|
From: | Yassine ZAIM |
Subject: | Re: [Getfem-users] Add a new FEM with polynomial and global functions |
Date: | Mon, 21 Nov 2016 22:20:03 +0100 |
Dear Konstantinos Poulios,Thank you very much for taking the time to help me. I am sorry to be late for respond, because, I pass today to discover some files of the new version to understand your way.For me, I use the version 5.0. Your remark was very useful for me, because to add a global function also in this version, I have to redefine the methodsval()grad()hess()However in this version I don't have the both last functions.To add my element, I will follow your way and I will consider all the functions (either polynomial or not) of my element as global and I will see if this will work.I will inform you after if this works or not.Thank you very much.Best regards.2016-11-20 22:51 GMT+01:00 Konstantinos Poulios <address@hidden>:Then I define my mesh_fem asDear Zaim YassineIt would be useful to know which version of GetFEM++ you are currently using. If you are using version 5.1 or later I can help you at least regarding the use of global basis functions. The standard way I am using them is by deriving a class from getfem::global_function_simple, lets call it global_function_custom, where I redefine the following methods
virtual scalar_type val(const base_node &pt) const
virtual void grad(const base_node &pt, base_small_vector &g) const
virtual void hess(const base_node &pt, base_matrix &h) const
virtual bool is_in_support(const base_node &pt) const
virtual void bounding_box(base_node &bmin, base_node &bmax) constwhere the coordinates of the point pt are global coordinates.Then I save all instances of my derived class, in a vector of shared pointers
std::vector<getfem::pglobal_function> basis_funcs;
for (...)
basis_funcs.push_back(std::make_shared<global_function_custo m>(...));
getfem::mesh_fem_global_function mf(m,1);
mf.set_functions(basis_funcs, mim);and I am ready to use mf.The difference between global fem and standard fem is that the basis functions in the latter case are defined in terms of the local/element coordinates and there is an additional geometric transformation between global and local coordinates.I hope this helps you a bit.Best regardsKostasOn Sun, Nov 20, 2016 at 6:38 PM, Yassine ZAIM <address@hidden> wrote:______________________________Hello dear GetFEM users,I am trying to add a new FEM with some global functions in addition to some polynomial functions. I found this discussion about how I can do it:However when I look in the file "getfem_mesh_fem_global_function.cc/h " to inspire. I don't found where the basis functions are defined? as the functions:std::stringstream sfor (int i = 0; i<size_basis; ++i) p->base()[i] =bgeot::read_base_poly(dim,s);for the polynomial case; And also where the name of FEM is defined? as the function: add_suffix("Name", fem_element); in the polynomial case.I tried to add my element by programming a similar class oftemplate <class FUNC> class fem : public virtual_fem {...};in which I have determined explicitly the value of base_value, grad_base_value and hess_base_value. I inherited from this class to define my element in the file getfem_fem.cc. I define the basis and DOF by the functions://############# code to add the basis and DOF ###############//base_[i] = polynomial or global basis function;//like base_value in annexadd_node(DOF, Point);// corresponding to each basis functionI know that for this method I could program a class with the functions eval() and derivative(). But in my case I defined the functions base_value, grad_base_value and hess_base_value explicitly without need of these methods (I think). You can see my class in the annex. By this way I get a bad result.I hope that I was clear, and I will be thankful for your help of how I can add my element correctly.///########## Annex ##############///class MyFUNC : public virtual_fem {protected :std::vector<opt_long_scalar_type> base_; public :/// Gives the array of basic functions (components).const std::vector<opt_long_scalar_type> &base(void) const { return base_; } std::vector<opt_long_scalar_type> &base(void) { return base_; } /** Evaluates at point x, all base functions and returns the result int(nb_base,target_dim) */void base_value(const base_node &z, base_tensor &t) const {//scalar_type res = 0;bgeot::multi_index mi(2);mi[1] = target_dim(); mi[0] = short_type(nb_base(0));t.adjust_sizes(mi);base_tensor::iterator it = t.begin();scalar_type x = *z.begin();//z[0];scalar_type y = *z.end();*it = bgeot::to_scalar(x*y); ++it;*it = bgeot::to_scalar((1-x)*y); ++it;*it = bgeot::to_scalar((1-x)*(1-y)); ++it;*it = bgeot::to_scalar(x*(1-y)); ++it;*it = bgeot::to_scalar((32/1281)*sqrt(2)*(1-x)*sqrt(1-x)*(12*x-66* x*x+(143/2)*x*x*x)); ++it; *it = bgeot::to_scalar((32/1281)*sqrt(2)*(1-y)*sqrt(1-y)*(12*y+66* y*y+(143/2)*y*y*y)); }/** Evaluates at point x, the gradient of all base functions w.r.t. thereference element directions 0,..,dim-1 and returns the result int(nb_base,target_dim,dim) */void grad_base_value(const base_node &z, base_tensor &t) const {bgeot::multi_index mi(3);dim_type n = dim();mi[2] = n; mi[1] = target_dim(); mi[0] = short_type(nb_base(0));t.adjust_sizes(mi);base_tensor::iterator it = t.begin();scalar_type x = *z.begin();scalar_type y = *z.end();*it = bgeot::to_scalar(y); ++it;*it = bgeot::to_scalar(-y); ++it;*it = bgeot::to_scalar(-(1-y) ); ++it;*it = bgeot::to_scalar((1-y)); ++it;*it = bgeot::to_scalar((32/1281)*sqrt(2)*(-3/2*sqrt(1-x)*(12*x-66* x*x+(143/2)*x*x*x)+(1-x)*sqrt( 1-x)*(12-132*x+(429/2)*x*x))); ++it; *it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(x); ++it;*it = bgeot::to_scalar((1-x)); ++it;*it = bgeot::to_scalar(-(1-x)); ++it;*it = bgeot::to_scalar(-x); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar((32/1281)*sqrt(2)*(-3/2*sqrt(1-y)*(12*y-66* y*y+(143/2)*y*y*y)+(1-y)*sqrt( 1-y)*(12-132*y+(429/2)*y*y))); }/** Evaluates at point x, the hessian of all base functions w.r.t. thereference element directions 0,..,dim-1 and returns the result int(nb_base,target_dim,dim,dim) */void hess_base_value(const base_node &z, base_tensor &t) const {bgeot::multi_index mi(4);dim_type n = dim();mi[3] = n; mi[2] = n; mi[1] = target_dim();mi[0] = short_type(nb_base(0));t.adjust_sizes(mi);base_tensor::iterator it = t.begin();scalar_type x = *z.begin();scalar_type y = *z.end();*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar((32/1281)*sqrt(2)*(3/4*(1/sqrt(1-x))*(12*x- 66*x*x+(143/2)*x*x*x)-3*sqrt(1 -x)*(12-132*x+(429/2)*x*x)+(1- x)*sqrt(1-x)*(-132+429*x))); ++it; *it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(1); ++it;*it = bgeot::to_scalar(-1); ++it;*it = bgeot::to_scalar(1); ++it;*it = bgeot::to_scalar(-1); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(1); ++it;*it = bgeot::to_scalar(-1); ++it;*it = bgeot::to_scalar(1); ++it;*it = bgeot::to_scalar(-1); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar(0); ++it;*it = bgeot::to_scalar((32/1281)*sqrt(2)*(3/4*(1/sqrt(1-y))*(12*y- 66*y*y+(143/2)*y*y*y)-3*sqrt(1 -y)*(12-132*y+(429/2)*y*y)+(1- y)*sqrt(1-y)*(-132+429*y))); }};--ZAIM YassinePhD Student in Applied Mathematics_________________
Getfem-users mailing list
address@hidden
https://mail.gna.org/listinfo/getfem-users
--ZAIM YassinePhD Student in Applied Mathematics
[Prev in Thread] | Current Thread | [Next in Thread] |