GNU Taler as a Privacy-Supporting CBDC*

March 12, 2021

GNU Taler is a token-based electronic online payment system using math-
ematics to secure payments, provide accountabiltiy and protect citizens’ right
to informational self-determination. Taler can be used by commercial banks
interested in underwriting commercial e-money, or as a CBDC. In this paper,
we will focus on using Taler to create a CBDC.

Taler’s main contribution is that it limits the use of expensive and invasive
authentication to when consumers initially withdraw funds from their commer-
cial bank account, and to merchants when they want to receive income. When
consumers spend electronic coins at a merchant, Taler only requires the con-
sumer to authorize the transaction, but does not inherently identify the cus-
tomer. By only requiring authorization to approve a payment, Taler makes
payments cheaper, easier, faster and avoids easy interference with individual
liberties. On the other hand, authenticating customers upon withdrawal and
merchants before they can receive funds ensures that Taler still satisfies know-
your-customer (KYC) and anti-money laundering (AML) regulation.

Taler is part of the GNU project, which is the original institution that cre-
ated the term ”Free Software”, which is these days often referred to as ”Free
and Open Source Software”. GNU Taler is released by Taler Systems SA (Lux-
emburg) under the GNU Public License, which grants everyone the freedom to
run, copy, distribute, study, change and improve the software. This is crucial
for a CBDC, as a central bank should not make itself (and by implication its
economic area) dependent on proprietary software under the exclusive control
of one vendor.

Taler is purely a software solution and thus does not even attempt to prevent
people from cloning tokens, which in Taler are simply called coins. To prevent
double-spending, Taler requires every transaction to be cleared by the bank that
issued the coin. To settle a transaction, the central bank checks its database
to ensure that the respective coin was not previously spent. Coins have an
expiration date, allowing the database administrator to eventually discard old
entries.

In the subsequent discussion of GNU Taler, we will only provide an intro-
duction to the technology to enable readers to grasp how GNU Taler preserves
privacy, how it can be integrated with the existing banking system to create
a CBDC, and what the social benefits of this solution would be. Dold (2019)
describes additional details, including security proofs, performance analysis and
how the public key infrastructure works.

*Expanded section 4 in joint CBDC paper

1

Objectives

To build a viable CBDC, we believe the following security and privacy goals
must be met:

1.

Purchases must identify the buyer, and must also not be linkable to other
transactions of the same buyer. Anyone who previously withdrew coins
of the respective denominations from the central bank must be equally
suspicious as a potential buyer for the transaction.

Coins must be fungible. That is, all coins signed with the same denomi-
ation key must be equivalent. In particular, must not be possible to par-
tition the anonymity set into between users that used change and those
that used cash that was directly withdrawn.

It must not be possible for users to hoard unlimited amounts of CBDC.
The central bank must be able to impose an upper limit on the total
amount of CBDC controlled by an individual. The central bank must also
be able to impose daily withdrawal limits on individuals.

Online signing keys used by the central bank must have an expiration time
to limit the impact of security breaches. Furthermore, if a key compromise
is detected, the central bank must be able to revoke keys. Legitimate
customers must not loose any funds or privacy in case of a key revocation.
However, the attacker must not be able to deposit any counterfeit coins
after keys were revoked.

Customers must be always able to pay any amount for which they have
sufficient total CBDC, regardless of the specific denominations of the coins
they may own. In other words, customers never need to be concerned with
having sufficient change.

Anyone receiving exclusive access to funds through the system must be
easily identified. It must not be possible to transfer exclusive ownership
of coins via mechanisms such as giving change or dealing with expira-
tions. However, cryptographic security is not required for this property,
it is sufficient if trying to cheat income transparency is associated with
substantial expected financial losses.

While any implementation of the system will have to make specific choices
for the cryptographic primitives used, it must at least in theory be possible
to replace any individual primitive used with alternative constructions.
This cipher agility is useful to enable continued operation in cases where
a particular primitive has been found to be potentially problematic, and
also provides an upgrade path in case better constructions are invented.

Note that it is not sufficient to meet the goals most of the time, but to
violate any one of the objectives under special circumstances, such as generally
providing unlinkability, except not during key revocation.

2 Mathematical background

We will now describe three key building blocks for the GNU Taler protocol,
including the mathematical background for one possible instantiation of these
primitves to give an example of how an implementation could work. We note
that alternative, equivalent mathematical designs exist for each of these, and
we are merely presenting the simplest ones we are aware of.

2.1 Signatures

Cryptographic signatures are a key building block for many network protocols.
Ordinary cryptographic signatures are used in GNU Taler to sign contracts, just
like hand-written signatures for traditional contracts on paper.

While GNU Taler by default uses modern EADSA signatures, we will present
a simplistic cryptographic signature scheme based on the well-studied RSA cryp-
tosystem here (Boneh 1999). However, we note that in principle any crypto-
graphic signature scheme (DSA, ECDSA, EADSA, RSA, etc.) can in principle
be used for standard signatures in GNU Taler.

In RSA, the signer first picks two large primes p and ¢ and computes n = pq
as well as Euler’s Totient function ¢(n) = (p — 1)(¢ — 1). Given this setup, any
e with GCD(¢(n),e) = 1 can be used to define a public key (e,n). The corre-
sponding private key d is the modular inverse of e mod ¢(n), which given ¢(n)
can be efficiently computed using the Extended Euclidian algorithm. Euler’s
theorem says that a®™ = 1 mod n for any a. A simplistic RSA signature s
over m would be s := m? mod n. Verifying the signature is done by checking
that m = s = m? mod n. If the signature was computed correctly, the latter
equation holds because 1 = de mod ¢(n) by our choice of d, and for any k € Z
Euler’s theorem says that m!*%*(") = m mod n.

2.2 Blind signatures

To protect the privacy of buyers, GNU Taler uses blind signatures (Chaum
1983). The key difference between blind signatures and the vanilla signatures
presented above is that with vanilla signatures, the signer learns the message m
which is being signed, as is appropriate for signing contracts. In contrast, blind
signatures can be used to ensure that the the signer does not learn the message
at the time where the signature is being generated.

When using cryptographic signatures to create untraceable electronic cash
(Chaum 1983), blind signatures can be used to prevent the central bank from
tracing purchases back to the buyer. GNU Taler works in principle with any
blind signature scheme, but at this time the best solution is still the traditional
RSA-based variant already described by Chaum in 1983.

We will now describe the mathematics behind blind signatures using RSA.
Let f be a message — such as a unique identifier for an electronic coin — to be
blindly signed. Then, the receiver of the signature — in our case the customer
withdrawing the coin — would first generates a blinding factor b € Z,,, computes
its modular inverse b~' mod n and transmit f’ := fb° mod n to the signer
— the central bank. The signer signs f’ using the usual RSA process as we
described above, computing s’ := f'* mod n. The receiver can then compute
s = s'b~! mod n. This works, because f/¢ = f2b°? = f9p and thus multiplying

s’ with b~! yields f¢, which is a valid RSA signature over f as before: s¢ =
f = f mod n.

2.3 Key exchange

Another central building block for secure network protocols are key exchange
protocols. Here, two parties are trying to establish a shared secret starting from
public information.

GNU Taler uses a key exchange protocol in an unusual way to provide a link
between an original coin and change rendered for that original coin.

The most common mathematical construction for a key exchange protocol is
the Diffie-Hellman construction. Here, the two parties share a generator g over
a multiplicative group G of order p. Each party a has a private key x, € Z and
publishes X, := ¢® mod p. The security of the scheme relies on the difficulty
of computing the discrete logarithm: given X, it must be impractically hard
to compute x,. For the key exchange, party 1 receives X5 from party 2 and
computes K := XJ' = ¢*2%* mod p. Similarly, party 2 receives X; from party
1 and computes K := X{? = ¢**™ mod p. Both parties compute the same
value K, which becomes the shared secret. The computational Diffie-Hellman
(CDH) assumption states that it is difficult to compute K = g®1*2 given only
g, g** and g*2. Many groups exists where it is believed that CDH is indeed
satisfied.

3 Withdrawing

We assume each customer knows a private key = € Z, and is identified with
the corresponding public key X := g*. The protocol is constructed such that
disclosing x to another party will cause the customer to loose control over all of
their CBDC and all of their privacy, providing a strong incentive for customers
to keep x private. We will discuss possible means for relaxing this and the
resulting implications in Section 8.

When the customer wants to withdraw a coin of some value, the customer
first must obtain the associated denomination key (e,n) that the central bank
is using to sign coins of that value. The central bank will typically offer denom-
ination keys for 2¢ currency units for various values of i € Ny, thus allowing the
customer to withdraw any amount A using at most [log, A] coins.

To withdraw a coin, the customer first creates x private transfer keys ¢;
for i € {1,...,x} and also computes the corresponding public keys T;. These
transfer keys are simply public-private key pairs that allow the customer to
run the key exchange protocol KX () k times between x and each of the ¢;.
The result are three transfer secrets K; := KX (x,t;). We note that the key
exchange protocol can be used in different ways to arrive at the same value
K; = KX(X,t;) = KX(z,T;). Given the values K;, the customer uses a
cryptographic hash function to derive values (b;, ¢;) := H(K;) where b; is a valid
blinding factor for the denomination key (e, n) and ¢; is a private key suitable for
both creating cryptographic signatures and also for use with the key exchange
protocol. Let C; be the public key corresponding to ¢;. The customer then
requests (indirectly, via the commercial bank that authenticated the customer
and deducts the corresponding amount from the customer’s balance) the central

bank to create a blind signature over C;.! for each i € 1,..., . In this request,
the customer also commits to the public keys T;.

Instead of directly returning the blind signature, the central bank first chal-
lenges the customer to prove that they used the above construction correctly by
providing a v € {1,...,k}. The customer must then reveal the ¢; for i # v to
the central bank. The central bank can then compute K; := KX (X, ;) and also
derive the (b;, ¢;) values. If for all i # « the provided ¢; prove that customer used
the construction correctly, the central bank returns the blind signature over C,.
If the customer fails to provide a correct proof, the funds they attempted to
withdraw are forfeit.

We note that someone could run the withdraw protocol without actually
knowing x, fooling the central bank to issue them valid coins in the false belief
that the customer with the public key X is the one running the withdraw pro-
tocol. To defang this problem, the central bank allows anyone who knows X to
— at any time — obtain the values of 7', and the associated blind signatures of
all coins linked to account X. This allows the customer who knows x to com-
pute K, := KX(z,T,) and from there to derive (;,¢;) and finally to unblind
the blind signature. As a result, the customer who knows x can always obtain
access to all of the coins that have been withdrawn under their account. This
also discourages anyone else from withdrawing coins with a value X where they
do not control x, as then the person who does know x could trivially follow the
link provided by the central bank and spend those coins.

4 Deposits

To pay for goods, a customer first negotiates a contract with the merchant.
While the merchants cryptographically signs the contract using a vanilla cryp-
tographic signature, the customer — their identity possibly remaining private
— signs the contract with private coin keys ¢;. A coin’s signature on a contract
with a valid coin ¢; is basically an instruction from the customer to the central
bank to pay the merchant who is identified by bank account in the contract.
Customers may sign a contract with multiple coins if a single coin is insufficient
to pay the total amount.

Furthermore, it is possible that the payment is less than the value of the
coins, and that the customer is due some change. In this case, the customer not
only signs the contract with the coins, but also one or more requests for change.
In those requests, they use the same pattern we saw during withdrawal, except
that instead of using the private key x that is tied to their identity, they use the
private key c,q of the old coin for which they want to obtain change. The use
of the key-exchange mechanism provides a link from the old coin to the change.
This link ensures that whoever knows c,;q will be able to compute the private
keys of the fresh coins that are rendered as change, and thus the change will be
owned by the same entity that controlled the original coin — without revealing
the identity of the customer to anyone in the process.

'In the case RSA is used for blind signatures, we would use f := FDH,(C;) where FDHy()
is the full-domain hash over domain n

5 Refunds

The above mechanism can also be used to give anonymous customers refunds.
Here, the merchant simply needs to sign a message affirming that they want
to return some or all of the payment to the customer. Given such a request
for a refund, the banks undo the wire transfer to the merchant and allow the
customer to obtain “change” for the refunded amount.

6 Key expiration and preventing hoarding

To limit the damage a central bank could suffer from the disclosure of its private
keys, a central banks would typically configure an expiration date for all signing
keys. This would imply that at a set date, the coins signed by those keys
become invalid. Equivalent processes exist for physical bank notes, except that
physical bank notes have validity periods of decades while with electronic coins
the validity period is more likely to be a few months or years.

When denomination keys expire and customers have to exchange coins signed
with old denomination keys for fresh coins, the central bank could require the
customer to use the withdraw protocol described above, except this time the
customer would not have the amount deducted from their commercial bank
account, but simply devalue their coins which are otherwise about to expire.

At this time, the central bank can easily impose a conversion limit per cus-
tomer to enforce a hard limit on the amount of CBDC that any individual can
hoard to this roll-over limit plus the daily withdraw limit multiplied by the
validity period.

7 Revocation

Should a central bank discover that its private denomination keys may have
been compromised, it must stop accepting deposits signed by those keys as such
signatures might have been forged by an attacker. However, the keys are likely
to have been used to issue coins to legitimate customers. Those customers must
not loose their funds!

This can be achieved by having the customers reveal the blinding factors
(by) the customers used when withdrawing coins (or obtaining change). Given
a b_gamma value, the central bank can query its database to determine whether
a particular coin was legitimately (blindly) signed. If this is the case, the cen-
tral bank can then refund the coin’s value, either by crediting the customer’s
commercial bank account or by allowing the customer to withdraw fresh coins
in valid denominations in response to the customer’s proof of legitimate with-
drawal.

We note that this does not have to impact the customer’s privacy, as in the
case where they withdrew a coin from their bank account, revealing the blinding
factor does not relate to any transactions of the customer. Similarly, in the case
that the coin was rendered as change, converting the change signed with the
revoked denomination key into change singed with a valid denomination key
reveals nothing about the customer.

8 Discussion

The above design creates serious repercussions for a customer who looses control
over their private key x. If an attacker learns x, they can basically take control
all of the CBDC owned by the customer, and if the state got hold of z, the state
could — with the help of the central bank — track all of the customer’s purchases.
Given the limited trust society can place into law enforcement, exemplified not
only by the practice of lawful seizure in the US, and the contemporary state
of computer security especially for consumer electronics, this is a significant
systemic risk.

It is possible to simplify the withdraw protocol to simply have the consumer
blind a fresh coin where the private key ¢; is generated at random and not derived
via the K X () operation from the customer’s private key. We note that the other
protocols (such as those for change or dealing with expiration) would continue
to work with the K X () as described above. With this change, a customer could
now enable another individual to withdraw CBDC from the customer’s bank
account, effectively bypassing income transparency when withdrawing CBDC.
This is called the withdraw loophole in Dold 2019, and the cash equivalent
would be to walk to an ATM with two people, and one person authorizing a
withdrawal with the other taking the cash.

While there are some scenarios where this could be abused — such as cus-
tomers allowing criminals to withdraw cash from their bank accounts — the
possibility to impose caps on withdraws per customer and the lack of transitiv-
ity built into the CBDC limit the social impact of this loophole. Thus, it may
be beneficial to permit this loophole to avoid the associated systemic privacy
risks that arise from linking all transactions of a customer to a single private
key.

	Objectives
	Mathematical background
	Signatures
	Blind signatures
	Key exchange

	Withdrawing
	Deposits
	Refunds
	Key expiration and preventing hoarding
	Revocation
	Discussion

