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Abstract

Individual-based models (IBMs) have long been proposed as a key tool for understanding and predicting ecosystem
complexities, yet the contribution of this approach to basic or applied ecology has been less than anticipated.
Fundamental reasons for the disappointing contribution of IBMs have been, in the current absence of a theoretical
foundation for IBMs, conceptual flaws in model formulation and the failure to address critical computer implemen-
tation issues. Researchers in the new field of Complex Adaptive Systems (CAS) study how complex behaviors emerge
in systems of relatively simple interacting individuals. Research on CAS, while still new and informal, has identified
key concepts for making individual-based systems realistic. I propose that explicit consideration of the following
concepts from CAS should make the design of IBMs less ad hoc and more likely to produce models of value for basic
and applied ecology: (1) Emergence: what behaviors and population dynamics should emerge from the model’s
mechanistic representation of key processes vs. being imposed on the model as empirical relations? How should
individual traits be modeled so that realistic population responses emerge?; (2) Adaptation: given the model’s temporal
and spatial scales, what adaptive processes of individuals should be modeled? What mechanisms do individuals use
to adapt in response to what environmental forces?; (3) Fitness and strategy: what measures of fitness are appropriate
to use as the basis for modelling decision making? Should fitness measures change with life history state?; (4)
State-based responses: how should decision processes depend on an individual’s state?; (5) Prediction: anticipating
decision outcomes appears essential for modelling many behaviors; what are realistic assumptions about how
organisms predict the consequences of decisions?; (6) Computer implementation: what user interfaces are necessary to
make the model, and especially individual behaviors, observable and testable? How will the model’s full design and
computer implementation be documented and tested so results are reproducible and valid? © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The individual-based modelling approach has
to date been less productive for ecological re-
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search and management than many ecologists ex-
pected. At the same time that ecologists were
realizing the important effects of complex natural
phenomena and the limitations of conventional
differential equation-based models for dealing
with complexities (Patten and Jørgensen, 1995),
individual-based models (IBMs) were hailed as an
approach that was naturally suited for the new
ecology (Huston et al., 1988). However, the con-
tribution of IBMs to ecological research and man-
agement to date has been minor (Grimm, 1999).
Even a casual review of journal articles and con-
ference presentations shows that IBMs have cer-
tainly not displaced conventional modelling
approaches and are, in fact, used relatively rarely
for research and management.

Also in the 1990s, the new scientific field of
Complex Adaptive Systems (CAS) established it-
self with a focus on how the properties of aggre-
gations of individuals can be determined by the
characteristics and behavior of the individuals. To
date, most work in CAS has been conducted in
highly abstracted and artificial systems like cellu-
lar automata and genetic computer algorithms,
and in the fields of economics, sociology, microbi-
ology, and medicine. Although CAS is in its
infancy and remains in search of fundamental
principles (Auyang, 1998), basic concepts from
CAS can be extracted from its literature.

The specific objectives of this paper are to (a)
demonstrate that an important reason why the
individual-based approach to ecological modelling
has not proven to be as productive as anticipated
is the lack of a theoretical framework, and (b)
present some key concepts of CAS that may be
valuable as a way of thinking about, designing,
and evaluating IBMs. My more fundamental goal
is to encourage discussion among ecological mod-
ellers about frameworks and theory for individ-
ual-based approaches. Most of the examples and
literature discussed in this paper are from models
of vertebrate (mainly, fish) behavior because I am
most familiar with these models; however, the
concepts and conclusions apply to models ad-
dressing a wide range of organisms, scales, and
ecological issues.

2. Background

2.1. Indi�idual-based modelling

The landmark paper of Huston et al. (1988)
identified the promise of IBMs for naturally and
easily simulating effects of individual variation,
spatial processes, cumulative stresses, and many
other natural complexities. The basic concept of
IBMs is simple and appealing: build a model of
an individual organism, build a model of the
environment, and let a computer create multiple
individual organisms and simulate the interactions
of the individuals with each other and the envi-
ronment. In many ways, building a model of an
individual organism is easier than building a
model of a population: individuals can be tested
in controlled ways that populations cannot, and
are more limited in their range of responses and
therefore more predictable in their behavior than
are populations (Rose, 2000).

Despite these advantages, using IBMs has so
far not been a very productive approach to ecol-
ogy or ecological management. Early attention to
potential problems with IBMs was drawn by
Murdoch et al. (1992), Bart (1995). The extensive
reviews of Grimm (1999), Grimm et al. (1999)
conclude that IBMs have not yet fulfilled the
promise identified by Huston et al., in large part
because many models have been built without
sufficient attention to the appropriateness of the
assumptions used. Railsback et al. (1999) provide
an example analysis of several published models,
illustrating concerns with the critical rules for
determining how animals select habitat. This liter-
ature indicates two root reasons why few IBMs
have proven useful or gained acceptance with
ecologists and managers.

The first reason why IBMs have been unpro-
ductive is inadequate attention to ‘toolmaking’ —
computer implementation — issues, especially the
failure to encode models in software that allows
the behavior of the model’s individuals to be
observed and tested. I address this issue below
(Computer simulation).

The second root reason that IBMs have been
unproductive is that inappropriate assumptions
abound in IBMs. Modellers have almost univer-
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sally taken an ad hoc approach to building IBMs,
drawing various model components from existing
literature or field observations with little thought
to each component’s appropriateness to an overall
approach. One of the advantages of IBMs men-
tioned above, that models of individuals can be
easier to build, has often become a disadvantage
in practice: the apparent ease of writing a model
of an individual organism promotes inadequate
attention to assumptions or understanding of
their consequences. The following classes of mis-
takes are common in IBMs. (1) Using model
components developed originally for one set of
assumptions to simulate conditions under which
those assumptions clearly are not met. An exam-
ple (discussed further below, Section 3.1) is mod-
elling habitat selection by minimizing the ‘�/g’
ratio of mortality risk to growth rate; this ap-
proach was taken from a derivation based on
specific assumptions that are often violated in
IBMs (Railsback et al., 1999); (2) applying rela-
tions and parameters developed for one spatial or
temporal scale to other scales that they are not
appropriate for, a concern with all ecological
models; (3) embedding empirical relations in mod-
els that are purported to be mechanistic. Mixing
empirical and mechanistic models is always a
conceptual concern (Mangel et al., In press). It
can be a serious source of error when empirical
relations are included in models that are then used
to simulate conditions far different from those
under which the empirical relations were devel-
oped; (4) confusing individual - and population-
level parameters. An example of this kind of
mistake is assuming that a population-level mor-
tality rate can be used as the mortality probability
of individuals. The mortality rate of a population
is a complex function of the individuals, their
varying vulnerabilities, and environmental condi-
tions. A population with a starvation rate of 50%
may include a minority of dominant individuals
with very little probability of starvation plus a
majority of subordinate individuals with a proba-
bility of starving that starts high but decreases as
others die and competition for food decreases. In
a population exhibiting 50% starvation, few if any
individuals may have a starvation probability of
50% at any time. This variation among individu-

als can have important effects on model predic-
tions (Grimm et al., 1999; Uchmanski, 1999,
2000).

It is not surprising that many IBMs contain
serious conceptual errors because there is little
literature on how to build successful IBMs. The
IBM literature offers numerous model descrip-
tions but few tests of models (but see Railsback
and Harvey, In prep.), and little discussion of
general modelling approaches (Murdoch et al.,
1992; Grimm, 1999; Grimm et al., 1999; Thulke et
al., 1999) or specific methods for modeling impor-
tant processes (Railsback et al., 1999). To my
knowledge, individual-based approaches are
rarely addressed thoroughly in ecology or ecologi-
cal modelling textbooks or classes. Conventional
ecological models are firmly grounded in the es-
tablished framework of differential calculus. In
contrast, we currently lack a set of guidelines or
concepts that would help IBM designers identify
and avoid inappropriate assumptions; we lack
even a list of issues or questions to think about
when building or reviewing these models.

2.2. Complex adapti�e systems

Understanding and analyzing systems as the
complex emergent properties of adaptive individu-
als is a new and potentially revolutionary way of
approaching a number of sciences. The essence of
CAS is the study of systems built of individual
agents that are capable of adapting as they inter-
act with each other and with an environment, and
especially the attempt to understand how the
characteristics of individuals affect the system-
level responses (Auyang, 1998). The focus of CAS
research has been from the bottom up, describing
kinds of agents and environments and then exper-
imentally finding out what kind of complex dy-
namics are exhibited by the system of agents.

Much of the work in CAS has been in search of
fundamental concepts or laws describing the be-
havior of complex systems (Kauffman, 1995), or
in examining the potential capabilities and ‘intelli-
gence’ of artificial complex systems (Holland,
1995, 1998). (One interesting aspect of CAS is
that, because of the field’s newness, potential im-
pact, and fundamental nature, much of the pri-
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mary literature is in popular, accessible books.)
Well-known CAS models include: (1) the ‘boids’
model of C. Reynolds, in which flocking behavior
emerges in collections of individuals following
three simple rules (Waldrop, 1992); (2) cellular
automata, grids of individual cells that change
state (e.g. ‘off’ vs. ‘on’) in response to the state of
their neighboring cells; (3) autocatalytic sets of
chemicals, suggested by Kauffman (1995) as a
phenomenon making the genesis of life likely; and
(4) genetic computer algorithms that use mutation
and competitive selection to evolve solutions to
difficult problems.

Some CAS research has been in the context of
sciences like archaeology (Kohler et al., 1999),
computer science (Forrest, 1990), economics
(Fama, 1991), microbiology (Devreotes, 1989;
Kreft et al., 1998), and sociology (Goldspink,
2000). Surprisingly little application of CAS has
been in ecology (but see, e.g. Booth, 1997). The
purpose of this paper is not to propose more
CAS-based studies in ecology, although such
studies would likely be exciting and fruitful. Nor
is my purpose to critically evaluate CAS research
and models, which have sometimes suffered from
the same kinds of problems ecological IBMs have
suffered from. Instead, I identify some concepts
that appear common in CAS research and explore
how they can serve as a framework for designing
IBMs for ecological research and applications.

The study of CAS seems a natural source of
analogies for IBMs. Whereas ecology has histori-
cally had a system-level perspective, CAS explic-
itly addresses the traits of individuals and how
these traits produce system responses. The history
of CAS is of researchers examining systems of
sometimes extremely simple agents, exploring the
system-level consequences of changing the capa-
bilities of agents, and sometimes designing agents
to produce certain system-level properties (Wal-
drop, 1992; Auyang, 1998). The simplicity of the
agents used in most CAS research, compared to
real organisms, makes it more likely that basic
characteristics and themes can be sorted out.
Looking at CAS should help us overcome the
system-level biases of ecology and the apparently
overwhelming complexity of ecosystems, and fo-
cus on fundamental aspects of modelling popula-

tion-level phenomena as the emergent properties
of individuals.

3. CAS concepts and their application to IBMs

From the CAS literature I identified six key
concepts that seem clearly applicable to IBMs.
Most of these concepts are characteristics of indi-
vidual agents that appear important to producing
complex and lifelike system dynamics. Because
these characteristics appear essential to lifelike
behavior in even the simplest artificial systems,
they deserve consideration in the design of IBMs.
The first concept (emergence) is a system-level
characteristic, but a result of how individuals are
modeled. The final concept concerns tool-making
issues that are common between CAS and IBMs.

3.1. Emergence

A defining characteristic of CAS is that system-
level properties emerge from the characteristics of
individual agents, and that these emergent proper-
ties can be far more complex and capable than are
the individuals. Examples range from interesting
patterns emerging from the simplest cellular au-
tomata to the human brain’s function emerging
from the limited capabilities of individual neu-
rons. Understanding how system-level properties
emerge from the characteristics of individual
agents is the fundamental problem of CAS re-
search (Auyang, 1998) and has been described by
Levin (1999) as the most important challenge for
ecologists.

Models in which complex and realistic system
responses emerge naturally from simple individual
behaviors should be very appealing to ecologists,
because such models are more likely to represent
the basic mechanisms driving ecosystems. Being
able to predict a wide range of realistic system-
level responses from a model in which individuals
follow simple decision rules should give us much
greater confidence that the model is general and
more safely applied to unobserved situations than
if numerous complicated rules are needed to force
the system-level responses.
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This ‘emergent response’ approach to mod-
elling, however, seems contradictory to the incli-
nations of most ecologists building IBMs. The
dominant approach used in IBMs has instead
been the use of ‘imposed responses’, in which
desired outcomes are forced into the system by
telling individuals what to do in specific situa-
tions. The reliance of most IBMs on imposed
responses is understandable. Faced with the com-
plexity of ecosystems, ecological modellers have
historically relied on approaches where models
are designed, parameterized, and tested to repro-
duce observed system-level responses (Hilborn
and Mangel, 1997). Therefore, it was natural for
early developers of IBMs to write model rules that
force individuals and populations to behave in
ways that have been observed in the field. Exam-
ples include modeling animal movement as a ran-
dom process that simply reproduces observed
movement patterns (Kaiser 1979), requiring fish
to always maintain a feeding territory (Van Win-
kle et al., 1998), and forcing animals to shift
habitat when they reach a certain size (Nibbelink
and Carpenter, 1998). The IBM approach of
Folse et al. (1989) uses a data base of such
imposed response rules. Using an observed mor-
tality rate as the mortality probability of individu-
als is another example of imposing a desired
outcome into a model: this approach forces the
model to reproduce the observed mortality rate
instead of simulating realistic variation in risk.

The problem with imposed responses in an
IBM is that they are actually empirical models
and, therefore, not reliable when simulating con-
ditions other than those that occurred when the
responses were observed. For example, model
trout are required to maintain feeding territories
because stream trout are often observed to exhibit
territorial behavior; this modelling approach en-
codes the empirical observation of territoriality.
Problems arise when the model is used to simulate
conditions under which trout are not naturally
territorial (e.g. when food availability is highly
variable over space so fish congregate in good
feeding locations, or in winter when behavior is
focused on predator avoidance instead of feeding,
or when trout seek refuge from some short-term
risk like a flood flow; Nielsen, 1992; Harvey et al.,

1999). Some imposed responses are essential in
IBMs; the alternative of mechanistically modeling
all of an organism’s behaviors as a mechanistic
decision-making process is unlikely to be feasible.
Likewise, not all empirical observations should be
considered imposed responses if represented di-
rectly in an IBM; for example, observations may
show that an animal species is so innately territo-
rial that it is best modeled as always maintaining
a territory. However, the overuse of imposed re-
sponses results in IBMs that are no longer mecha-
nistic models but instead very complex empirical
models, often without the author realizing the
difference.

A subtle way that imposed responses can find
their way into an IBM is through the use of
mathematically derived assumptions. The assump-
tion that animals maximize their fitness by select-
ing habitat that minimizes the �/g ratio of
mortality risk to growth rate is an excellent exam-
ple. Telling animals to select habitat that mini-
mizes �/g appears to be a simple, practical
approach for making movement decisions in an
IBM. However, the concept that minimizing �/g
maximizes fitness was mathematically derived for
a very specific, limiting set of conditions (Gilliam
and Fraser, 1987). Using �/g in a model implicitly
assumes that the conditions used in deriving this
approach are true in the model; in reality, though,
this assumption is typically violated with serious
consequences in IBMs (Railsback et al., 1999;
Railsback and Harvey, In prep.). One of the
primary advantages of IBMs over differential
equation-based models is that simplifying mathe-
matical assumptions are not needed to obtain
results (Huston et al., 1988). Modellers should
take advantage of the ability of IBMs to directly
simulate key processes, avoiding derived simplifi-
cations that are based on assumptions likely to be
violated.

My colleagues and I experiment with ways to
design fish models so that complex and realistic
behaviors and group dynamics emerge from sim-
ple rules for habitat selection by individuals.
When the other concepts discussed below are
factored into a model, we find it surprisingly easy
to cause such emergence. Two examples from this
work contrast the emergent vs. imposed response
approaches.
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Our primary example of modeling fish behavior
as an emergent response is an IBM in which we
tell trout simply to select habitat that maximizes a
direct indicator of their fitness potential. Basic
components of individual fitness are survival and
growth to a future reproductive state, so our
individuals choose habitat that maximizes their
probability of survival and growth to reproduc-
tive maturity over an upcoming time horizon of T
days. [Similar approaches were used by Bull et al.
(1996), Thorpe et al. (1998).] We do not direct or
restrict movement in any other way except for
assuming a limit on the area of habitat each fish is
familiar with and considers as a potential destina-
tion. We provide the fish with simple mechanistic
models of how food intake, energetic costs, and
mortality risks vary among potential destinations,
and make food intake a function of competition
with other trout in the same habitat patch. In this
model, a wide range of realistic habitat selection
patterns emerges in response to changes in physi-
cal habitat, predation risks, food availability, tem-
perature, and inter-species competition (Railsback
and Harvey, In prep.). Because this range of
realistic behaviors emerge naturally from our
model, we are more confident that the model is
general and applicable to a wide array of condi-
tions than we would be if these patterns were
forced into the model by multiple situation-spe-
cific rules. In contrast, the model of Nibbelink
and Carpenter (1998) uses rules that force fish to
shift habitat as they grow; with our approach
such habitat shifts emerge without being
programmed.

Our model of upstream spawning migration by
adult salmon provides a second example of simple
rules producing realistic emergent response in an
IBM. To model how salmon migrate from the
ocean to their spawning ground, a typical ‘im-
posed response’ approach would be to tell each
fish which tributary to select at each tributary
junction, perhaps also telling some fraction of the
fish to make wrong turns to mimic observed rates
of straying. Instead, we based a decision rule on
actual salmon navigation mechanisms. The litera-
ture indicates that when salmon detect that they
are in water containing flow from their natal
spawning ground they swim upstream; otherwise

they swim downstream (Hasler and Scholz, 1983).
When salmon in our model come to a tributary
junction, they make a random decision of which
tributary to enter, with probabilities proportional
to flow so fish are more likely to follow larger
streams. The fish periodically ‘sniff’ whether they
are downstream of their natal spawning ground
and consequently decide whether to swim up-
stream or downstream. This approach not only
prevents us from having to give each fish a map to
its destination (thereby making the model more
robust and easier to use), but causes such realistic
emergent responses as rapid migration up large
rivers, delays and exploration at the mouth of
small spawning tributaries, and pulses of migra-
tion up spawning tributaries when flows increase.

Designing models so that important responses
emerge from simpler mechanisms requires a pro-
cess for identifying traits (characteristics and deci-
sion-making processes) of individual organisms
and their habitat that cause such emergence. The
modeller may find that the emergent responses are
not sufficiently realistic, or that several alternative
ways of representing individuals and habitat can
cause some realistic emergent responses. The
problem of designing models of individual traits
so that realistic system-level responses emerge was
identified (above) as the fundamental problem in
understanding complex systems. Ecologists have
little experience with this problem but Auyang
(1998) provides a valuable exploration of the gen-
eral topic. In testing our trout model habitat
selection rules (below, Section 3.3) my colleagues
and I developed an approach to identifying indi-
vidual traits that produce realistic population re-
sponses (Railsback, In press). Our approach takes
advantage of ‘pattern-oriented’ ecological mod-
elling (Grimm et al., 1996) and the ‘synthetic
microanalysis’ of Auyang (1998). Briefly, we test
models of individual traits by whether they repro-
duce, in the IBM, a wide range of realistic pat-
terns of emergent response. To my knowledge,
our approach is the only one developed for this
critical issue in designing IBMs.

When designing an IBM, modellers need to
identify observed responses they are imposing and
think carefully about whether they are limiting
their model’s generality and mechanistic nature.
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Even if imposed responses are left in a model
(which is often appropriate), they should be care-
fully documented and the consequences consid-
ered. For responses expected to emerge from the
traits of model individuals, the modeller should
plan analyses to validate that such emergence
actually occurs. The potential emergence of realis-
tic behavior and system dynamics from simple
individuals in IBMs remains a largely unexplored
field, especially for organisms other than
salmonids. However, our work to date shows that
there are foraging and movement approaches that
can cause realistic responses to emerge without
being forced into a model.

3.2. Adaptation

The ability of individuals to adapt is also a
defining characteristic of CAS. In CAS, the term
‘adaptation’ is broadly defined as any behavior
intended to improve an individual’s potential
fitness. Systems of artificial agents generally be-
come more interesting and lifelike as the ability of

agents to adapt increases. Models of very simple
agents can display emergent system-level re-
sponses but are not capable of solving complex
problems. On the other hand, the most powerful
CAS models have highly adaptive agents like the
genetic computer algorithms (Holland, 1995). The
agents in these models can learn surprisingly
difficult tasks, to the extent that they are now
commonly used to solve complex engineering op-
timization problems.

Many biologists equate adaptation with genetic
evolution, and it does not seem appropriate to
include evolution in IBMs designed for environ-
mental management. However, when we use a
broad definition of adaptation as any change that
improves potential fitness, we realize there are
actually many kinds of adaptation used by organ-
isms over a wide range of spatial and temporal
scales. Using vertebrate animals as an example
(Table 1), sub-evolutionary adaptations range
from changes in behavior (e.g. feeding vs. hiding)
at time scales sometimes less than a minute (Tin-
bergen, 1951) to changes in geographic range and

Table 1
Adaptation considerations for individual-based animal models, with ‘adaptation’ broadly defined as any behavior intended to
increase potential fitness

What adapts Mechanisms of adaptationTime scale Drivers of adaptation

Fear, hunger, aggressionBehavior Expression of innate short-termSeconds–minutes
behaviors

Habitat choice Spatial and temporal variation in food availability andMovementHours–days
risks, often due to competition, weather

Knowledge of Exploration
environment

Seasons–years Ontogeny, innate strategy Animal size, energy reserves, reproductive status,Life history
state selection behaviors experience

LearningLearned
behaviors

ExplorationGenerations Environmental change, competition, chanceGeographic
range

Phenotypic plasticityLife history
Innate Phenotypic plasticity
behaviors

Selective pressures, genetic variability and mutationPhysiology Genetic evolutionEvolutionary
time

Innate
behaviors
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life history characteristics over generations (Quinn
and Adams, 1996).

Determining the characteristics of model indi-
viduals that should be adaptive (using the broad
CAS definition), the mechanisms of adaptation,
and the processes that adaptation responds to is
an exercise that almost certainly will help focus
and improve the design of an IBM. These deci-
sions should be a function of the model’s spatial
and temporal scales, so designing a model’s ap-
proach to adaptation should go hand-in-hand
with designing its scales. A model of how a popu-
lation responds to an impact in the short term
should include adaptations that occur over short
time scales (e.g. changes in habitat selection); a
model of longer-term responses may consider
adaptations like changes in geographic range and
innate life history characteristics (Huse and Giske,
1998).

3.3. Fitness and strategy

Artificial complex systems that are powerful
and lifelike in solving problems use fitness-seeking
behavior by the individual agents (Holland, 1995,
1998). An important example class of models is
the genetic algorithms, in which sets of behavior-
defining rules evolve to increase their fitness at
solving a particular problem. This approach re-
quires specific and useful definitions of fitness: the
ability of individuals to adapt and compete suc-
cessfully is very dependent on a fitness measure
that is clearly defined and meaningful. The defini-
tion of fitness provided in the model is critical
because it defines the problem that the model’s
individuals then seek to solve; defining the prob-
lem incorrectly or incompletely will hamper the
success of individuals and cause a model’s results
to seem unrealistic.

‘Strategies’ can arise in complex systems when
agents learn that they can be more successful by
switching their approach to seeking fitness. Hol-
land (1998) describes the adaptive checkers-play-
ing model of Samuel (1959), in which software
agents improve their ability to beat opponents by
switching among alternative functions for evaluat-
ing the expected success of potential moves.

One of the least controversial concepts in ecol-
ogy is that organisms display behaviors that im-
prove their potential fitness, where fitness is the
individual’s contribution to next generation’s gene
pool. The main problem that organisms seek to
solve is to survive until they can reproduce and
then to reproduce successfully. How an individu-
al’s potential fitness is represented in an IBM is
often a key model design issue.

Most IBMs use some kind of fitness-seeking
behavior, typically as part of a key decision-mak-
ing process. For example, many models simulate
habitat selection by individuals; the decision of
whether to move and the selection among habitat
patches are based on some measure of the ani-
mal’s potential fitness at a patch. The fitness-seek-
ing approach typically involves defining the fitness
measure and making assumptions about how the
organism evaluates the measure (e.g. what fitness-
related information it does and does not know).
The approach also requires modeling how deci-
sions are based on the fitness measure, e.g. by: (1)
picking the alternative that maximizes the fitness
measure; (2) responding to a decline in the mea-
sure; (3) using simple heuristics (Gigerenzer et al.,
1999); or (4) using neural nets to simulate adap-
tive, innate, behaviors (Huse et al., 1999). It
should be noted that using fitness seeking in an
IBM does not necessarily assume that the organ-
isms actually conduct the often complicated calcu-
lations needed to evaluate fitness; it instead
assumes that the fitness-seeking algorithm is a
useful representation of an organism’s actual deci-
sion-making behavior. The organism may actually
make decisions using innate behaviors tuned by
evolution, but such behaviors may be represented
well by a model that assumes the organism evalu-
ates and seeks potential fitness.

Models using fitness-seeking to make decisions
have varied in the completeness of the measure
used to represent potential fitness. Some models
have based decisions on incomplete measures of
potential fitness, such as selecting habitat consid-
ering only the amount of forage (Abbott et al.,
1997) or the number of competing individuals
(Clark and Rose, 1997) at a site. Other models
have based decisions on measures more directly
and completely describing key components of
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fitness like expected survival and reproductive po-
tential (Bull et al., 1996; Grand, 1999; Railsback
et al., 1999).

Models in which organisms seek to maximize
an indirect or incomplete measure of fitness may
not produce realistic responses consistently.
Telling animals to select habitat by choosing the
site with maximum forage available, for example,
implicitly assumes that forage availability is the
only important factor driving potential fitness and
that such other factors as predation risk, competi-
tion for the available forage, and the animals’
energy reserves and reproductive state are never
important to fitness potential. Such assumptions
may be appropriate in some cases, but should be
explicitly stated and justified.

The effects of using indirect measures of fitness
potential in an IBM were examined by Railsback
and Harvey (In prep.), who compared the ability
of three fitness measures to reproduce realistic
patterns of habitat selection in stream salmonids.
Railsback and Harvey (In prep.) also compared
survival and growth in a stream trout population
predicted in simulations using the three fitness
measures. This experiment used an IBM in which
trout selected habitat to maximize either: (1) in-
stantaneous net energy intake; (2) instantaneous
survival probability; or (3) expected probability of
surviving and growing to reproductive size over
the next 90 days, as defined by Railsback et al.
(1999). This experiment showed that using incom-
plete indicators of fitness like instantaneous en-
ergy intake or survival probability to model
decision making sometimes produced unrealistic
habitat selection behavior by individuals, and pro-
duced lower population-level survival and growth
compared to the more direct fitness measure rep-
resenting probability of survival and reproduc-
tion. (In general, fish maximizing instantaneous
energy intake took unnecessary risks and suffered
high predation rates; fish maximizing instanta-
neous survival probability neglected food intake
and starved. The third fitness measure consistently
produced good choices between food intake and
risks over a wide range of conditions.)

For simulation of fitness-seeking decision mak-
ing, designing an appropriate fitness measure can
be a two step process. The first step is to deter-

mine the problem that the real animals are trying
to solve and decide how much of this problem to
include in the model. At least for full life cycle
models, future survival and reproduction are
likely an appropriate basis of fitness potential; the
modeller’s task becomes determining what pro-
cesses driving expected survival and reproduction
are important enough to be included in the model.
Candidate drivers of fitness include: (1) net energy
intake, as determined by such factors as food
availability, feeding success, and energy costs as
these factors vary with time, space, and competi-
tion; (2) mortality risks and their variation over
time and space; and (3) physiological limitations.
The second step is to design a mathematical repre-
sentation of how expected fitness depends on the
factors determined to drive fitness in reality. We
have found the Unified Foraging Theory (below,
Section 3.4), combined with an appropriate model
of prediction (below, Section 3.5), to be a produc-
tive framework for developing fitness measures
(Railsback et al., 1999).

The most appropriate measure used to repre-
sent fitness in an IBM may change with the state
of an individual. Surviving and growing to repro-
ductive size may be an appropriate measure for
organisms in pre-reproductive life stages, but not
for individuals that have attained reproductive
size. Within a reproductive cycle, fitness may be
dominated by successful completion of reproduc-
tion; and between reproductive cycles the most
important component of fitness may be survival
to, and acquisition of energy reserves for, the next
cycle. Designing fitness measures that change with
an individual’s state is directly analogous to the
CAS concept of strategy. For many IBMs it may
be appropriate to design several fitness measures
and rules for how individuals switch among them.
The conceptual model of Thorpe et al. (1998), for
example, lays out a strategy for how fitness mea-
sures change for salmon as they progress through
their life cycle.

3.4. State-based responses

The agents in even the simplest CAS models
have responses that are state-dependent: what the
agents do in response to external stimulus de-
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pends on the agent’s current state. Examples in-
clude cellular automata, the behavior of which
consists of changes in state in response to the
agent’s own state and that of its neighbors (Burks,
1970; Waldrop, 1992), and simple biochemical
reaction systems (Winfree, 1987). Strategy selec-
tion among alternative fitness measures in a
checkers-playing model described by Holland
(1998) is also a state-based decision.

IBMs typically model the state of the individu-
als (e.g. their weight, length or height, and often
some measure of energy reserves) and the out-
come of model processes can vary with state (e.g.
mortality may be more likely when size or energy
reserves are small). However, state-based decision
rules, where the decision rule an individual uses to
respond to an external stimuli is a function of its
current state, are rare in IBMs. For example, the
trout model of Clark and Rose (1997) and the
deer model of Abbott et al. (1997) have move-
ment rules causing animals to select new habitat
when food intake rate falls below a threshold.
Although this threshold varies with animal size,
the movement decision rule does not depend on
current energy reserves. However, it seems un-
likely that a real animal with ample fat reserves
would always make the same choice between food
intake and predation risks as a starving one.

One explanation of why IBMs rarely use state-
based decision-making is that many models follow
the early optimal foraging literature, which also
neglected the effects of an animal’s state. Forag-
ing models that simply assume animals select
habitat to maximize net energy intake or minimize
the ratio of mortality risk to intake (Gilliam and
Fraser, 1987) neglect how the relative fitness pro-
vided by these strategies depends on an animal’s
current energy reserves.

Newer approaches to foraging theory provide a
useful conceptual framework for modelling state-
based responses by individual animals. Our ap-
proach to modelling fitness-based decision making
(Railsback et al., 1999) is adapted from the
Unified Foraging Theory (UFT; Mangel and
Clark, 1986; see Section 3.5 below). The UFT
assumes that animals make choices over time to
maximize their probability of surviving to, and
having energy reserves for, future reproduction.

These choices depend on the animals’ current
energy reserve state. The related approach of
Thorpe et al. (1998) makes state-based changes in
the fitness measure used for key decisions. One of
the reasons realistic habitat selection patterns
emerge from the stream trout model discussed
above (Section 3.1) is that the preferred tradeoff
between mortality risk and food intake varies with
the fish’s current energy reserves. In this model,
trout with low reserves are at risk of starvation so
they maximize their expected fitness by selecting
habitat with higher food intake even if other risks
are higher; animals with ample energy stores put
greater emphasis on habitat with low mortality
risks.

3.5. Prediction

The ability to anticipate the outcome of alter-
native actions is critical to intelligent behavior in
CAS models. Models in which agents learn to
play games like checkers and chess are good
examples: the agents learn to anticipate the conse-
quences of possible game moves as a way of
selecting good moves (Holland, 1998). However,
prediction is key to even simple CAS models and
biological systems. Holland (1995) discusses pre-
diction using the framework of internal models
that organisms use to anticipate outcomes. ‘Tacit’
internal models prescribe certain actions on the
basis of implicit predictions that can be so simple
that they are often not recognized as predictions.
Holland provides the example of a bacterium that
swims in a sugar gradient toward higher concen-
trations; the implicit prediction is that more food
lies in the direction of increasing concentrations.
‘Overt’ internal models provide more explicit pre-
dictions of decision consequences using such in-
formation as internal maps of known habitat and
known relations between habitat characteristics
and mortality risks or food intake. An example
use of overt models is the ability of some animals
to make relatively consistent and predictable
choices among habitats varying in risk and food
intake (Grand and Dill, 1997); this behavior dis-
plays prediction of how potential fitness varies
with habitat characteristics. In CAS models, ex-
plicit predictions are often conducted using the
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‘lookahead’ approach, in which the expected con-
sequences of alternative actions are forecast, so
the approach most likely to be successful can be
identified. The ability to anticipate the conse-
quences of alternative responses is essential for
successful adaptation, and it is clear that even the
simplest organisms use tacit and perhaps overt
internal models for prediction.

Including prediction in models of behavior does
not necessarily mean assuming organisms have
crystal balls or are capable of conducting complex
lookahead computations. It seems very reasonable
to assume instincts and physiological processes
have evolved to provide organisms with approxi-
mate ways to anticipate future consequences of
their behavior. For example, an animal trying to
maximize its probability of survival while consid-
ering only instantaneous consequences would
merely hide; it would not consider the possibility
of starvation because starvation is not an immedi-
ate risk. However, we instinctively know that
hiding is not a sustainable behavior because its
future consequence will be starvation. In fact,
hunger may be a physiological reminder that feed-
ing, while not always an appropriate behavior
(e.g. when predators are present), should not be
long neglected. Hunger occurs long before energy
reserves reach dangerous levels, so hunger can be
viewed as a reminder of the future consequences
of not feeding.

Modelling foraging and behavior almost always
involves some level of prediction, but IBMs rarely
use any form of prediction other than simple,
implicit, and often unstated models. For example,
in the trout models of Clark and Rose (1997),
Van Winkle et al. (1998) fish move only after they
have experienced a downward trend in fitness
potential at their current habitat (an approach
adopted from the model of Bernstein et al., 1988).
The implicit predictions in these models are that
the downward trend will continue and that fitness
potential is more likely to improve if the animal
moves. Behavior in many IBMs is modeled as a
reactive, not overtly predictive, process: organ-
isms make choices considering only current condi-
tions, for example by maximizing instantaneous
food intake.

The UFT and related methods described by
Mangel and Clark (1986), Clark and Mangel
(2000) assume that animals select among known
foraging habitats to maximize their expected
fitness over some future time period, a process
that requires overt prediction. These dynamic
modelling methods are not directly applicable to
IBMs because they assume that habitat is static,
whereas IBMs typically include habitat dynamics.
In addition, competition for resources can cause
resource availability to be dynamic even if other
habitat characteristics are static. An animal can-
not be assumed to optimize its habitat choices
over time unless it makes some prediction of
future resource availability. We adapted the UFT
approach to an IBM with dynamic habitat by
giving animals the simplest possible way to pre-
dict future resource availability: an animal as-
sumes that future food intake and mortality risks
over some decision time horizon will remain the
same as they are at the time the animal makes its
decision (Railsback et al., 1999). On each model
time step, the animal uses this simplistic predic-
tion of resource availability in a lookahead proce-
dure to predict its probability of surviving and
reaching reproductive size over the time horizon
in each alternative habitat. Even this simple
model of prediction produces more realistic be-
havior and higher fitness than do ‘reactive’ habi-
tat selection approaches (Section 3.3). Bull et al.
(1996), Grand (1999) use similar approaches,
modelling animal decisions by assuming the indi-
viduals look ahead at their fitness potential over a
future period.

It appears reasonable for IBMs to assume or-
ganisms have some ability to anticipate the future
consequences to their fitness of their current ac-
tions. This ability allows modellers to use the
state-based dynamic foraging approaches similar
to UFT. The fitness advantages to an organism of
basing decisions on long-term consequences of its
actions, instead of reacting to immediate condi-
tions, are high (Mangel and Clark, 1986; Rails-
back and Harvey, In prep.). It seems unlikely that
organisms could be evolutionarily successful with-
out this ability. Consequently, modellers need to
carefully consider what ability to predict (and
base decisions upon) future consequences of their
decisions is appropriate in an IBM.
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Uncertainty in organisms’ predictions, and its
consequences, is an unexplored and potentially
interesting area for modelling research. Organisms
certainly are limited in their predictive abilities
and in some cases may suffer from having these
abilities subverted. For example, trout raised to
adult size in hatcheries have been observed to
display inappropriate behavior and suffer rapid
mortality when stocked into streams. Such mor-
tality was modeled in the IBM of Van Winkle et
al. (1998) by imposing a separate, high mortality
factor for hatchery trout. I expect high mortality
would also emerge automatically from a model in
which hatchery trout use their hatchery experience
as the basis for predicting consequences of habitat
choices in a stream. If these fish predict, on the
basis of their hatchery experience, that food
availability is high in pools that resemble hatchery
tanks and that mortality risks are generally negli-
gible, their habitat choices in streams will be very
poor.

3.6. Computer simulation

The vast majority of CAS research is conducted
with computer simulation. As a result, the CAS
community has developed a base of computer
simulation expertise and tools that can greatly
benefit IBM developers. The primary lesson from
CAS is that IBMs, like CAS models, are so
closely tied to their software implementation that
computer science issues cannot be separated from
other modelling issues. More than for conven-
tional ecological models, how IBMs are imple-
mented in software affects model results, our
perception and understanding of model results,
and our ability to do science.

The one product of CAS research that has been
of most direct benefit to my colleagues and me is
the Swarm simulation system, a software toolbox
for individual-based simulation developed at the
Santa Fe Institute (Minar et al., 1996; see also
www.swarm.org). Interactions with Swarm ’s de-
velopers and user community have allowed us to
identify several key computer science issues for
individual-based modelling.

One of the most important lessons about com-
puter simulation that CAS researchers have

learned is the importance of user interfaces. Hol-
land (1995) uses analogies to flight simulators and
computer games like SimCity (Wright, 1989) to
illustrate the importance of a graphical user inter-
face for allowing modellers to understand models
and determine when they do and do not produce
realistic results.

IBMs are essentially untestable if the patterns
of individual behavior cannot be observed. Ob-
server capabilities like animation windows and the
ability to check (and sometimes alter) the state of
individuals during simulations are invaluable for
testing and understanding IBMs. These tools may
reduce the speed at which computer simulations
execute, but they vastly increase the rate at which
we can do science with IBMs. During develop-
ment of all of our models, there have been in-
stances where the animation window made it
immediately apparent to us that our model had a
programming error, an input data error, or a poor
model assumption. These errors were often subtle
and unlikely to have been detected without the
animation window, yet had major effects on
model results. This experience makes me doubt
that many IBMs that lack such observer tools are
sufficiently error-free to be used for research or
management applications. On the other hand,
when a model is working well the realistic behav-
ior patterns displayed on the animation window
are very powerful for building belief and interest
in a model.

A second lesson from the CAS community (but
also raised by Bart, 1995) is the importance of
fully specifying models. Even small details of an
IBM’s formulation or computer implementation
can have significant effects on model results; such
details include choice of numerical methods, the
order in which events are scheduled, and seem-
ingly minor assumptions. For example, I was
unaware, until starting to use Swarm, that many
software platforms (programming languages,
spreadsheets, etc.) include simplistic random num-
ber generators that have cycles that can induce
errors, so the choice of random number generator
is an important part of the model specification.
Documenting an IBM in full detail is essential to
make the model and its results reproducible and
therefore suitable for science.
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The final important lesson is the critical impor-
tance of software quality control. Because CAS
models and IBMs are expected to produce novel
and complex results, errors due to poor assump-
tions, programming mistakes, or flawed input are
easily mistaken for valid results. At the same time,
the complexity of a typical IBM makes it virtually
impossible to hand-check results with any com-
pleteness. Ignoring these issues makes it very
likely that considerable investigator time and
funding are wasted using flawed code, or that
invalid results are promulgated as science. Appro-
priate quality control measures are available in
the computer science literature and absolutely es-
sential for making IBM research cost-effective
and scientifically valid. Our experience clearly in-
dicates that taking software quality management
seriously from the start leads to much more rapid,
and less expensive, progress with IBMs.

These computer tool issues appear to be rarely
understood or addressed by individual-based
modellers (Grimm, 1999; Grimm et al., 1999;
Lorek and Sonnenschein, 1999). Very few IBMs
that have been published or used for ecological
management have been accompanied with full
documentation of the model’s assumptions and
adequate software testing, or implemented in soft-
ware that even allows the behavior of model
individuals to be observed and tested. Progress in
individual-based ecology, as in any science, is
unlikely in the absence of adequate tools.

Two practices can make it relatively inexpensive
and easy to address these computer issues. The
first is for ecologists to use software professionals
to help do their toolmaking, just as scientists in
virtually all other fields use engineers and other
professionals to build their tools. All the issues
raised here are widely understood and commonly
addressed in computer science. Ecologists work-
ing on IBMs must give computer science issues
serious consideration, but they need not become
computer scientists if are willing to work with
software professionals. The second practice is to
use existing software platforms like Swarm.
(There are a number of other platforms poten-
tially appropriate for IBMs.) Such tools can
provide the necessary user interfaces at virtually
no cost, simplify and speed the coding process,

reduce the potential for errors, and reduce the
new documentation needed to fully specify the
model (Lorek and Sonnenschein, 1999). One of
the greatest benefits to me of using Swarm has
been access to the vast body of complex system
modelling expertise resident in its developers and
users.

4. Conclusions

Individual-based modelling has important ad-
vantages as an approach for understanding and
predicting ecological systems; primary among
these advantages is the potential to avoid the
unrealistic simplifying assumptions inherent in
conventional, differential equation-based models
(Huston et al., 1988). However, before these ad-
vantages can be realized modellers must learn
how to build IBMs that realistically portray the
individual- and system-level responses of natural
populations. A set of approaches that have been
demonstrated capable of producing realistic IBMs
has yet to emerge and, in fact, there is little
literature testing and comparing conceptual ap-
proaches for IBMs. I suggest that conventional
ecological models persist not because they are
fundamentally superior to complex systems ap-
proaches and IBMs, but in large part because
their calculus-based conceptual framework is
powerful and noncontroversial.

The past 10 years have shown that an ad hoc
approach to IBMs is not productive. The study of
CAS is too new to provide a detailed roadmap for
individual-based modelling, partly because ecosys-
tems are among the most complex systems
known. However, by studying how complex and
lifelike behaviors and dynamics arise in simplified
systems CAS researchers have developed some
key concepts that ecological modellers should
consider. I propose the following as a list of
concepts, identified as important in CAS, that
should be addressed in designing IBMs. These
concepts are intended to apply to IBMs in gen-
eral, not just to models of animals or of any
particular ecological issues.
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4.1. Emergence

What individual behaviors and population dy-
namics should emerge from the model’s mechanis-
tic representation of key processes? What other
responses are appropriate to impose on the model
as empirical relations? The consequences of these
choices to the model’s intended uses should be
explicitly considered. Identifying traits of individ-
uals and their habitat that produce realistic emer-
gent responses is a fundamental modelling issue.

4.2. Adaptation

Given the model’s temporal and spatial scales
and resolution, what adaptive processes should
individuals be assumed to use? By what mecha-
nisms do individuals adapt in response to what
environmental forces?

4.3. Fitness and strategy

If decision making by model individuals is
based on fitness seeking, what measures of fitness
are appropriate as the decision basis? Should
fitness measures change with life history stage or
other states?

4.4. State-based responses

How should decision processes depend on an
individual’s state? Should decisions depend on an
individual’s size, energy reserves, or life history
stage?

4.5. Prediction

What are realistic assumptions about how or-
ganisms anticipate and consider future conse-
quences in making decisions? Assuming that
organisms base decisions only on immediate con-
sequences, or in reaction to current or past events,
appears unlikely to produce realistic behavior
simulations.

4.6. Computer implementation

What user interfaces are necessary to observe

the behavior of individuals, thereby making an
IBM testable? How will the model’s full design,
including computer implementation details, be
specified and documented so it is reproducible?
What software testing methods are appropriate?
Taking advantage of high-level modelling plat-
forms and the expertise of software professionals
helps make computer implementation adequate
and cost-effective.

Consistently addressing these concepts should
help make the design of IBMs less ad hoc and
reduce the formulation and implementation prob-
lems that have limited the success of this impor-
tant technology. These concepts can also provide
a framework for IBM research and development:
designing and testing ways to implement these
concepts could focus research in ways that lead to
established approaches for individual-based eco-
logical modelling.

Acknowledgements

This research was sponsored by EPRI, Electric
Power Research Institute Inc. under agreement
EP-P1149/C433 with Lang, Railsback and Assoc.,
and by the Pacific Southwest Research Station,
Forest Service, U.S. Department of Agriculture. I
thank Geir Huse, Volker Grimm, and Peggy
Wilzbach for valuable comments; my colleagues
affiliated with Humboldt State University and
Oak Ridge National Laboratory that participated
in the modelling projects discussed here; and the
Swarm development team and user community
for providing the environment that stimulated
these ideas.

References

Abbott, C.A., Berry, M.W., Comiskey, E.J., Gross, L.J., Luh,
H.-K., 1997. Parallel individual-based modeling of Ever-
glades deer ecology. IEEE Comp. Sci. Eng. 4, 60–72.

Auyang, S.Y., 1998. Foundations of Complex-System Theo-
ries in Economics, Evolutionary Biology, and Statistical
Physics. Cambridge University Press, New York, p. 404.

Bart, J., 1995. Acceptance criteria for using individual-based
models to make management decisions. Ecol. Appl. 5,
411–420.



S.F. Railsback / Ecological Modelling 139 (2001) 47–62 61

Bernstein, C., Kacelnik, A., Krebs, J.R., 1988. Individual
decisions and the distribution of predators in a patchy
environment. J. Anim. Ecol. 57, 1007–1026.

Booth, G., 1997. Gecko: a continuous 2D world for ecological
modeling. Artif. Life 3, 147–163.

Bull, C.D., Metcalfe, N.B., Mangel, M., 1996. Seasonal match-
ing of foraging to anticipated energy requirements in
anorexic juvenile salmon. Proc. R. Soc. Lond. B 263,
13–18.

Burks, A.W. (Ed.), 1970. Essays on Cellular Automata. Uni-
versity of Illinois Press, Champaign-Urbana, Illinois.

Clark, C.W., Mangel, M., 2000. Dynamic State Variable Mod-
els in Ecology. Oxford University Press, New York, p. 289.

Clark, M.E., Rose, K.A., 1997. Individual-based model of
stream-resident rainbow trout and brook char: model de-
scription, corroboration, and effects of sympatry and
spawning season duration. Ecol. Model. 94, 157–175.

Devreotes, P., 1989. Dictyostelium discoideum: a model system
for cell-cell interactions in development. Science 245, 1054.

Fama, E.F., 1991. Efficient capital markets II. J. Finance 46,
1575–1617.

Folse, L.J., Packard, J.M., Grant, W.E., 1989. AI modelling of
animal movements in a heterogeneous habitat. Ecol.
Model. 46, 57–72.

Forrest, S., 1990. Emergent computation: self-organizing, col-
lective, and cooperative behavior in natural and artificial
computing networks, introduction to the proceedings of the
ninth annual CNLS conference. Physica D 42, 1–11.

Gigerenzer, G., Todd, P.M., ABC Research Group, 1999.
Simple Heuristics that Make Us Smart, Oxford University
Press, New York.

Gilliam, J.F., Fraser, D.F., 1987. Habitat selection under
predation hazard: test of a model with foraging minnows.
Ecology 68, 1856–1862.

Goldspink, C., 2000. Modelling social systems as complex:
towards a social simulation meta-model. J. Artif. Society
Social Sim., 3. http://www.soc.surrey.ac.uk/JASSS/3/2/
1.html.

Grand, T.C., 1999. Risk-taking behavior and the timing of life
history events: consequences of body size and season. Oikos
85, 467–480.

Grand, T.C., Dill, L.M., 1997. The energetic equivalence of
cover to juvenile coho salmon (Oncorhynchus kisutch): ideal
free distribution theory applied. Behav. Ecol. 8, 437–447.

Grimm, V., 1999. Ten years of individual-based modelling in
ecology: what have we learned and what could we learn in
the future? Ecol. Model. 115, 129–148.

Grimm, V., Frank, K., Jeltsch, F., Brandl, R., Uchmanski, J.,
Wissel, C., 1996. Pattern-oriented modelling in population
ecology. Sci. Total Environ. 183, 151–166.

Grimm, V., Wyszomirski, T., Aikman, D., Uchmanski, J.,
1999. Individual-based modelling and ecological theory:
synthesis of a workshop. Ecol. Model. 115, 275–282.

Harvey, B.C., Nakamoto, R.J., White, J.L., 1999. Influence of
large woody debris and a bankfull flood on movement of
adult resident coastal cutthroat trout, (Oncorhynchus

clarki ) during fall and winter. Can. J. Fish Aquat. Sci. 56,
2161–2166.

Hasler, A.D., Scholz, A.T., 1983. Olfactory Imprinting and
Homing in Salmon. Springer-Verlag, New York, p. 134.

Hilborn, R., Mangel, M., 1997. The Ecological Detective.
Princeton University Press, Princeton, New Jersey, p. 315.

Holland, J.H., 1995. Hidden Order: How Adaptation Builds
Complexity. Perseus Books, Reading, Massachusetts, p.
185.

Holland, J.H., 1998. Emergence: From Chaos to Order. Helix
Books, Reading, Massachusetts, p. 258.

Huse, G., Giske, J., 1998. Ecology in Mare Pentium: an
individual based model for fish with adapted behavior. Fish
Res. 37, 163–178.

Huse, G., Strand, E., Giske, J., (1999). Implementing behavior
in individual-based models using artificial neural networks
and genetic algorithms. Evol. Ecol. 13, 469–483.

Huston, M., DeAngelis, D., Post, W., 1988. New computer
models unify ecological theory. BioScience 38, 682–691.

Kaiser, H., 1979. The dynamics of populations as result of the
properties of individual animals. Fortschr. Zool. 25, 109–
136.

Kauffman, S., 1995. At Home in the Universe: The Search for
the Laws of Self-Organization and Complexity. Oxford
University Press, New York, p. 321.

Kohler, T.A., Kresl, J., Van West, C., Carr, E., Wilshusen,
R.H., 1999. Be there then: a modeling approach to settle-
ment determinants and spatial efficiency among late ances-
tral Pueblo populations of the Mesa Verde region, U.S.
southwest. In: Kohler, T.A., Gumerman, G.J. (Eds.), Dy-
namics in Human and Primate Societies. Oxford University
Press, New York.

Kreft, J.-U., Booth, G., Wimpenny, J.W.T., 1998. BacSim, a
simulator for individual-based modelling of bacterial
colony growth. Microbiology 144, 3275–3287.

Levin, S.A., 1999. Fragile Dominion: Complexity and the
Commons. Helix Books, Reading, Massachusetts, p. 256.

Lorek, H., Sonnenschein, M., 1999. Modelling and simulation
software to support individual-based ecological modelling.
Ecol. Model. 115, 199–216.

Mangel, M., Clark, C.W., 1986. Toward a unified foraging
theory. Ecology 67, 1127–1138.

Mangel, M., Fiksen, Ø., Giske, J., In press. Logical, statistical,
and theoretical models in natural resource management and
research. In: Shenk T., Frankling A. (Eds.), How to prac-
tice safe modeling: the interpretation and application of
models in resource management, Island Press, Washington,
D.C.

Minar, N., Burkhart, R., Langton, C., Askenazi, M., 1996. The
Swarm simulation system: a toolkit for building multi-agent
simulations. Santa Fe Institute Working Paper 96-06-042,
Santa Fe, New Mexico.

Murdoch, W.W., McCauley, E., Nisbet, R.M., Gurney,
W.S.C., de Roos, A.M., 1992. Individual-based models:
combining testability and generality. In: DeAngelis, D.L.,
Gross, L.J. (Eds.), Individual-Based Models and Ap-
proaches in Ecology. Chapman & Hall, New York, pp.
18–35.



S.F. Railsback / Ecological Modelling 139 (2001) 47–6262

Nibbelink, N.P., Carpenter, S.R., 1998. Interlake variation in
growth and size structure of bluegill (Lepomis
macrochirus): inverse analysis of an individual-based
model. Can. J. Fish Aquat. Sci. 55, 387–396.

Nielsen, J.L., 1992. Microhabitat-specific foraging behavior,
diet, and growth of juvenile coho salmon. Trans. Am. Fish
Soc. 121, 617–634.

Patten, B.C., Jørgensen, S.E. (Eds.), 1995. Complex Ecology:
The Part-Whole Relation in Ecosystems. Prentice Hall,
Englewood Cliffs, New Jersey, p. 705.

Quinn, T.P., Adams, D.J., 1996. Environmental changes af-
fecting the migratory timing of American shad and sockeye
salmon. Ecology 77, 1151–1162.

Railsback, S.F., In press. Getting ‘results’: the pattern-oriented
approach to analyzing natural systems with individual-
based models. Nat. Res. Model.

Railsback, S.F. Harvey, B.C., In prep. Comparison of
salmonid habitat selection objectives in an individual-based
model. MS submitted to Ecology.

Railsback, S.F., Lamberson, R.H., Harvey, B.C., Duffy, W.E.,
1999. Movement rules for spatially explicit individual-
based models of stream fish. Ecol. Model. 123, 73–89.

Rose, K.A., 2000. Why are quantitative relationships between
environmental quality and fish populations so elusive?
Ecol. Appl. 10, 367–385.

Samuel, A.L., 1959. Some studies in machine learning using
the game of checkers. In: Feigenbaum, E.A., Feldman, J.
(Eds.), Computers and Thought, 1963. McGraw-Hill, New
York.

Thorpe, J.E., Mangel, M., Metcalfe, N.B., Huntingford, F.A.,

1998. Modelling the proximate basis of salmonid life-his-
tory variation, with application to Atlantic salmon, Salmo
salar L. Evol. Ecol. 12, 581–599.

Thulke, H.-H., Grimm, V., Müller, M.S., Staubach, C., Tis-
chendorf, L., Wissel, C., Jeltsch, F., 1999. From pattern to
practice: a scaling-down strategy for spatially explicit mod-
elling illustrated by the spread and control of rabies. Ecol.
Model. 117, 179–202.

Tinbergen, N., 1951. The Study of Instinct. Clarendon Press,
Oxford.

Uchmanski, J., 1999. What promotes persistence of a single
population: an individual-based model. Ecol. Model. 115,
227–241.

Uchmanski, J., 2000. Individual variability and population
regulation: an individual-based model. Oikos 90, 541–550.

Van Winkle, W., Jager, H.I., Railsback, S.F., Holcomb, B.D.,
Studley, T.K., Baldrige, J.E., 1998. Individual-based model
of sympatric populations of brown and rainbow trout for
instream flow assessment: model description and calibra-
tion. Ecol. Model. 110, 175–207.

Waldrop, M.M., 1992. Complexity: The Emerging Science at
the Edge of Order and Chaos. Simon & Schuster, New
York, p. 380.

Winfree, A.T., 1987. When Time Breaks Down: The Three-Di-
mensional Dynamics of Electrochemical Waves and Car-
diac Arrhythmias. Princeton University Press, Princeton,
New Jersey.

Wright, W., 1989. SimCity (video game). Maxis Corporation,
Orinda, California.

.


