
Screen subareas module for StumpWM

Michael Raskin
∗

MIPT and IUM
Moscow, Russia

raskin@mccme.ru

ABSTRACT
This paper presents a module for StumpWM tiling window
manager that allows user to manage parts of X11 screen
(which includes one or several physical displays) indepen-
dently.

A window manager is a program in X11-based systems (X
Window system is currently the most used graphical system
for UNIX-like systems except MacOS X) that gets requests
whenever any other application wants to create a window.
This program further manages window positions according
to user commands. It can also draw decorations (like window
titles).

Tiling window managers are a class of window managers that
allow to separately choose a way to split screen into non-
overlapping areas and then distribute windows into these
predefined tiles. Traditionally, most of the tiling window
managers are primarily keyboard-driven and do not draw
window titles by default.

StumpWM [??] is a tiling window manager written in Com-
mon Lisp by Shawn Betts (with later code contributions
from StumpWM users). Its current maintainer is David
Bjergaard.

Default StumpWM implementation of virtual desktops sup-
poses that each window belongs to one virtual desktop and
switching between virtual desktops affects all the physical
displays at once. The module presented is a relatively non-
intrusive way to divide a virtual desktop into multiple parts
and independently choose windows for each of them.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces

∗The work was partially supported by RFBR grant 12-01-
00864- ř

General Terms
Window management

1. INTRODUCTION
StumpWM is a tiling window manager for X11 systems im-
plemented in Common Lisp. It uses manual tiling: by de-
fault there is at most one window visible on each physical
display, but user can always split the single fullscreen frame
into smaller ones (manually or by a script) and see different
windows in different frames.

Like many other window managers, StumpWM provides the
virtual desktop (workspace) functionality, i.e. it allows user
to divide windows into multiple groups and manage window
layout for each group separately. When user switches to
some group, only the windows belonging to this group are
shown.

In StumpWM different virtual desktops also have indepen-
dent layout settings. Switching virtual desktops switches
the layout on every physical display at once.

Sometimes it is more convenient to switch virtual desktops
on different physical displays independently (e.g. have a
display dedicated to email and IM, and switch between a
browser and a text editor on another display). By default,
StumpWM doesn’t support such workflow well.

2. DESIGN GOAL
The goal was to specify a split of a virtual desktop into areas
and to choose windows placed there separately. These areas
may coincide with physical displays but may also be parts
of a single display.

For example, in the bottom-most area of my notebook screen
I keep a terminal emulator window with various system in-
formation; I want it to be persistent while I switch the win-
dows in any of the other frames.

3. SOLUTION DESIGN
To unify window specification, each window can have an
arbitrary number of window tags. Tags are implemented
as character strings not containing space. Tags are case-
insensitive.

Frames can also have tags. Some of the tags (ones beginning
with TG/) define the tagged group containing the frame.
The commands are implemented to perform actions not on



the current frame or on all frames on the current virtual
desktop, but on all the frames in the same tagged group on
the virtual desktop.

4. IMPLEMENTATION NOTES
In some configurations X11 server and application windows
can be left in place while the window manager is shut down
and started again. As window tags are tied to windows,
keeping them across StumpWM cold-restarts is a well-defined
goal. To achieve it, window tags are kept as X11 string win-
dow properties independently of StumpWM. This function-
ality allows even to temporarily run another window man-
ager and still have all the window tags ready after the return
to StumpWM.

Frames are internal StumpWM objects, and their tags are
currently stored inside StumpWM. Most known use patterns
can be implemented with a fixed set of tagged groups, so the
frames can be created and frame tags automatically set on
StumpWM launch/restart.

While it would be possible to update the frame class defini-
tion and store tags in a special slot, current implementation
uses a separate hash table to store frame tags.

5. FURTHER RELATED WORK
Some fixes are needed so that splitting a frame never tries
to steal a window from another tagged group.

Current StumpWM behavior on split removal usually leads
to resizing of all the frames on the physical display. While
the most common case of removal of all splits inside the
tagged group with a single command is implemented to pre-
serve borders between tagged groups, there is still work to
be done to handle all events correctly.

Full use of frame tagging and tagged groups in StumpWM
requires overloading some StumpWM settings. It is likely
that some reasonable default overloading function can be
shipped with the frame-tagging implementation.

6. SOURCE LINKS
Window tags (without frame tags) in StumpWM contrib:
https://github.com/stumpwm/stumpwm-contrib/tree/

master/util/windowtags

Frame tags code and an example of configuration using frame
tags: http://mtn-host.prjek.net/viewmtn/

stumpwm-tagging/branch/changes/

com.ignorelist.401a0bf1.raskin.stumpwm-config

7. REFERENCES
[1] StumpWM home page at GitHub,
https://github.com/stumpwm/stumpwm


