmission or reception, it completes the
current
- /// character before stopping. 1 = the UART is enabled. Data
- /// transmission and reception occurs for either UART signals or SIR
- /// signals depending on the setting of the SIREN bit.
- pub enable_uart: bool,
- /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
- /// remains LOW (no light pulse generated), and signal transitions on
- /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
- /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains
HIGH,
- /// in the marking state. Signal transitions on UARTRXD or modem status
- /// inputs have no effect. This bit has no effect if the UARTEN bit
- /// disables the UART.
- pub enable_sir: bool,
- /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
- /// mode. If this bit is cleared to 0, low-level bits are transmitted
as
- /// an active high pulse with a width of 3/ 16th of the bit period. If
- /// this bit is set to 1, low-level bits are transmitted with a pulse
- /// width that is 3 times the period of the IrLPBaud16 input signal,
- /// regardless of the selected bit rate. Setting this bit uses less
- /// power, but might reduce transmission distances.
- pub sir_lowpower_irda_mode: u1,
- /// Reserved, do not modify, read as zero.
- _reserved_zero_no_modify: u4,
- /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
- /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
- /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
- /// through to the SIRIN path. The SIRTEST bit in the test register
must
- /// be set to 1 to override the normal half-duplex SIR operation. This
- /// must be the requirement for accessing the test registers during
- /// normal operation, and SIRTEST must be cleared to 0 when loopback
- /// testing is finished. This feature reduces the amount of external
- /// coupling required during system test. If this bit is set to 1, and
- /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
- /// UARTRXD path. In either SIR mode or UART mode, when this bit is
set,
- /// the modem outputs are also fed through to the modem inputs. This
bit
- /// is cleared to 0 on reset, to disable loopback.
- pub enable_loopback: bool,
- /// `TXE` Transmit enable. If this bit is set to 1, the transmit
section
- /// of the UART is enabled. Data transmission occurs for either UART
- /// signals, or SIR signals depending on the setting of the SIREN bit.
- /// When the UART is disabled in the middle of transmission, it
- /// completes the current character before stopping.
- pub enable_transmit: bool,
- /// `RXE` Receive enable. If this bit is set to 1, the receive section
- /// of the UART is enabled. Data reception occurs for either UART
- /// signals or SIR signals depending on the setting of the SIREN bit.
- /// When the UART is disabled in the middle of reception, it completes
- /// the current character before stopping.
- pub enable_receive: bool,
- /// `DTR` Data transmit ready. This bit is the complement of the UART
- /// data transmit ready, `nUARTDTR`, modem status output. That is, when
- /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
- pub data_transmit_ready: bool,
- /// `RTS` Request to send. This bit is the complement of the UART
- /// request to send, `nUARTRTS`, modem status output. That is, when the
- /// bit is programmed to a 1 then `nUARTRTS` is LOW.
- pub request_to_send: bool,
- /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
- /// modem status output. That is, when the bit is programmed to a 1 the
- /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
- pub out_1: bool,
- /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
- /// modem status output. That is, when the bit is programmed to a 1,
the
- /// output is 0. For DTE this can be used as Ring Indicator (RI).
- pub out_2: bool,
- /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
- /// RTS hardware flow control is enabled. Data is only requested when
- /// there is space in the receive FIFO for it to be received.
- pub rts_hardware_flow_control_enable: bool,
- /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
- /// CTS hardware flow control is enabled. Data is only transmitted when
- /// the `nUARTCTS` signal is asserted.
- pub cts_hardware_flow_control_enable: bool,
- /// 31:16 - Reserved, do not modify, read as zero.
- _reserved_zero_no_modify2: u16,
- }
- impl_vmstate_bitsized!(Control);
-
- impl Control {
- pub fn reset(&mut self) {
- *self = 0.into();
- self.set_enable_receive(true);
- self.set_enable_transmit(true);
- }
- }
-
- impl Default for Control {
- fn default() -> Self {
- let mut ret: Self = 0.into();
- ret.reset();
- ret
- }
- }
-
- /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
- pub struct Interrupt(pub u32);
-
- impl Interrupt {
- pub const OE: Self = Self(1 << 10);
- pub const BE: Self = Self(1 << 9);
- pub const PE: Self = Self(1 << 8);
- pub const FE: Self = Self(1 << 7);
- pub const RT: Self = Self(1 << 6);
- pub const TX: Self = Self(1 << 5);
- pub const RX: Self = Self(1 << 4);
- pub const DSR: Self = Self(1 << 3);
- pub const DCD: Self = Self(1 << 2);
- pub const CTS: Self = Self(1 << 1);
- pub const RI: Self = Self(1 << 0);
-
- pub const E: Self = Self(Self::OE.0 | Self::BE.0 | Self::PE.0 |
Self::FE.0);
- pub const MS: Self = Self(Self::RI.0 | Self::DSR.0 | Self::DCD.0 |
Self::CTS.0);
- }
-}
-
-// TODO: You must disable the UART before any of the control registers are
-// reprogrammed. When the UART is disabled in the middle of transmission or
-// reception, it completes the current character before stopping
diff --git a/rust/hw/char/pl011/src/registers.rs
b/rust/hw/char/pl011/src/registers.rs
new file mode 100644
index 00000000000..ebd8297ce69
--- /dev/null
+++ b/rust/hw/char/pl011/src/registers.rs
@@ -0,0 +1,507 @@
+// Copyright 2024, Linaro Limited
+// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+//! Device registers exposed as typed structs which are backed by arbitrary
+//! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
+
+use bilge::prelude::*;
+
+use qemu_api::impl_vmstate_bitsized;
+
+/// Offset of each register from the base memory address of the device.
+///
+/// # Source
+/// ARM DDI 0183G, Table 3-1 p.3-3
+#[doc(alias = "offset")]
+#[allow(non_camel_case_types)]
+#[repr(u64)]
+#[derive(Debug, Eq, PartialEq, qemu_api_macros::TryInto)]
+pub enum RegisterOffset {
+ /// Data Register
+ ///
+ /// A write to this register initiates the actual data transmission
+ #[doc(alias = "UARTDR")]
+ DR = 0x000,
+ /// Receive Status Register or Error Clear Register
+ #[doc(alias = "UARTRSR")]
+ #[doc(alias = "UARTECR")]
+ RSR = 0x004,
+ /// Flag Register
+ ///
+ /// A read of this register shows if transmission is complete
+ #[doc(alias = "UARTFR")]
+ FR = 0x018,
+ /// Fractional Baud Rate Register
+ ///
+ /// responsible for baud rate speed
+ #[doc(alias = "UARTFBRD")]
+ FBRD = 0x028,
+ /// `IrDA` Low-Power Counter Register
+ #[doc(alias = "UARTILPR")]
+ ILPR = 0x020,
+ /// Integer Baud Rate Register
+ ///
+ /// Responsible for baud rate speed
+ #[doc(alias = "UARTIBRD")]
+ IBRD = 0x024,
+ /// line control register (data frame format)
+ #[doc(alias = "UARTLCR_H")]
+ LCR_H = 0x02C,
+ /// Toggle UART, transmission or reception
+ #[doc(alias = "UARTCR")]
+ CR = 0x030,
+ /// Interrupt FIFO Level Select Register
+ #[doc(alias = "UARTIFLS")]
+ FLS = 0x034,
+ /// Interrupt Mask Set/Clear Register
+ #[doc(alias = "UARTIMSC")]
+ IMSC = 0x038,
+ /// Raw Interrupt Status Register
+ #[doc(alias = "UARTRIS")]
+ RIS = 0x03C,
+ /// Masked Interrupt Status Register
+ #[doc(alias = "UARTMIS")]
+ MIS = 0x040,
+ /// Interrupt Clear Register
+ #[doc(alias = "UARTICR")]
+ ICR = 0x044,
+ /// DMA control Register
+ #[doc(alias = "UARTDMACR")]
+ DMACR = 0x048,
+ ///// Reserved, offsets `0x04C` to `0x07C`.
+ //Reserved = 0x04C,
+}
+
+/// Receive Status Register / Data Register common error bits
+///
+/// The `UARTRSR` register is updated only when a read occurs
+/// from the `UARTDR` register with the same status information
+/// that can also be obtained by reading the `UARTDR` register
+#[bitsize(8)]
+#[derive(Clone, Copy, Default, DebugBits, FromBits)]
+pub struct Errors {
+ pub framing_error: bool,
+ pub parity_error: bool,
+ pub break_error: bool,
+ pub overrun_error: bool,
+ _reserved_unpredictable: u4,
+}
+
+// TODO: FIFO Mode has different semantics
+/// Data Register, `UARTDR`
+///
+/// The `UARTDR` register is the data register.
+///
+/// For words to be transmitted:
+///
+/// - if the FIFOs are enabled, data written to this location is pushed onto
+/// the transmit
+/// FIFO
+/// - if the FIFOs are not enabled, data is stored in the transmitter
+/// holding register (the
+/// bottom word of the transmit FIFO).
+///
+/// The write operation initiates transmission from the UART. The data is
+/// prefixed with a start bit, appended with the appropriate parity bit
+/// (if parity is enabled), and a stop bit. The resultant word is then
+/// transmitted.
+///
+/// For received words:
+///
+/// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
+/// frame, parity,
+/// and overrun) is pushed onto the 12-bit wide receive FIFO
+/// - if the FIFOs are not enabled, the data byte and status are stored in
+/// the receiving
+/// holding register (the bottom word of the receive FIFO).
+///
+/// The received data byte is read by performing reads from the `UARTDR`
+/// register along with the corresponding status information. The status
+/// information can also be read by a read of the `UARTRSR/UARTECR`
+/// register.
+///
+/// # Note
+///
+/// You must disable the UART before any of the control registers are
+/// reprogrammed. When the UART is disabled in the middle of
+/// transmission or reception, it completes the current character before
+/// stopping.
+///
+/// # Source
+/// ARM DDI 0183G 3.3.1 Data Register, UARTDR
+#[bitsize(32)]
+#[derive(Clone, Copy, Default, DebugBits, FromBits)]
+#[doc(alias = "UARTDR")]
+pub struct Data {
+ pub data: u8,
+ pub errors: Errors,
+ _reserved: u16,
+}
+impl_vmstate_bitsized!(Data);
+
+impl Data {
+ // bilge is not very const-friendly, unfortunately
+ pub const BREAK: Self = Self { value: 1 << 10 };
+}
+
+// TODO: FIFO Mode has different semantics
+/// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
+///
+/// The UARTRSR/UARTECR register is the receive status register/error clear
+/// register. Receive status can also be read from the `UARTRSR`
+/// register. If the status is read from this register, then the status
+/// information for break, framing and parity corresponds to the
+/// data character read from the [Data register](Data), `UARTDR` prior to
+/// reading the UARTRSR register. The status information for overrun is
+/// set immediately when an overrun condition occurs.
+///
+///
+/// # Note
+/// The received data character must be read first from the [Data
+/// Register](Data), `UARTDR` before reading the error status associated
+/// with that data character from the `UARTRSR` register. This read
+/// sequence cannot be reversed, because the `UARTRSR` register is
+/// updated only when a read occurs from the `UARTDR` register. However,
+/// the status information can also be obtained by reading the `UARTDR`
+/// register
+///
+/// # Source
+/// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
+/// UARTRSR/UARTECR
+#[bitsize(32)]
+#[derive(Clone, Copy, DebugBits, FromBits)]
+pub struct ReceiveStatusErrorClear {
+ pub errors: Errors,
+ _reserved_unpredictable: u24,
+}
+impl_vmstate_bitsized!(ReceiveStatusErrorClear);
+
+impl ReceiveStatusErrorClear {
+ pub fn set_from_data(&mut self, data: Data) {
+ self.set_errors(data.errors());
+ }
+
+ pub fn reset(&mut self) {
+ // All the bits are cleared to 0 on reset.
+ *self = Self::default();
+ }
+}
+
+impl Default for ReceiveStatusErrorClear {
+ fn default() -> Self {
+ 0.into()
+ }
+}
+
+#[bitsize(32)]
+#[derive(Clone, Copy, DebugBits, FromBits)]
+/// Flag Register, `UARTFR`
+#[doc(alias = "UARTFR")]
+pub struct Flags {
+ /// CTS Clear to send. This bit is the complement of the UART clear to
+ /// send, `nUARTCTS`, modem status input. That is, the bit is 1
+ /// when `nUARTCTS` is LOW.
+ pub clear_to_send: bool,
+ /// DSR Data set ready. This bit is the complement of the UART data set
+ /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
+ /// `nUARTDSR` is LOW.
+ pub data_set_ready: bool,
+ /// DCD Data carrier detect. This bit is the complement of the UART data
+ /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
+ /// 1 when `nUARTDCD` is LOW.
+ pub data_carrier_detect: bool,
+ /// BUSY UART busy. If this bit is set to 1, the UART is busy
+ /// transmitting data. This bit remains set until the complete
+ /// byte, including all the stop bits, has been sent from the
+ /// shift register. This bit is set as soon as the transmit FIFO
+ /// becomes non-empty, regardless of whether the UART is enabled
+ /// or not.
+ pub busy: bool,
+ /// RXFE Receive FIFO empty. The meaning of this bit depends on the
+ /// state of the FEN bit in the UARTLCR_H register. If the FIFO
+ /// is disabled, this bit is set when the receive holding
+ /// register is empty. If the FIFO is enabled, the RXFE bit is
+ /// set when the receive FIFO is empty.
+ pub receive_fifo_empty: bool,
+ /// TXFF Transmit FIFO full. The meaning of this bit depends on the
+ /// state of the FEN bit in the UARTLCR_H register. If the FIFO
+ /// is disabled, this bit is set when the transmit holding
+ /// register is full. If the FIFO is enabled, the TXFF bit is
+ /// set when the transmit FIFO is full.
+ pub transmit_fifo_full: bool,
+ /// RXFF Receive FIFO full. The meaning of this bit depends on the state
+ /// of the FEN bit in the UARTLCR_H register. If the FIFO is
+ /// disabled, this bit is set when the receive holding register
+ /// is full. If the FIFO is enabled, the RXFF bit is set when
+ /// the receive FIFO is full.
+ pub receive_fifo_full: bool,
+ /// Transmit FIFO empty. The meaning of this bit depends on the state of
+ /// the FEN bit in the [Line Control register](LineControl),
+ /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
+ /// transmit holding register is empty. If the FIFO is enabled,
+ /// the TXFE bit is set when the transmit FIFO is empty. This
+ /// bit does not indicate if there is data in the transmit shift
+ /// register.
+ pub transmit_fifo_empty: bool,
+ /// `RI`, is `true` when `nUARTRI` is `LOW`.
+ pub ring_indicator: bool,
+ _reserved_zero_no_modify: u23,
+}
+impl_vmstate_bitsized!(Flags);
+
+impl Flags {
+ pub fn reset(&mut self) {
+ *self = Self::default();
+ }
+}
+
+impl Default for Flags {
+ fn default() -> Self {
+ let mut ret: Self = 0.into();
+ // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
+ ret.set_receive_fifo_empty(true);
+ ret.set_transmit_fifo_empty(true);
+ ret
+ }
+}
+
+#[bitsize(32)]
+#[derive(Clone, Copy, DebugBits, FromBits)]
+/// Line Control Register, `UARTLCR_H`
+#[doc(alias = "UARTLCR_H")]
+pub struct LineControl {
+ /// BRK Send break.
+ ///
+ /// If this bit is set to `1`, a low-level is continually output on the
+ /// `UARTTXD` output, after completing transmission of the
+ /// current character. For the proper execution of the break command,
+ /// the software must set this bit for at least two complete
+ /// frames. For normal use, this bit must be cleared to `0`.
+ pub send_break: bool,
+ /// 1 PEN Parity enable:
+ ///
+ /// - 0 = parity is disabled and no parity bit added to the data frame
+ /// - 1 = parity checking and generation is enabled.
+ ///
+ /// See Table 3-11 on page 3-14 for the parity truth table.
+ pub parity_enabled: bool,
+ /// EPS Even parity select. Controls the type of parity the UART uses
+ /// during transmission and reception:
+ /// - 0 = odd parity. The UART generates or checks for an odd number of
+ /// 1s in the data and parity bits.
+ /// - 1 = even parity. The UART generates or checks for an even number
+ /// of 1s in the data and parity bits.
+ /// This bit has no effect when the `PEN` bit disables parity checking
+ /// and generation. See Table 3-11 on page 3-14 for the parity
+ /// truth table.
+ pub parity: Parity,
+ /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
+ /// are transmitted at the end of the frame. The receive
+ /// logic does not check for two stop bits being received.
+ pub two_stops_bits: bool,
+ /// FEN Enable FIFOs:
+ /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
+ /// 1-byte-deep holding registers 1 = transmit and receive FIFO
+ /// buffers are enabled (FIFO mode).
+ pub fifos_enabled: Mode,
+ /// WLEN Word length. These bits indicate the number of data bits
+ /// transmitted or received in a frame as follows: b11 = 8 bits
+ /// b10 = 7 bits
+ /// b01 = 6 bits
+ /// b00 = 5 bits.
+ pub word_length: WordLength,
+ /// 7 SPS Stick parity select.
+ /// 0 = stick parity is disabled
+ /// 1 = either:
+ /// • if the EPS bit is 0 then the parity bit is transmitted and checked
+ /// as a 1 • if the EPS bit is 1 then the parity bit is
+ /// transmitted and checked as a 0. This bit has no effect when
+ /// the PEN bit disables parity checking and generation. See Table 3-11
+ /// on page 3-14 for the parity truth table.
+ pub sticky_parity: bool,
+ /// 31:8 - Reserved, do not modify, read as zero.
+ _reserved_zero_no_modify: u24,
+}
+impl_vmstate_bitsized!(LineControl);
+
+impl LineControl {
+ pub fn reset(&mut self) {
+ // All the bits are cleared to 0 when reset.
+ *self = 0.into();
+ }
+}
+
+impl Default for LineControl {
+ fn default() -> Self {
+ 0.into()
+ }
+}
+
+#[bitsize(1)]
+#[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
+/// `EPS` "Even parity select", field of [Line Control
+/// register](LineControl).
+pub enum Parity {
+ /// - 0 = odd parity. The UART generates or checks for an odd number of
+ /// 1s in the data and parity bits.
+ Odd = 0,
+ /// - 1 = even parity. The UART generates or checks for an even number
+ /// of 1s in the data and parity bits.
+ Even = 1,
+}
+
+#[bitsize(1)]
+#[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
+/// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
+/// register](LineControl).
+pub enum Mode {
+ /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
+ /// 1-byte-deep holding registers
+ Character = 0,
+ /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
+ FIFO = 1,
+}
+
+#[bitsize(2)]
+#[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
+/// `WLEN` Word length, field of [Line Control register](LineControl).
+///
+/// These bits indicate the number of data bits transmitted or received in a
+/// frame as follows:
+pub enum WordLength {
+ /// b11 = 8 bits
+ _8Bits = 0b11,
+ /// b10 = 7 bits
+ _7Bits = 0b10,
+ /// b01 = 6 bits
+ _6Bits = 0b01,
+ /// b00 = 5 bits.
+ _5Bits = 0b00,
+}
+
+/// Control Register, `UARTCR`
+///
+/// The `UARTCR` register is the control register. All the bits are cleared
+/// to `0` on reset except for bits `9` and `8` that are set to `1`.
+///
+/// # Source
+/// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
+#[bitsize(32)]
+#[doc(alias = "UARTCR")]
+#[derive(Clone, Copy, DebugBits, FromBits)]
+pub struct Control {
+ /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
+ /// in the middle of transmission or reception, it completes the current
+ /// character before stopping. 1 = the UART is enabled. Data
+ /// transmission and reception occurs for either UART signals or SIR
+ /// signals depending on the setting of the SIREN bit.
+ pub enable_uart: bool,
+ /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
+ /// remains LOW (no light pulse generated), and signal transitions on
+ /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
+ /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
+ /// in the marking state. Signal transitions on UARTRXD or modem status
+ /// inputs have no effect. This bit has no effect if the UARTEN bit
+ /// disables the UART.
+ pub enable_sir: bool,
+ /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
+ /// mode. If this bit is cleared to 0, low-level bits are transmitted as
+ /// an active high pulse with a width of 3/ 16th of the bit period. If
+ /// this bit is set to 1, low-level bits are transmitted with a pulse
+ /// width that is 3 times the period of the IrLPBaud16 input signal,
+ /// regardless of the selected bit rate. Setting this bit uses less
+ /// power, but might reduce transmission distances.
+ pub sir_lowpower_irda_mode: u1,
+ /// Reserved, do not modify, read as zero.
+ _reserved_zero_no_modify: u4,
+ /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
+ /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
+ /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
+ /// through to the SIRIN path. The SIRTEST bit in the test register must
+ /// be set to 1 to override the normal half-duplex SIR operation. This
+ /// must be the requirement for accessing the test registers during
+ /// normal operation, and SIRTEST must be cleared to 0 when loopback
+ /// testing is finished. This feature reduces the amount of external
+ /// coupling required during system test. If this bit is set to 1, and
+ /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
+ /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
+ /// the modem outputs are also fed through to the modem inputs. This bit
+ /// is cleared to 0 on reset, to disable loopback.
+ pub enable_loopback: bool,
+ /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
+ /// of the UART is enabled. Data transmission occurs for either UART
+ /// signals, or SIR signals depending on the setting of the SIREN bit.
+ /// When the UART is disabled in the middle of transmission, it
+ /// completes the current character before stopping.
+ pub enable_transmit: bool,
+ /// `RXE` Receive enable. If this bit is set to 1, the receive section
+ /// of the UART is enabled. Data reception occurs for either UART
+ /// signals or SIR signals depending on the setting of the SIREN bit.
+ /// When the UART is disabled in the middle of reception, it completes
+ /// the current character before stopping.
+ pub enable_receive: bool,
+ /// `DTR` Data transmit ready. This bit is the complement of the UART
+ /// data transmit ready, `nUARTDTR`, modem status output. That is, when
+ /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
+ pub data_transmit_ready: bool,
+ /// `RTS` Request to send. This bit is the complement of the UART
+ /// request to send, `nUARTRTS`, modem status output. That is, when the
+ /// bit is programmed to a 1 then `nUARTRTS` is LOW.
+ pub request_to_send: bool,
+ /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
+ /// modem status output. That is, when the bit is programmed to a 1 the
+ /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
+ pub out_1: bool,
+ /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
+ /// modem status output. That is, when the bit is programmed to a 1, the
+ /// output is 0. For DTE this can be used as Ring Indicator (RI).
+ pub out_2: bool,
+ /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
+ /// RTS hardware flow control is enabled. Data is only requested when
+ /// there is space in the receive FIFO for it to be received.
+ pub rts_hardware_flow_control_enable: bool,
+ /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
+ /// CTS hardware flow control is enabled. Data is only transmitted when
+ /// the `nUARTCTS` signal is asserted.
+ pub cts_hardware_flow_control_enable: bool,
+ /// 31:16 - Reserved, do not modify, read as zero.
+ _reserved_zero_no_modify2: u16,
+}
+impl_vmstate_bitsized!(Control);
+
+impl Control {
+ pub fn reset(&mut self) {
+ *self = 0.into();
+ self.set_enable_receive(true);
+ self.set_enable_transmit(true);
+ }
+}
+
+impl Default for Control {
+ fn default() -> Self {
+ let mut ret: Self = 0.into();
+ ret.reset();
+ ret
+ }
+}
+
+/// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
+pub struct Interrupt(pub u32);
+
+impl Interrupt {
+ pub const OE: Self = Self(1 << 10);
+ pub const BE: Self = Self(1 << 9);
+ pub const PE: Self = Self(1 << 8);
+ pub const FE: Self = Self(1 << 7);
+ pub const RT: Self = Self(1 << 6);
+ pub const TX: Self = Self(1 << 5);
+ pub const RX: Self = Self(1 << 4);
+ pub const DSR: Self = Self(1 << 3);
+ pub const DCD: Self = Self(1 << 2);
+ pub const CTS: Self = Self(1 << 1);
+ pub const RI: Self = Self(1 << 0);
+
+ pub const E: Self = Self(Self::OE.0 | Self::BE.0 | Self::PE.0 |
Self::FE.0);
+ pub const MS: Self = Self(Self::RI.0 | Self::DSR.0 | Self::DCD.0 |
Self::CTS.0);
+}
--
2.48.1