[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[bug#32642] [PATCH 10/16] gnu: Add python-dask.
From: |
Ricardo Wurmus |
Subject: |
[bug#32642] [PATCH 10/16] gnu: Add python-dask. |
Date: |
Wed, 5 Sep 2018 16:00:00 +0200 |
* gnu/packages/python.scm (python-dask): New variable.
---
gnu/packages/python.scm | 45 +++++++++++++++++++++++++++++++++++++++++
1 file changed, 45 insertions(+)
diff --git a/gnu/packages/python.scm b/gnu/packages/python.scm
index 8429ad32f..6e06125d9 100644
--- a/gnu/packages/python.scm
+++ b/gnu/packages/python.scm
@@ -14246,3 +14246,48 @@ This Python package wraps the Blosc library.")
(description "Partd stores key-value pairs. Values are raw bytes. We
append on old values. Partd excels at shuffling operations.")
(license license:bsd-3)))
+
+(define-public python-dask
+ (package
+ (name "python-dask")
+ (version "0.19.0")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (pypi-uri "dask" version))
+ (sha256
+ (base32
+ "1pm1163qb6s22p8fnvj0zlfazihvs7hxjn8l2n52bzs7shw6kdz3"))))
+ (build-system python-build-system)
+ ;; A single test out of 5000+ fails. This test is marked as xfail when
+ ;; pytest-xdist is used.
+ (arguments
+ `(#:phases
+ (modify-phases %standard-phases
+ (add-after 'unpack 'disable-broken-test
+ (lambda _
+ (substitute* "dask/tests/test_threaded.py"
+ (("def test_interrupt\\(\\)" m)
+ (string-append "@pytest.mark.skip(reason=\"Disabled by
Guix\")\n"
+ m)))
+ #t)))))
+ (propagated-inputs
+ `(("python-cloudpickle" ,python-cloudpickle)
+ ("python-numpy" ,python-numpy)
+ ("python-pandas" ,python-pandas)
+ ("python-partd" ,python-partd)
+ ("python-toolz" ,python-toolz)
+ ("python-pyyaml" ,python-pyyaml)))
+ (native-inputs
+ `(("python-pytest" ,python-pytest)
+ ("python-pytest-runner" ,python-pytest-runner)))
+ (home-page "https://github.com/dask/dask/")
+ (synopsis "Parallel computing with task scheduling")
+ (description
+ "Dask is a flexible parallel computing library for analytics. It
+consists of two components: dynamic task scheduling optimized for computation,
+and large data collections like parallel arrays, dataframes, and lists that
+extend common interfaces like NumPy, Pandas, or Python iterators to
+larger-than-memory or distributed environments. These parallel collections
+run on top of the dynamic task schedulers. ")
+ (license license:bsd-3)))
--
2.18.0