
®®
Copyright © 2001, Intel Corporation. All rights reserved.

Intel ItaniumIntel Itanium™™ Porting Porting
MethodologiesMethodologies

Bill Chen

Intel China

®®
Copyright © 2001, Intel Corporation. All rights reserved.

ItaniumItanium™™ PortingPorting

llWhy Port to ItaniumWhy Port to Itanium™™??
llPorting ProcessPorting Process
llPorting ScenariosPorting Scenarios
llPorting ConcernsPorting Concerns
llAvailability of porting tools by OSAvailability of porting tools by OS

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Why Port to ItaniumWhy Port to Itanium™™??
ll 6464--bit virtual address spacebit virtual address space

ll Addressing current architecture Addressing current architecture
performance limitationsperformance limitations

–– Inefficient parallelismInefficient parallelism

–– BranchingBranching

–– Procedure CallsProcedure Calls

–– Memory latencyMemory latency

ll Superior multimedia and FP performanceSuperior multimedia and FP performance

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Intel Resources for PortingIntel Resources for Porting
ll Application EngineerApplication Engineer

–– Hands on technical assistanceHands on technical assistance

ll Training on SDV (Hardware and Software)Training on SDV (Hardware and Software)

ll Question and Answer Database (Question and Answer Database (QuADQuAD))
–– WebWeb--based tech support by Intel expertsbased tech support by Intel experts

ll Application Solution Center (ASC)Application Solution Center (ASC)
–– LabLab--based technical assistancebased technical assistance

®®
Copyright © 2001, Intel Corporation. All rights reserved.

ItaniumItanium™™ Porting ProcessPorting Process
ll Assess the Complexity of an ItaniumAssess the Complexity of an Itanium™™

PortPort
–– Identify dependenciesIdentify dependencies

–– Analyze source codeAnalyze source code

ll Develop a Porting PlanDevelop a Porting Plan
–– Target platforms, training, resourcesTarget platforms, training, resources

ll Build Itanium™ executablesBuild Itanium™ executables

ll Internal and External TestingInternal and External Testing

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Porting ScenariosPorting Scenarios

ll Full port with 64Full port with 64--bit pointers and 2bit pointers and 26464 address spaceaddress space

ll Port with 64Port with 64--bit pointers and <2 GBbit pointers and <2 GB

ll Unmodified IAUnmodified IA--32 binaries32 binaries

Complete full port for optimal performance on ItaniumComplete full port for optimal performance on ItaniumComplete full port for optimal performance on Itanium
* Third party names and brands are the property of their respective owners

18 Billion
GB

IA-64

4
GB

IA-32

®®
Copyright © 2001, Intel Corporation. All rights reserved.

IA-64 library

64-bit
Process

IA-32 Library

IA-32 32-bit
Process

IA-64
Process

ll IAIA--64 library port64 library port
–– The library is being used The library is being used

by both IAby both IA--64 3264 32--bit and bit and
6464--bit apps, but not IAbit apps, but not IA--32 32
applications.applications.

ll IAIA--32 library32 library
–– The library can only be used The library can only be used

by IAby IA--32 apps.32 apps.
–– OS does not allow mixing of OS does not allow mixing of

IAIA--32 and IA32 and IA--64 instructions.64 instructions.

Dynamic Library InteractionDynamic Library Interaction

Help us identify your 3rd party libraries earlyHelp us identify your 3Help us identify your 3rdrd party libraries earlyparty libraries early

IA-32
Process

i.e. DLL

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Windows & UNIX have divergedWindows & UNIX have diverged
ll The 32The 32--bit world: one, happy “ILP32” familybit world: one, happy “ILP32” family

–– intint, , longlong, , voidvoid ** (pointer): all 32 bits, UNIX (pointer): all 32 bits, UNIX oror WindowsWindows
–– Same (Same (basebase) types for UNIX and Windows) types for UNIX and Windows

–– Both have named Both have named types derived types derived from the base typesfrom the base types
–– UNIX: UNIX: pid_tpid_t, , size_tsize_t, , time_ttime_t, , off_toff_t, …, …
–– Win32: Win32: LONGLONG, , HANDLEHANDLE, , WPARAMWPARAM, , LPARAMLPARAM, …, …

ll The 64The 64--bit world has differencesbit world has differences

UNIX & Windows both tried hard to minimize changes
needed in existing source code; different derived type

models resulted in long being different

UNIX & Windows UNIX & Windows bothboth tried hard to minimize changes tried hard to minimize changes
needed in existing source code; different derived type needed in existing source code; different derived type

models resulted in models resulted in longlong being differentbeing different

IL32,P64IL32,P64

I32,LP64I32,LP64

DataData ModelModel

646464643232UNIX/64UNIX/64

646432323232Windows (Win64)Windows (Win64)

pointerpointerlonglongintintOSOS

®®
Copyright © 2001, Intel Corporation. All rights reserved.

C Programming Data ModelsC Programming Data Models
ll OS Implements the Data ModelsOS Implements the Data Models

ll ILP32ILP32
–– intint, long and , long and ptrptr are 32 bitsare 32 bits

–– Used by 32Used by 32--bit bit OSsOSs

ll LP64LP64
–– intint is 32 bitsis 32 bits

–– long and pointer are 64 bitslong and pointer are 64 bits

–– Used by 64Used by 64--bit UNIX bit UNIX OSsOSs

ll P64 (or LLP64)P64 (or LLP64)
–– intint and long are 32 bits; pointer is 64 bitsand long are 32 bits; pointer is 64 bits

–– Used by Win64* and Modesto*Used by Win64* and Modesto*
* Third party names and brands are the property of their respective owners

32

32

32

ILP32
size

(bits)

64

32

64

LP64
size
(bits)

32

32

64

P64
size

(bits)

long

int

pointer

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Porting Concerns Porting Concerns (UNIX only)(UNIX only)
ll longs and longs and intsints are not the same sizeare not the same size

–– Truncation of 64 bit value when assigned to a smaller typeTruncation of 64 bit value when assigned to a smaller type

–– Explicit cast improperly appliedExplicit cast improperly applied

–– A A int int pointer is not compatible with a long pointerpointer is not compatible with a long pointer

–– Lack of prototyped function declarations in scope of call Lack of prototyped function declarations in scope of call
statementsstatements

–– UntypedUntyped integral constants areintegral constants are intint by defaultby default

int

32bits
64bits

32bits

int
long

long

LP64ILP32

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Porting ConcernsPorting Concerns
ll pointers andpointers and intsints are not the same sizeare not the same size

–– Truncation of a 64 bit pointer when converted to Truncation of a 64 bit pointer when converted to
a smaller typea smaller type

–– Assumption that pointers andAssumption that pointers and intint are same size are same size
in arithmetic contextin arithmetic context

–– Pointer return types in the absence of a function Pointer return types in the absence of a function
prototypeprototype

int

32bits
64bits

32bits

intpointer
pointer

LP64 & P64ILP32

* Third party names and brands are the property of their respective owners

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Porting ConcernsPorting Concerns
ll Pointers/longs are 64 bits and 64Pointers/longs are 64 bits and 64--bits alignedbits aligned

–– problems with data sharing because objects growproblems with data sharing because objects grow

–– data could be shared through IPC, network or diskdata could be shared through IPC, network or disk

0 4 8 12 16 20

0 4 8 12 16 20 24 28 32 36 40

struct node {
long l;
char s;
struct tnode *prev;
int i;
struct node *next;

}
padding

LP64

ILP32

* Third party names and brands are the property of their respective owners

®®
Copyright © 2001, Intel Corporation. All rights reserved.

ll Usage of undocumented/reserved bit fieldsUsage of undocumented/reserved bit fields

ll Fix unguarded “#Fix unguarded “#ifdefsifdefs" from defaulting to " from defaulting to
unwanted code generationunwanted code generation

ll Assembly codeAssembly code

ll Self modifying codeSelf modifying code

ll Portions of code utilizing dataPortions of code utilizing data--packingpacking

Porting ConcernsPorting Concerns

* Third party names and brands are the property of their respective owners

Examples

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Microsoft Microsoft WinXPWinXP* 64* 64--bit Editionbit Edition
ll Porting Tools Porting Tools

–– Windows 2000* Platform SDKWindows 2000* Platform SDK
–– Intel and Microsoft* C++ compilersIntel and Microsoft* C++ compilers
–– Intel Fortran 90 compilerIntel Fortran 90 compiler
–– Intel Enhanced DebuggerIntel Enhanced Debugger
–– MigraTECMigraTEC Migration WorkbenchMigration Workbench

ll LinksLinks
–– http://www.microsoft.com/windows2000/future/64bit/64bit.http://www.microsoft.com/windows2000/future/64bit/64bit.

aspasp
–– http://msdn.microsoft.com/library/default.asp?URL=/libraryhttp://msdn.microsoft.com/library/default.asp?URL=/library

/psdk/buildapp/64bitwin_410z./psdk/buildapp/64bitwin_410z.htmhtm
* Third party names and brands are the property of their respective owners

®®
Copyright © 2001, Intel Corporation. All rights reserved.

LinuxLinux

ll Porting ToolsPorting Tools
–– HP/Intel: IAHP/Intel: IA--64 Linux Simulator64 Linux Simulator
–– VA Linux Systems:VA Linux Systems: SourceforgeSourceforge Itanium(tm) Processor Itanium(tm) Processor

Compile FarmCompile Farm
–– Red Hat: GNU tool chainRed Hat: GNU tool chain
–– Red Hat Linux 7.1 for theRed Hat Linux 7.1 for the ItaniumItaniumTMTM ProcessorProcessor
–– SGI: Pro64(tm) Compiler Development ToolsSGI: Pro64(tm) Compiler Development Tools

ll LinksLinks
–– http://http://www.software.hp.com/ia64linux.www.software.hp.com/ia64linux.htmhtm
–– http://http://www.www.sourceforgesourceforge.net/.net/compilefarmcompilefarm
–– http://http://www.www.cygnuscygnus.com/ia64.com/ia64
–– http://www.linuxia64.orghttp://www.linuxia64.org
–– http://www.redhat.com/products/software/linux/7http://www.redhat.com/products/software/linux/7--

1_itanium.html1_itanium.html
–– http://http://ossoss..sgisgi.com/projects/Pro64.com/projects/Pro64

®®
Copyright © 2001, Intel Corporation. All rights reserved.

HPHP--UX* 11iUX* 11i

ll Refer to the other tracks at this eventRefer to the other tracks at this event

* Third party names and brands are the property of their respective owners

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Call to ActionCall to Action
ll Identify 3rd party dependenciesIdentify 3rd party dependencies

ll Develop porting planDevelop porting plan
–– Get your developers trained on Itanium based Get your developers trained on Itanium based

toolstools

–– Select porting scenario/model for each applicationSelect porting scenario/model for each application

ll Get Software Ready for the hardwareGet Software Ready for the hardware

®®
Copyright © 2001, Intel Corporation. All rights reserved.

BackupBackup

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Use #if defined Examples: Use #if defined
appropriatelyappropriately

Enhance portability, readability: account for all OSsEnhance portability, readability: account for all Enhance portability, readability: account for all OSsOSs

Back

#if defined(_WIN32)
… // stuff related to Win32
#if !defined(_WIN64)
… // Win32 without Win64 (regular Win32)
#else /* is _WIN64 also */
… // Win64 variant of Win32
#endif /* _WIN64 ? */
#elif defined(__unix) || …
… // various UNIXes
#else /* some other OS */
#error Unhandled OS;
#endif

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Do not Examples: Do not #define#define
constantsconstants

Problem(s):Problem(s):
ll using a #define that the using a #define that the

compiler can’t type compiler can’t type
checkcheck

Remedy:Remedy:
ll use ANSI C’s “const”use ANSI C’s “const”

ll use a specific data typeuse a specific data type

ll you’ll get warned if any you’ll get warned if any
misuse is attemptedmisuse is attempted

Let the compiler check declarations for youLet the compiler check declarations for youLet the compiler check declarations for you

#define mask 0x37FFC;

const int mask= 0x37FFC;

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Watch for Hex Examples: Watch for Hex
constantsconstants

Problem(s):Problem(s):
ll generating “all 1s” in hexgenerating “all 1s” in hex
ll using a #define that the compiler using a #define that the compiler

can’tcan’t type checktype check
ll ““--1” in 321” in 32--bit system, bit system,

4,294967,295 in a 644,294967,295 in a 64--bit systembit system

Remedy:Remedy:
ll use ANSI C’s “const”use ANSI C’s “const”
ll use a specific data typeuse a specific data type

–– signedsigned//unsignedunsigned
ll use type suffixes use type suffixes –– ““LL”, “”, “ULUL””

Count the digits!Count the digits!Count the digits!

0xFFFFFFFF
// 32-bits: -1, 64-bits: 4,294,967,295

0x100000000
// 32-bits: 0, 64-bits: 4,294,967,296

const int all1s= 0xFFFFFFFF;

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Watch for Pointer Examples: Watch for Pointer
truncationtruncation

ll only do this if you only do this if you reallyreally have have
to…to…

Problem(s):Problem(s):
ll pointer truncations dirty your pointer truncations dirty your

compilation listingscompilation listings

Remedy:Remedy:
ll Windows’ Windows’ PtrToIntPtrToInt()()

silences warningssilences warnings
ll see see <<basetsdbasetsd.h>.h>

Caution:Caution:
ll Never, ever use data as Never, ever use data as

pointer again; significant bits pointer again; significant bits
are are gonegone

Be careful if you forcefully silence warningsBe careful if you forcefully silence warningsBe careful if you forcefully silence warnings

mystruct *p;

unsigned int lowBits=
(unsigned int)p;
// truncation warning in Win64

unsigned int lowBits=
PtrToInt(p);
// truncation warning silenced

p= (mystruct *)lowBits;

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Don’t cast Pointers Examples: Don’t cast Pointers
to integer typeto integer type

Problem(s):Problem(s):
ll Pointers are bigger than Pointers are bigger than
intints s in some architecturesin some architectures

ll Using Using longlong won’t help in won’t help in
Win64Win64

ll Pointers Pointers logicallylogically
unsignedunsigned

Remedy:Remedy:
ll Use Use uintptr_tuintptr_t; works on ; works on

both UNIX and Windowsboth UNIX and Windows

eliminate all cases of (int)pointer castseliminate eliminate allall cases of cases of (int)pointer(int)pointer castscasts

char *buf;
…
int i;
…
i= (int)buf;

uintptr_t ip;
…
ip= (uintptr_t)buf;

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples:Examples:
printfprintf()()format stringsformat strings

Problem(s):Problem(s):
ll ““ll” argument size specifier used ” argument size specifier used

with platformwith platform--scaled typescaled type
ll don’t use “%X” for pointersdon’t use “%X” for pointers
ll ““I64I64” does not scale ” does not scale –– it is it is notnot

polymorphicpolymorphic

Remedy:Remedy:
ll use “use “%p%p” to print a pointer” to print a pointer
ll use a macro and adjacent string use a macro and adjacent string

catenationcatenation

Fix printing of pointers and “big” integersFix printing of pointers and “big” integersFix printing of pointers and “big” integers

long *Pl; // Win32 source
printf(“%08lX->%ld\n”,Pl,*Pl);

#ifdef _WIN64
#define FMTSZ3264 “I64”
#else /* Win32 or UNIX */
#define FMTSZ3264 “l”
#endif

__int3264 Pl;
printf(“%p->%” FMTSZ3264 “d\n”,Pl,*Pl);

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Don’t useExamples: Don’t use unionunion
Problem(s):Problem(s):
ll unionunion for alternate access for alternate access

method incorrect for 64method incorrect for 64--bitsbits

Remedy:Remedy:
ll 11stst: avoid : avoid unionunion if at all possibleif at all possible

else:else:
ll fix primary data type sizefix primary data type size
ll use C use C sizeofsizeof()() builtinbuiltin for arrayfor array

unions look ugly and cause lots of problems; don’t
use them unless necessary

unionunions look ugly and cause lots of problems; don’t s look ugly and cause lots of problems; don’t
use them unless necessaryuse them unless necessary

union {
long l;
char bytes[4];
};

···

for (i= 0; i<4; i++) …

union {
__int3264 l; // chg w/ architecture
char bytes[sizeof(__int3264)];
};

···

for (i= 0; i<sizeof(bytes); i++) …

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

Examples: Appropriate Examples: Appropriate
Field IndexingField Indexing

Problem(s):Problem(s):
ll field offsets can vary field offsets can vary

across compilersacross compilers
ll any constant added to a any constant added to a

pointer should be pointer should be
suspectsuspect

ll natural alignment differsnatural alignment differs

Remedy:Remedy:
ll use ANSI C use ANSI C offsetof()offsetof()

macro macro –– not not sizeofsizeof()()

Let the compiler calculate field offsetsLet the compiler calculate field offsetsLet the compiler calculate field offsets

struct S {
void *pn;
int ln;

};
S *Ps= new(S);
int i;
i= *(int *)((uintptr_t)Ps + 4);

i= *(int *)((uintptr_t)Ps +
offsetof(S,ln));

padding varies with
architecture

Back

®®
Copyright © 2001, Intel Corporation. All rights reserved.

ASC Performance analysisASC Performance analysis
ll Runtime analysis gives an accurate pictureRuntime analysis gives an accurate picture

–– application “hotspots”, call graphapplication “hotspots”, call graph

ll Tools:Tools:
–– VTuneVTune

–– QuantifyQuantify

–– APIMONAPIMON

–– ……

Tools can help you pinpoint best-benefit spotsTools can help you pinpoint Tools can help you pinpoint bestbest--benefitbenefit spotsspots

®®
Copyright © 2001, Intel Corporation. All rights reserved.

ll 3232--bit library access to 64bit library access to 64--bit process bit process
through IPCthrough IPC

–– Surrogate binaries can be used to manage the Surrogate binaries can be used to manage the
IPC translation with no changes to existing codeIPC translation with no changes to existing code

Dynamic Library InteractionDynamic Library Interaction

Master IA-64 Process Surrogate IA-32 Process

Main Program

Surrogate
Dynamic Library

Surrogate EXE

Dynamic Library
IPC

* Third party names and brands are the property of their respective owners

Back

