
1. Free Software implementation

GNU Taler must be Free Software. For merchants, 
our Free Software reference implementation 
prevents vendor lock-in. As the software of the 
payment provider itself is free, countries can 
deploy the payment system without 
compromising sovereignty.

Customers benefit from Free Software as the 
wallet software can be made to run on a variety of 
platforms, and the absence of user-hostile 
features such as tracking or telemetry can easily 
be assured.

… in the area of 
computing, 

freedom means 
not using 

proprietary 
software



2. Protect the privacy of buyers

Privacy should be guaranteed via technical measures, 
as opposed to mere policies. Especially with 
micropayments for online publications, a 
disproportionate amount of rather private data about 
buyers would be revealed, if the payment system does 
not have privacy protections.
In legislations with data protection regulations (such as 
the recently introduced GDPR in Europe), merchants 
benefit from this as well, as no data breach of 
customers can happen if this information is, by design, 
not collected in the first place. Obviously some private 
data, such as the shipping address for a physical 
delivery, must still be collected according to business 
needs.



3. Enable the state to tax income and 
crack down on illegal business activities

As a payment system must still be legal to operate 
and use, it must comply with these requirements. 
Furthermore, we consider levying of taxes as 
beneficial to society.



4. Prevent payment fraud

This imposes requirements on the security of 
the system, as well as on the general design, as 
payment fraud can also happen through 
misleading user interface design or the lack of 
cryptographic evidence for certain processes.



5. Only disclose the minimal amount of 
information necessary

The reason behind this goal is similar 
to (2). The privacy of buyers is given 

priority, but other parties such as 
merchants still benefit from it, for 

example, by keeping details about the 
merchant’s financials hidden from 

competitors.

%

%



6. Be usable

Specifically it must be usable for non-
expert customers. Usability also applies 
to the integration with merchants, and 
informs choices about the architecture, 
such as encapsulating procedures that 
require cryptographic operations into an 
isolated component with a simple API.



7. Be efficient

Approaches such as proof-of-work are ruled out 
by this requirement. Efficiency is necessary for 
GNU Taler to be used for micropayments.



8. Fault-tolerant design

Taler should tolerate failure of individual components 
and systems, including malicious operators 
compromising core secrets. This manifests in 
architectural choices such as the isolation of certain 
components, and auditing procedures.



9. Foster competition

It must be relatively easy for competitors 
to join the systems. While the barriers for 
this in traditional financial systems are 
rather high, the technical burden for new 
competitors to join must be minimized. 
Another design choice that supports this 
is to split the whole system into smaller 
components that can be operated, 
developed and improved upon 
independently, instead of having one 
completely monolithic system.


