The Multi-Agent Simulation Suite (MASS) and
the Functional Agent-Based Language of Simulation (FABLES)
Extended Abstract for SwarmFest 2005, Turin, Italy
László Gulyás#♥, Sándor Bartha*, Tamás Kozsik*♥,
Róbert Szalai#♥, Attila Korompai#♥, Gábor Tatai#
#AITIA, Inc, H-1117, Budapest, Infopark sétány 1., Hungary

{lgulyas, rszalai, akorompai, zszabo, gtatai}@aitia.ai
♥ Simulation Centre, Cooperative Research and Education Center, Faculty of Informatics
Loránd Eötvös University, H-1117, Budapest, Pázmány P. sétány 1, Hungary

*Loránd Eötvös University, H-1117, Budapest, Pázmány P. sétány 1, Hungary
{sanka, kto}@inf.elte.hu
Introduction

In today’s fast-paced, connected world the effects of a single business or policy decision may quickly cascade through a number of hidden links and affect remote parts of the market or the organization. To cope with such difficulties decision-makers need novel tools. This is the reason why modeling and simulation applications play an increasing role in business training and in decision-making support systems.

The Multi-Agent Simulation Suite (MASS) is a solution candidate for modeling and simulation of complex social systems. It provides the means for rapid development and efficient execution of agent-based computational models. The aim of the Multi-Agent Simulation Suite project is to create a general yet efficient execution environment for versatile multi-agent based simulations. The suite consists of reusable core components that can be combined to form the base of both multi-agent and participatory multi-agent simulations. A secondary focus of the project is on providing a comfortable modeling environment for rapid simulation development. To this end, the suite will offer a high-level programming language dedicated to agent-based simulations, and a development environment with a number of interactive functions that help experimentation with and the finalization of the model.

The Multi-Agent Simulation Suite (MASS)
The Multi-Agent Simulation Suite has four major components:

	[image: image1.png]

Figure 1. The architecture of the MASS

The Multi-Agent Core

The Multi-Agent Core (MAC) is an execution environment for agents. This J2SE-based module provides the basic infrastructure (time and event management, agent-agent and agent-environment interactions, logging and playback functions, etc.) for multi-agent simulations. The MAC differs from common packages for agent-based simulation (like Swarm, RePast, Ascape or MASON) in several ways. Most importantly, it is a fully web-enabled environment
. This means not only that pre-written simulations can be run from a browser, but also that the assembly and configuration of models (from pre-existing components like agent and environment types) is also possible via the web. This may be especially useful in educational settings, where novice modelers can experiment with model templates and pre-written components. Moreover, the web-enabled nature of the MAC platform lends itself naturally as a base for the participatory extension discussed below.

	[image: image2.png]
	[image: image3.png]

Figure 2: The administion interface of the MASS

Sajat kod, web-enabled, konfiguralhato, participatory

The Participatory Extension

Participatory Simulation is a methodology building on the synergy of human actors and artificial agents, excelling in the training and decision-making support domains. In such simulations some agents are controlled by users, while others are directed by programmed rules. The Participatory Extension (PET) is an add-on to the Multi-Agent Core that allows users to take control over agents in the simulation. The J2EE-based extension provides optimized solutions for communications between the client and the main simulation server, including visualization (two-dimensional ‘bird’s eye’ view, three-dimensional ‘world view’, etc.) at the client side. The user interface of the simulation client uses standard web technology, allowing for easily customizable layout and design.

The ‘FABLES’ Simulation Definition Language

The Functional Agent-Based Language for Simulation (FABLES) is intended for the concise and efficient definition of agent-based models. FABLES combines the strengths of functional programming with the object-oriented paradigm, providing unique means to implement agent-based simulations.

FABLES’ vision is an abstract formalism to describe agent-based models. Models defined in this language could, in principle, be automatically transformed into agent-based simulations in RePast, Swarm or Ascape, etc. Such a description would be ideal to publish concise definitions of agent-based models. Moreover, independently developed compilers to different modeling platforms in place, the formalism could also help making the replication/docking of computational models a routine task. In the current, prototype version, FABLES models are interpreted. Our future plans include a compiler that generates (optimized) code for the MAC core.

Integrated Modeling Environment

The Integrated Modeling Environment makes model development in FABLES more effective by providing a modeler-friendly editor with syntax-highlighting, on-the-fly syntax checking, and a number of exporting options. The environment also has interactive wizards that help collecting and charting statistics about the model. This is completed by wizards that let the modeler interactively set up two- and three-dimensional displays of the model.

The Functional Agent-Based Language for Simulations (FABLES)
Opinions vary about the level of programming skills to be expected from agent-based modelers. Yet, there is an apparent general agreement that the more skill candidates have the better. However, most of today's students lack these capabilities and developing them requires substantial efforts from the adventurous entrepreneur. Therefore, lowering the requirements would help agent-based modeling becoming a more widely accepted methodology.

Swarm-alike modeling packages (e.g., Swarm, RePast, Ascape, MASON) require the usage of general-purpose programming languages (Java, Objective-C, etc.) and thus their users to learn programming. On the other hand, various model building tools (such as NetLogo or AgentSheet) demonstrate that by limiting the 'space' of possible models, the task of modeling can be efficiently assisted. The real challenge is to bridge the gap between the potential open-ended nature of Swarm-alike modeling environments and the ease of use provided by NetLogo-like frameworks. Graphical model building interfaces for Swarm-alike ABM platforms, such as Repast.py (for RePast, formerly known as SimBuilder) and the Visual Swarm Builder (VSB) are attempts at this. Still, they impose certain limitations with respect to the models that are possible to build with them, and, at the same time, require a certain level of programming knowledge.

	[image: image4.png]
	[image: image5.png]

Figure 3: The user interface of the MASS

The motivation behind FABLES is to improve upon the current situation. One crucial observation is that a large part of the observational machinery, especially the generation of statistical output, can be assisted in interactive ways. Both SimBuilder and VSB, or Ascape and NetLogo provide examples to this effect. In the MASS suite this task is entirely delegated to the Integrated Modeling Environment. Another observation is that part of the difficulty in creating and communicating agent-based models stems from the fact that the formalism used to describe models in research papers or in oral presentations is far from the language of implementation. Moreover, the model’s actual source code is full of what may be called ‘accidental representation’. These are algorithms and data structures that translate the conceptual model's notions into programming constructs. These are ‘accidental’ elements, because they are normally developed without much thought, since modelers tend to focus on model details, instead of studying computer science textbooks. They are often based on words-of-mouth information, rather than on solid software engineering knowledge. These are the parts of the model where programming skills count the most.
Design Goals

The Functional Agent-Based Language for Simulation (FABLES) attempts to improve ‘accidental’ representations by providing a language in which models can be described as close to the conceptual model as possible. Our starting point when designing FABLES was to follow the general language of ABM publications that describe their model. The typical intended user of FABLES is a modeler with limited programming knowledge, but with sufficient skills in algebra and calculus to read a research paper. The design goals of FABLES can be summarized as follows.
1. The FABLES source should be easily readable for readers familiar with the basic mathematical formalism.

2. The language should have a precise semantics and the source should be the exact specification of the model.

3. The FABLES source should be as close to ‘publishable’ model description as possible.

4. FABLES models should be executable.
5. The model description should focus on the nature of the model and leave implementation to the compiler.

6. The language should be general enough to accommodate possibly any agent-based model, but should focus on the common techniques and methods.

Current State of FABLES
The design goals listed above partially contradict each other. Nonetheless, we attempt to achieve an optimal balance among them. We believe that the ideal model description language is built upon a functional base that is close to the mathematical, algebraic formalism. Such descriptions are typically more concise than those using imperative languages. To bring it closer to mathematics, we replace programming constructs like arrays, lists, etc. with respective mathematical concepts like sequence, set, relation. Since agent-based systems are close to the object-oriented paradigm, FABLES also uses object-oriented concepts: agents are objects, agent types are object classes. The simulations behavior in time, however, is hard to describe in functional terms and the object-oriented framework does not help much either. This component is best described with imperative tools. Separating dynamic behavior from representation also helps achieving a precise semantics. Therefore, the models’ event-based dynamics is described using a schedule that contains imperative elements.
FABLES thus can be separated in three main parts: an object-oriented part describing the general structure of the model (the environment, the agents, etc.), a functional part (with mathematical equations, functions, sequences, and sets) providing a standard, concise means to summarize the functional relationships among the various components, and an imperative part (assignments, object creation and destruction) with a schedule that specifies the actual dynamics.

This corresponds to what is found in published model descriptions. Typically, object-oriented terminology is used to describe the overall structure of the model (the actors and general concepts), mathematical language is used to picture the components’ mutual dependence, while dynamics is given either in functional form (i.e., difference/differential equations) or in pseudo-code (often using the event-based terminology and/or the concept of the scheduler).

	[image: image6.png]
	[image: image7.png]

	[image: image8.png]
	[image: image9.png]

	[image: image10.png]

Figure 4: The user interface of simulations in the MASS

An Example

The design and implementation of FABLES is work in progress. Therefore, the syntax of the language is not finalized yet, like the main concepts may also change in the future. The example on Figure 5 shows the implementation of a simple random walk on a two-dimensional lattice using FABLES v0.1.
	model RandomWalk;

// Global Constants

agentNum := 10;

worldSize:=10;

numOfIterations := 100;

// Global Definitions

world:=[1..worldSize, 1..worldSize] ;

occupancy[pos]:= size[[a where a in Agent when a.pos == pos]];

norm[x]:= x>=1 and x<=worldSize => x

 | x<1 => norm[x+worldSize]

 | x>worldSize => norm[x-worldSize];

neighborCells[x,y] :=

 { [norm(x+dx),norm(y+dy)] where
 dx in [-1,0,1], dy in [-1,0,1]
 when not (dx==0 and dy==0) };

/// Agents

///

class Agent

begin

 pos is world;

 id is Integer;

 step := pos = uniform[neighborCells(pos)];

end

agentList := [a where a in Agent];

anAgent := agentList[1];

///

// Model Activities

///

setup := seed(321);

createAgents := [NEW Agent[id = o, pos = uniform[world]]
 where o in [1 .. agentNum]] ;

init := [setup, createAgents];

printWorld := [occupancy[p] where p in world];

stepAll := [a.step where a in Agent];

oneRound := [stepAll, printWorld];

nRounds[n] := [oneRound where iterator in [1..n]];

SCHEDULE := eval [init, printWorld, nRounds[numOfIterations]];

///

// Schedule

///

! SCHEDULE;

? printWorld;

Figure 5. Example from the first, prototype version of the FABLES language
Summary
The Multi-Agent Simulation Suite (MASS) will offer a unique toolset to build multi-agent simulations of complex social systems. The suite hopes to speed up the development process and to ensure efficient implementations for both web-enabled simulations and stand alone desktop applications. Agent-based models with artificial populations and participatory simulations, where humans control some of the agents, are equally supported.

Models in MASS can be developed in two ways. They can either me programmed in Java, a way rather similar to extant simulation packages like Swarm, RePast, or MASON. However, the suite will also provide a dedicated simulation language, FABLES to help the formulation of agent-based models. In the long run, models developed in FABLES will be compiled to pure Java code. This way the two ways of developing models for the MASS suite will be seamlessly integrated. Obviously, the FABLES compiler may never generate code as efficient as an experienced programmer’s. Still, the option may be viable for smaller scale, exploratory models. Also, it would force making efficiency considerations explicit, especially when they depart from the conceptual model.

References
[1] GULYÁS, L.: On the Transition to Agent-Based Modeling: Implementation Strategies From Variables To Agents, Social Science Computer Review, Vol. 20., No. 4., (Winter 2002) 389-399

[2] GULYÁS, L., ADAMCSEK, B.: Charting the Market: Fundamental and Chartist Strategies in a Participatory Stock Market Experiment, In: International Conference Experiments in Economic Sciences: New Approaches to Solving Real-world Problems, Okayama and Kyoto, Japan,14-17 December 2004.

[3] GULYÁS, L., ADAMCSEK, B., KISS, Á.: An Early Agent-Based Stock Market: Replication and Participation, Rendiconti Per Gli Studi Economici Quantitativi, Volume unico (2004) 47-71.

[4] GULYÁS, L., BARTHA, S.: How Much Is Too Much? -- What Programming Skills Are Really Needed to do ABM?, Seventh Annual Swarm Users/Researchers Conference (SwarmFest 2003), Notre Dame, Indiana, April 13-15, 2003.
[5] GULYÁS, L., IVÁNYI, M., SZABÓ, V., ADAMCSEK, B., KOROMPAI, A., GOLDPERGEL, A.: vBroker: A Participatory Stock Market Experiment with Heterogeneous Agents, Accepted for the 10th Annual Workshop on Economic Heterogeneous Interacting Agents (WEHIA 2005), June 13-15, (2005)
[6] MAML, http://www.maml.hu/
[7] MASON, http://cs.gmu.edu/~eclab/projects/mason/
[8] PARKER, M. T., “What is Ascape and Why Should You Care?”, Journal of Artificial Societies and Social Simulation vol. 4, no. 1, http://www.soc.surrey.ac.uk/JASSS/4/1/5.html
[9] RePast, http://repast.sourceforge.net/
[10] Swarm, http://www.swarm.org/
� There exists a standalone version, too.

