qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] [PATCH v30 4/8] target/avr: Add instruction translation


From: Michael Rolnik
Subject: Re: [Qemu-devel] [PATCH v30 4/8] target/avr: Add instruction translation
Date: Sat, 12 Oct 2019 19:33:32 +0300

Hi Aleksandar.

If I break it to multiple patches, does every patch have to compile?

On Fri, Oct 11, 2019 at 5:13 PM Aleksandar Markovic
<address@hidden> wrote:
>
>
>
> On Monday, September 2, 2019, Michael Rolnik <address@hidden> wrote:
>>
>> This includes:
>> - TCG translations for each instruction
>>
>> Signed-off-by: Michael Rolnik <address@hidden>
>> ---
>>  target/avr/translate.c | 2888 ++++++++++++++++++++++++++++++++++++++++
>>  1 file changed, 2888 insertions(+)
>>  create mode 100644 target/avr/translate.c
>>
>
> Hi, Michael,
>
>
> This patch is way too large. I suggest splitting it into:
>
> - register definitions
> - load instruction handling
> - store instruction handling
> - logic instruction handling
>
> etc.
>
> Thanks, Aleksandar
>
> P.S. One more hurdle with your communication on the list is that you don't 
> use "inline responding" while replaying, please use it in future. See other 
> messages in the mailing list how "inline responding" looks.
>
>
>
>
>>
>> diff --git a/target/avr/translate.c b/target/avr/translate.c
>> new file mode 100644
>> index 0000000000..42cb4a690c
>> --- /dev/null
>> +++ b/target/avr/translate.c
>> @@ -0,0 +1,2888 @@
>> +/*
>> + * QEMU AVR CPU
>> + *
>> + * Copyright (c) 2019 Michael Rolnik
>> + *
>> + * This library is free software; you can redistribute it and/or
>> + * modify it under the terms of the GNU Lesser General Public
>> + * License as published by the Free Software Foundation; either
>> + * version 2.1 of the License, or (at your option) any later version.
>> + *
>> + * This library is distributed in the hope that it will be useful,
>> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
>> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
>> + * Lesser General Public License for more details.
>> + *
>> + * You should have received a copy of the GNU Lesser General Public
>> + * License along with this library; if not, see
>> + * <http://www.gnu.org/licenses/lgpl-2.1.html>
>> + */
>> +
>> +#include "qemu/osdep.h"
>> +#include "qemu/qemu-print.h"
>> +#include "tcg/tcg.h"
>> +#include "cpu.h"
>> +#include "exec/exec-all.h"
>> +#include "disas/disas.h"
>> +#include "tcg-op.h"
>> +#include "exec/cpu_ldst.h"
>> +#include "exec/helper-proto.h"
>> +#include "exec/helper-gen.h"
>> +#include "exec/log.h"
>> +#include "exec/gdbstub.h"
>> +#include "exec/translator.h"
>> +
>> +/*
>> + *  Define if you want a BREAK instruction translated to a breakpoint
>> + *  Active debugging connection is assumed
>> + *  This is for
>> + *  https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests
>> + *  tests
>> + */
>> +#undef BREAKPOINT_ON_BREAK
>> +
>> +static TCGv cpu_pc;
>> +
>> +static TCGv cpu_Cf;
>> +static TCGv cpu_Zf;
>> +static TCGv cpu_Nf;
>> +static TCGv cpu_Vf;
>> +static TCGv cpu_Sf;
>> +static TCGv cpu_Hf;
>> +static TCGv cpu_Tf;
>> +static TCGv cpu_If;
>> +
>> +static TCGv cpu_rampD;
>> +static TCGv cpu_rampX;
>> +static TCGv cpu_rampY;
>> +static TCGv cpu_rampZ;
>> +
>> +static TCGv cpu_r[NO_CPU_REGISTERS];
>> +static TCGv cpu_eind;
>> +static TCGv cpu_sp;
>> +
>> +static TCGv cpu_skip;
>> +
>> +static const char reg_names[NO_CPU_REGISTERS][8] = {
>> +    "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
>> +    "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
>> +    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
>> +    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
>> +};
>> +#define REG(x) (cpu_r[x])
>> +
>> +enum {
>> +    DISAS_EXIT   = DISAS_TARGET_0,  /* We want return to the cpu main loop. 
>>  */
>> +    DISAS_LOOKUP = DISAS_TARGET_1,  /* We have a variable condition exit.  
>> */
>> +    DISAS_CHAIN  = DISAS_TARGET_2,  /* We have a single condition exit.  */
>> +};
>> +
>> +typedef struct DisasContext DisasContext;
>> +
>> +/* This is the state at translation time. */
>> +struct DisasContext {
>> +    TranslationBlock *tb;
>> +
>> +    CPUAVRState *env;
>> +    CPUState *cs;
>> +
>> +    target_long npc;
>> +    uint32_t opcode;
>> +
>> +    /* Routine used to access memory */
>> +    int memidx;
>> +    int bstate;
>> +    int singlestep;
>> +
>> +    TCGv skip_var0;
>> +    TCGv skip_var1;
>> +    TCGCond skip_cond;
>> +    bool free_skip_var0;
>> +};
>> +
>> +static int to_A(DisasContext *ctx, int indx) { return 16 + (indx % 16); }
>> +static int to_B(DisasContext *ctx, int indx) { return 16 + (indx % 8); }
>> +static int to_C(DisasContext *ctx, int indx) { return 24 + (indx % 4) * 2; }
>> +static int to_D(DisasContext *ctx, int indx) { return (indx % 16) * 2; }
>> +
>> +static uint16_t next_word(DisasContext *ctx)
>> +{
>> +    return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
>> +}
>> +
>> +static int append_16(DisasContext *ctx, int x)
>> +{
>> +    return x << 16 | next_word(ctx);
>> +}
>> +
>> +static bool decode_insn(DisasContext *ctx, uint16_t insn);
>> +#include "decode_insn.inc.c"
>> +
>> +static bool avr_have_feature(DisasContext *ctx, int feature)
>> +{
>> +    if (!avr_feature(ctx->env, feature)) {
>> +        gen_helper_unsupported(cpu_env);
>> +        ctx->bstate = DISAS_NORETURN;
>> +        return false;
>> +    }
>> +    return true;
>> +}
>> +
>> +static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
>> +{
>> +    TranslationBlock *tb = ctx->tb;
>> +
>> +    if (ctx->singlestep == 0) {
>> +        tcg_gen_goto_tb(n);
>> +        tcg_gen_movi_i32(cpu_pc, dest);
>> +        tcg_gen_exit_tb(tb, n);
>> +    } else {
>> +        tcg_gen_movi_i32(cpu_pc, dest);
>> +        gen_helper_debug(cpu_env);
>> +        tcg_gen_exit_tb(NULL, 0);
>> +    }
>> +    ctx->bstate = DISAS_NORETURN;
>> +}
>> +
>> +#include "exec/gen-icount.h"
>> +
>> +static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
>> +{
>> +    TCGv t1 = tcg_temp_new_i32();
>> +    TCGv t2 = tcg_temp_new_i32();
>> +    TCGv t3 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
>> +    tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
>> +    tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
>> +    tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
>> +    tcg_gen_or_tl(t1, t1, t3);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
>> +    tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
>> +    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
>> +
>> +    tcg_temp_free_i32(t3);
>> +    tcg_temp_free_i32(t2);
>> +    tcg_temp_free_i32(t1);
>> +}
>> +
>> +static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
>> +{
>> +    TCGv t1 = tcg_temp_new_i32();
>> +    TCGv t2 = tcg_temp_new_i32();
>> +
>> +    /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
>> +    tcg_gen_xor_tl(t1, Rd, R);
>> +    tcg_gen_xor_tl(t2, Rd, Rr);
>> +    tcg_gen_andc_tl(t1, t1, t2);
>> +
>> +    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
>> +
>> +    tcg_temp_free_i32(t2);
>> +    tcg_temp_free_i32(t1);
>> +}
>> +
>> +static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
>> +{
>> +    TCGv t1 = tcg_temp_new_i32();
>> +    TCGv t2 = tcg_temp_new_i32();
>> +    TCGv t3 = tcg_temp_new_i32();
>> +
>> +    /* Cf & Hf */
>> +    tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
>> +    tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
>> +    tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
>> +    tcg_gen_and_tl(t3, t3, R);
>> +    tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
>> +    tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
>> +    tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
>> +    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
>> +
>> +    tcg_temp_free_i32(t3);
>> +    tcg_temp_free_i32(t2);
>> +    tcg_temp_free_i32(t1);
>> +}
>> +
>> +static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
>> +{
>> +    TCGv t1 = tcg_temp_new_i32();
>> +    TCGv t2 = tcg_temp_new_i32();
>> +
>> +    /* Vf */
>> +    /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
>> +    tcg_gen_xor_tl(t1, Rd, R);
>> +    tcg_gen_xor_tl(t2, Rd, Rr);
>> +    tcg_gen_and_tl(t1, t1, t2);
>> +    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
>> +
>> +    tcg_temp_free_i32(t2);
>> +    tcg_temp_free_i32(t1);
>> +}
>> +
>> +static void gen_rshift_ZNVSf(TCGv R)
>> +{
>> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
>> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>> +    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>> +}
>> +
>> +static void gen_NSf(TCGv R)
>> +{
>> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>> +}
>> +
>> +static void gen_ZNSf(TCGv R)
>> +{
>> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
>> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>> +}
>> +
>> +static void gen_push_ret(DisasContext *ctx, int ret)
>> +{
>> +    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
>> +
>> +        TCGv t0 = tcg_const_i32((ret & 0x0000ff));
>> +
>> +        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
>> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>> +
>> +        tcg_temp_free_i32(t0);
>> +    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
>> +
>> +        TCGv t0 = tcg_const_i32((ret & 0x00ffff));
>> +
>> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>> +        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
>> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>> +
>> +        tcg_temp_free_i32(t0);
>> +
>> +    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
>> +
>> +        TCGv lo = tcg_const_i32((ret & 0x0000ff));
>> +        TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
>> +
>> +        tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
>> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
>> +        tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
>> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>> +
>> +        tcg_temp_free_i32(lo);
>> +        tcg_temp_free_i32(hi);
>> +    }
>> +}
>> +
>> +static void gen_pop_ret(DisasContext *ctx, TCGv ret)
>> +{
>> +    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
>> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>> +        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
>> +    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
>> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>> +        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
>> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>> +    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
>> +        TCGv lo = tcg_temp_new_i32();
>> +        TCGv hi = tcg_temp_new_i32();
>> +
>> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>> +        tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
>> +
>> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
>> +        tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
>> +
>> +        tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
>> +
>> +        tcg_temp_free_i32(lo);
>> +        tcg_temp_free_i32(hi);
>> +    }
>> +}
>> +
>> +static void gen_jmp_ez(DisasContext *ctx)
>> +{
>> +    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
>> +    tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
>> +    ctx->bstate = DISAS_LOOKUP;
>> +}
>> +
>> +static void gen_jmp_z(DisasContext *ctx)
>> +{
>> +    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
>> +    ctx->bstate = DISAS_LOOKUP;
>> +}
>> +
>> +/*
>> + *  in the gen_set_addr & gen_get_addr functions
>> + *  H assumed to be in 0x00ff0000 format
>> + *  M assumed to be in 0x000000ff format
>> + *  L assumed to be in 0x000000ff format
>> + */
>> +static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
>> +{
>> +
>> +    tcg_gen_andi_tl(L, addr, 0x000000ff);
>> +
>> +    tcg_gen_andi_tl(M, addr, 0x0000ff00);
>> +    tcg_gen_shri_tl(M, M, 8);
>> +
>> +    tcg_gen_andi_tl(H, addr, 0x00ff0000);
>> +}
>> +
>> +static void gen_set_xaddr(TCGv addr)
>> +{
>> +    gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
>> +}
>> +
>> +static void gen_set_yaddr(TCGv addr)
>> +{
>> +    gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
>> +}
>> +
>> +static void gen_set_zaddr(TCGv addr)
>> +{
>> +    gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
>> +}
>> +
>> +static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
>> +{
>> +    TCGv addr = tcg_temp_new_i32();
>> +
>> +    tcg_gen_deposit_tl(addr, M, H, 8, 8);
>> +    tcg_gen_deposit_tl(addr, L, addr, 8, 16);
>> +
>> +    return addr;
>> +}
>> +
>> +static TCGv gen_get_xaddr(void)
>> +{
>> +    return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
>> +}
>> +
>> +static TCGv gen_get_yaddr(void)
>> +{
>> +    return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
>> +}
>> +
>> +static TCGv gen_get_zaddr(void)
>> +{
>> +    return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
>> +}
>> +
>> +/*
>> + *  Adds two registers and the contents of the C Flag and places the result 
>> in
>> + *  the destination register Rd.
>> + */
>> +static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
>> +    tcg_gen_add_tl(R, R, cpu_Cf);
>> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
>> +
>> +    gen_add_CHf(R, Rd, Rr);
>> +    gen_add_Vf(R, Rd, Rr);
>> +    gen_ZNSf(R);
>> +
>> +    /* R */
>> +    tcg_gen_mov_tl(Rd, R);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Adds two registers without the C Flag and places the result in the
>> + *  destination register Rd.
>> + */
>> +static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
>> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
>> +
>> +    gen_add_CHf(R, Rd, Rr);
>> +    gen_add_Vf(R, Rd, Rr);
>> +    gen_ZNSf(R);
>> +
>> +    /* R */
>> +    tcg_gen_mov_tl(Rd, R);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Adds an immediate value (0 - 63) to a register pair and places the 
>> result
>> + *  in the register pair. This instruction operates on the upper four 
>> register
>> + *  pairs, and is well suited for operations on the pointer registers.  This
>> + *  instruction is not available in all devices. Refer to the device 
>> specific
>> + *  instruction set summary.
>> + */
>> +static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv RdL = cpu_r[a->rd];
>> +    TCGv RdH = cpu_r[a->rd + 1];
>> +    int Imm = (a->imm);
>> +    TCGv R = tcg_temp_new_i32();
>> +    TCGv Rd = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
>> +    tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
>> +    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
>> +
>> +    /* Cf */
>> +    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
>> +    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
>> +
>> +    /* Vf */
>> +    tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
>> +    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
>> +
>> +    /* Zf */
>> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
>> +
>> +    /* Nf */
>> +    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
>> +
>> +    /* Sf */
>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
>> +
>> +    /* R */
>> +    tcg_gen_andi_tl(RdL, R, 0xff);
>> +    tcg_gen_shri_tl(RdH, R, 8);
>> +
>> +    tcg_temp_free_i32(Rd);
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Performs the logical AND between the contents of register Rd and 
>> register
>> + *  Rr and places the result in the destination register Rd.
>> + */
>> +static bool trans_AND(DisasContext *ctx, arg_AND *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
>> +
>> +    /* Vf */
>> +    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
>> +
>> +    /* Zf */
>> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
>> +
>> +    gen_ZNSf(R);
>> +
>> +    /* R */
>> +    tcg_gen_mov_tl(Rd, R);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Performs the logical AND between the contents of register Rd and a 
>> constant
>> + *  and places the result in the destination register Rd.
>> + */
>> +static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    int Imm = (a->imm);
>> +
>> +    /* op */
>> +    tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
>> +
>> +    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
>> +    gen_ZNSf(Rd);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Shifts all bits in Rd one place to the right. Bit 7 is held constant. 
>> Bit 0
>> + *  is loaded into the C Flag of the SREG. This operation effectively 
>> divides a
>> + *  signed value by two without changing its sign. The Carry Flag can be 
>> used to
>> + *  round the result.
>> + */
>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t0 = tcg_temp_new_i32();
>> +
>> +    /* Cf */
>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
>> +
>> +    /* op */
>> +    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>> +    tcg_gen_or_tl(Rd, Rd, t0);
>> +
>> +    gen_rshift_ZNVSf(Rd);
>> +
>> +    tcg_temp_free_i32(t0);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Clears a single Flag in SREG.
>> + */
>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
>> +{
>> +    switch (a->bit) {
>> +    case 0x00:
>> +        tcg_gen_movi_tl(cpu_Cf, 0x00);
>> +        break;
>> +    case 0x01:
>> +        tcg_gen_movi_tl(cpu_Zf, 0x01);
>> +        break;
>> +    case 0x02:
>> +        tcg_gen_movi_tl(cpu_Nf, 0x00);
>> +        break;
>> +    case 0x03:
>> +        tcg_gen_movi_tl(cpu_Vf, 0x00);
>> +        break;
>> +    case 0x04:
>> +        tcg_gen_movi_tl(cpu_Sf, 0x00);
>> +        break;
>> +    case 0x05:
>> +        tcg_gen_movi_tl(cpu_Hf, 0x00);
>> +        break;
>> +    case 0x06:
>> +        tcg_gen_movi_tl(cpu_Tf, 0x00);
>> +        break;
>> +    case 0x07:
>> +        tcg_gen_movi_tl(cpu_If, 0x00);
>> +        break;
>> +    }
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
>> + */
>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
>> +    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
>> +    tcg_gen_or_tl(Rd, Rd, t1);
>> +
>> +    tcg_temp_free_i32(t1);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Conditional relative branch. Tests a single bit in SREG and branches
>> + *  relatively to PC if the bit is cleared. This instruction branches 
>> relatively
>> + *  to PC in either direction (PC - 63 < = destination <= PC + 64). The
>> + *  parameter k is the offset from PC and is represented in two's complement
>> + *  form.
>> + */
>> +static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
>> +{
>> +    TCGLabel *not_taken = gen_new_label();
>> +    TCGCond cond = TCG_COND_EQ;
>> +    TCGv var;
>> +
>> +    switch (a->bit) {
>> +    case 0x00:
>> +        var = cpu_Cf;
>> +        break;
>> +    case 0x01:
>> +        cond = TCG_COND_NE;
>> +        var = cpu_Zf;
>> +        break;
>> +    case 0x02:
>> +        var = cpu_Nf;
>> +        break;
>> +    case 0x03:
>> +        var = cpu_Vf;
>> +        break;
>> +    case 0x04:
>> +        var = cpu_Sf;
>> +        break;
>> +    case 0x05:
>> +        var = cpu_Hf;
>> +        break;
>> +    case 0x06:
>> +        var = cpu_Tf;
>> +        break;
>> +    case 0x07:
>> +        var = cpu_If;
>> +        break;
>> +    default:
>> +        g_assert_not_reached();
>> +    }
>> +
>> +    tcg_gen_brcondi_i32(tcg_invert_cond(cond), var, 0, not_taken);
>> +    gen_goto_tb(ctx, 0, ctx->npc + a->imm);
>> +    gen_set_label(not_taken);
>> +
>> +    ctx->bstate = DISAS_CHAIN;
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Conditional relative branch. Tests a single bit in SREG and branches
>> + *  relatively to PC if the bit is set. This instruction branches 
>> relatively to
>> + *  PC in either direction (PC - 63 < = destination <= PC + 64). The 
>> parameter k
>> + *  is the offset from PC and is represented in two's complement form.
>> + */
>> +static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
>> +{
>> +    TCGLabel *not_taken = gen_new_label();
>> +    TCGCond cond = TCG_COND_NE;
>> +    TCGv var;
>> +
>> +    switch (a->bit) {
>> +    case 0x00:
>> +        var = cpu_Cf;
>> +        break;
>> +    case 0x01:
>> +        cond = TCG_COND_EQ;
>> +        var = cpu_Zf;
>> +        break;
>> +    case 0x02:
>> +        var = cpu_Nf;
>> +        break;
>> +    case 0x03:
>> +        var = cpu_Vf;
>> +        break;
>> +    case 0x04:
>> +        var = cpu_Sf;
>> +        break;
>> +    case 0x05:
>> +        var = cpu_Hf;
>> +        break;
>> +    case 0x06:
>> +        var = cpu_Tf;
>> +        break;
>> +    case 0x07:
>> +        var = cpu_If;
>> +        break;
>> +    default:
>> +        g_assert_not_reached();
>> +    }
>> +
>> +    tcg_gen_brcondi_i32(tcg_invert_cond(cond), var, 0, not_taken);
>> +    gen_goto_tb(ctx, 0, ctx->npc + a->imm);
>> +    gen_set_label(not_taken);
>> +
>> +    ctx->bstate = DISAS_CHAIN;
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Sets a single Flag or bit in SREG.
>> + */
>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
>> +{
>> +    switch (a->bit) {
>> +    case 0x00:
>> +        tcg_gen_movi_tl(cpu_Cf, 0x01);
>> +        break;
>> +    case 0x01:
>> +        tcg_gen_movi_tl(cpu_Zf, 0x00);
>> +        break;
>> +    case 0x02:
>> +        tcg_gen_movi_tl(cpu_Nf, 0x01);
>> +        break;
>> +    case 0x03:
>> +        tcg_gen_movi_tl(cpu_Vf, 0x01);
>> +        break;
>> +    case 0x04:
>> +        tcg_gen_movi_tl(cpu_Sf, 0x01);
>> +        break;
>> +    case 0x05:
>> +        tcg_gen_movi_tl(cpu_Hf, 0x01);
>> +        break;
>> +    case 0x06:
>> +        tcg_gen_movi_tl(cpu_Tf, 0x01);
>> +        break;
>> +    case 0x07:
>> +        tcg_gen_movi_tl(cpu_If, 0x01);
>> +        break;
>> +    }
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  The BREAK instruction is used by the On-chip Debug system, and is
>> + *  normally not used in the application software. When the BREAK 
>> instruction is
>> + *  executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
>> + *  Debugger access to internal resources.  If any Lock bits are set, or 
>> either
>> + *  the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
>> + *  instruction as a NOP and will not enter the Stopped mode.  This 
>> instruction
>> + *  is not available in all devices. Refer to the device specific 
>> instruction
>> + *  set summary.
>> + */
>> +static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) {
>> +        return true;
>> +    }
>> +
>> +#ifdef BREAKPOINT_ON_BREAK
>> +    tcg_gen_movi_tl(cpu_pc, ctx->npc - 1);
>> +    gen_helper_debug(cpu_env);
>> +    ctx->bstate = DISAS_EXIT;
>> +#else
>> +    /* NOP */
>> +#endif
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Stores bit b from Rd to the T Flag in SREG (Status Register).
>> + */
>> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
>> +    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Calls to a subroutine within the entire Program memory. The return
>> + *  address (to the instruction after the CALL) will be stored onto the 
>> Stack.
>> + *  (See also RCALL). The Stack Pointer uses a post-decrement scheme during
>> + *  CALL.  This instruction is not available in all devices. Refer to the 
>> device
>> + *  specific instruction set summary.
>> + */
>> +static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
>> +        return true;
>> +    }
>> +
>> +    int Imm = a->imm;
>> +    int ret = ctx->npc;
>> +
>> +    gen_push_ret(ctx, ret);
>> +    gen_goto_tb(ctx, 0, Imm);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Clears a specified bit in an I/O Register. This instruction operates on
>> + *  the lower 32 I/O Registers -- addresses 0-31.
>> + */
>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
>> +{
>> +    TCGv data = tcg_temp_new_i32();
>> +    TCGv port = tcg_const_i32(a->reg);
>> +
>> +    gen_helper_inb(data, cpu_env, port);
>> +    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
>> +    gen_helper_outb(cpu_env, port, data);
>> +
>> +    tcg_temp_free_i32(data);
>> +    tcg_temp_free_i32(port);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Clears the specified bits in register Rd. Performs the logical AND
>> + *  between the contents of register Rd and the complement of the constant 
>> mask
>> + *  K. The result will be placed in register Rd.
>> + */
>> +static bool trans_COM(DisasContext *ctx, arg_COM *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    tcg_gen_xori_tl(Rd, Rd, 0xff);
>> +
>> +    tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
>> +    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
>> +    gen_ZNSf(Rd);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs a compare between two registers Rd and Rr.
>> + *  None of the registers are changed. All conditional branches can be used
>> + *  after this instruction.
>> + */
>> +static bool trans_CP(DisasContext *ctx, arg_CP *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
>> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
>> +
>> +    gen_sub_CHf(R, Rd, Rr);
>> +    gen_sub_Vf(R, Rd, Rr);
>> +    gen_ZNSf(R);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs a compare between two registers Rd and Rr and
>> + *  also takes into account the previous carry. None of the registers are
>> + *  changed. All conditional branches can be used after this instruction.
>> + */
>> +static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
>> +    tcg_gen_sub_tl(R, R, cpu_Cf);
>> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
>> +
>> +    gen_sub_CHf(R, Rd, Rr);
>> +    gen_sub_Vf(R, Rd, Rr);
>> +    gen_NSf(R);
>> +
>> +    /*
>> +     * Previous value remains unchanged when the result is zero;
>> +     * cleared otherwise.
>> +     */
>> +    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs a compare between register Rd and a constant.
>> + *  The register is not changed. All conditional branches can be used after 
>> this
>> + *  instruction.
>> + */
>> +static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    int Imm = a->imm;
>> +    TCGv Rr = tcg_const_i32(Imm);
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
>> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
>> +
>> +    gen_sub_CHf(R, Rd, Rr);
>> +    gen_sub_Vf(R, Rd, Rr);
>> +    gen_ZNSf(R);
>> +
>> +    tcg_temp_free_i32(R);
>> +    tcg_temp_free_i32(Rr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs a compare between two registers Rd and Rr, and
>> + *  skips the next instruction if Rd = Rr.
>> + */
>> +static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
>> +{
>> +    ctx->skip_cond = TCG_COND_EQ;
>> +    ctx->skip_var0 = cpu_r[a->rd];
>> +    ctx->skip_var1 = cpu_r[a->rr];
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Subtracts one -1- from the contents of register Rd and places the result
>> + *  in the destination register Rd.  The C Flag in SREG is not affected by 
>> the
>> + *  operation, thus allowing the DEC instruction to be used on a loop 
>> counter in
>> + *  multiple-precision computations.  When operating on unsigned values, 
>> only
>> + *  BREQ and BRNE branches can be expected to perform consistently.  When
>> + *  operating on two's complement values, all signed branches are available.
>> + */
>> +static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
>> +    tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
>> +
>> +    /* cpu_Vf = Rd == 0x7f */
>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
>> +    gen_ZNSf(Rd);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  The module is an instruction set extension to the AVR CPU, performing
>> + *  DES iterations. The 64-bit data block (plaintext or ciphertext) is 
>> placed in
>> + *  the CPU register file, registers R0-R7, where LSB of data is placed in 
>> LSB
>> + *  of R0 and MSB of data is placed in MSB of R7. The full 64-bit key 
>> (including
>> + *  parity bits) is placed in registers R8- R15, organized in the register 
>> file
>> + *  with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing 
>> one DES
>> + *  instruction performs one round in the DES algorithm. Sixteen rounds 
>> must be
>> + *  executed in increasing order to form the correct DES ciphertext or
>> + *  plaintext. Intermediate results are stored in the register file (R0-R15)
>> + *  after each DES instruction. The instruction's operand (K) determines 
>> which
>> + *  round is executed, and the half carry flag (H) determines whether 
>> encryption
>> + *  or decryption is performed.  The DES algorithm is described in
>> + *  "Specifications for the Data Encryption Standard" (Federal Information
>> + *  Processing Standards Publication 46). Intermediate results in this
>> + *  implementation differ from the standard because the initial permutation 
>> and
>> + *  the inverse initial permutation are performed each iteration. This does 
>> not
>> + *  affect the result in the final ciphertext or plaintext, but reduces
>> + *  execution time.
>> + */
>> +static bool trans_DES(DisasContext *ctx, arg_DES *a)
>> +{
>> +    /* TODO */
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
>> +        return true;
>> +    }
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
>> + *  Register in the Register File and the EIND Register in the I/O space. 
>> This
>> + *  instruction allows for indirect calls to the entire 4M (words) Program
>> + *  memory space. See also ICALL. The Stack Pointer uses a post-decrement 
>> scheme
>> + *  during EICALL.  This instruction is not available in all devices. Refer 
>> to
>> + *  the device specific instruction set summary.
>> + */
>> +static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
>> +        return true;
>> +    }
>> +
>> +    int ret = ctx->npc;
>> +
>> +    gen_push_ret(ctx, ret);
>> +    gen_jmp_ez(ctx);
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
>> + *  Register in the Register File and the EIND Register in the I/O space. 
>> This
>> + *  instruction allows for indirect jumps to the entire 4M (words) Program
>> + *  memory space. See also IJMP.  This instruction is not available in all
>> + *  devices. Refer to the device specific instruction set summary.
>> + */
>> +static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
>> +        return true;
>> +    }
>> +
>> +    gen_jmp_ez(ctx);
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
>> + *  the I/O space, and places this byte in the destination register Rd. This
>> + *  instruction features a 100% space effective constant initialization or
>> + *  constant data fetch. The Program memory is organized in 16-bit words 
>> while
>> + *  the Z-pointer is a byte address. Thus, the least significant bit of the
>> + *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). 
>> This
>> + *  instruction can address the entire Program memory space. The Z-pointer
>> + *  Register can either be left unchanged by the operation, or it can be
>> + *  incremented. The incrementation applies to the entire 24-bit 
>> concatenation
>> + *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
>> + *  capability can use the ELPM instruction to read the Fuse and Lock bit 
>> value.
>> + *  Refer to the device documentation for a detailed description.  This
>> + *  instruction is not available in all devices. Refer to the device 
>> specific
>> + *  instruction set summary.
>> + */
>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[0];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Performs the logical EOR between the contents of register Rd and
>> + *  register Rr and places the result in the destination register Rd.
>> + */
>> +static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +
>> +    tcg_gen_xor_tl(Rd, Rd, Rr);
>> +
>> +    tcg_gen_movi_tl(cpu_Vf, 0);
>> +    gen_ZNSf(Rd);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned
>> + *  multiplication and shifts the result one bit left.
>> + */
>> +static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv R0 = cpu_r[0];
>> +    TCGv R1 = cpu_r[1];
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
>> +    tcg_gen_shli_tl(R, R, 1);
>> +
>> +    tcg_gen_andi_tl(R0, R, 0xff);
>> +    tcg_gen_shri_tl(R1, R, 8);
>> +    tcg_gen_andi_tl(R1, R1, 0xff);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
>> +    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
>> + *  and shifts the result one bit left.
>> + */
>> +static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv R0 = cpu_r[0];
>> +    TCGv R1 = cpu_r[1];
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
>> +    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
>> +    tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
>> +    tcg_gen_shli_tl(R, R, 1);
>> +
>> +    tcg_gen_andi_tl(R0, R, 0xff);
>> +    tcg_gen_shri_tl(R1, R, 8);
>> +    tcg_gen_andi_tl(R1, R1, 0xff);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
>> +    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
>> + *  and shifts the result one bit left.
>> + */
>> +static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv R0 = cpu_r[0];
>> +    TCGv R1 = cpu_r[1];
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
>> +    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
>> +    tcg_gen_shli_tl(R, R, 1);
>> +
>> +    tcg_gen_andi_tl(R0, R, 0xff);
>> +    tcg_gen_shri_tl(R1, R, 8);
>> +    tcg_gen_andi_tl(R1, R1, 0xff);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
>> +    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
>> +
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Calls to a subroutine within the entire 4M (words) Program memory. The
>> + *  return address (to the instruction after the CALL) will be stored onto 
>> the
>> + *  Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme 
>> during
>> + *  CALL.  This instruction is not available in all devices. Refer to the 
>> device
>> + *  specific instruction set summary.
>> + */
>> +static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
>> +        return true;
>> +    }
>> +
>> +    int ret = ctx->npc;
>> +
>> +    gen_push_ret(ctx, ret);
>> +    gen_jmp_z(ctx);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
>> + *  Register in the Register File. The Z-pointer Register is 16 bits wide 
>> and
>> + *  allows jump within the lowest 64K words (128KB) section of Program 
>> memory.
>> + *  This instruction is not available in all devices. Refer to the device
>> + *  specific instruction set summary.
>> + */
>> +static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
>> +        return true;
>> +    }
>> +
>> +    gen_jmp_z(ctx);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
>> + *  etc.) into register Rd in the Register File.
>> + */
>> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv port = tcg_const_i32(a->imm);
>> +
>> +    gen_helper_inb(Rd, cpu_env, port);
>> +
>> +    tcg_temp_free_i32(port);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Adds one -1- to the contents of register Rd and places the result in the
>> + *  destination register Rd.  The C Flag in SREG is not affected by the
>> + *  operation, thus allowing the INC instruction to be used on a loop 
>> counter in
>> + *  multiple-precision computations.  When operating on unsigned numbers, 
>> only
>> + *  BREQ and BRNE branches can be expected to perform consistently. When
>> + *  operating on two's complement values, all signed branches are available.
>> + */
>> +static bool trans_INC(DisasContext *ctx, arg_INC *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_addi_tl(Rd, Rd, 1);
>> +    tcg_gen_andi_tl(Rd, Rd, 0xff);
>> +
>> +    /* cpu_Vf = Rd == 0x80 */
>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
>> +    gen_ZNSf(Rd);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Jump to an address within the entire 4M (words) Program memory. See also
>> + *  RJMP.  This instruction is not available in all devices. Refer to the 
>> device
>> + *  specific instruction set summary.0
>> + */
>> +static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
>> +        return true;
>> +    }
>> +
>> +    gen_goto_tb(ctx, 0, a->imm);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Load one byte indirect from data space to register and stores an clear
>> + *  the bits in data space specified by the register. The instruction can 
>> only
>> + *  be used towards internal SRAM.  The data location is pointed to by the 
>> Z (16
>> + *  bits) Pointer Register in the Register File. Memory access is limited 
>> to the
>> + *  current data segment of 64KB. To access another data segment in devices 
>> with
>> + *  more than 64KB data space, the RAMPZ in register in the I/O area has to 
>> be
>> + *  changed.  The Z-pointer Register is left unchanged by the operation. 
>> This
>> + *  instruction is especially suited for clearing status bits stored in 
>> SRAM.
>> + */
>> +static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
>> +{
>> +    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
>> +        gen_helper_fullwr(cpu_env, data, addr);
>> +    } else {
>> +        tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
>> +    }
>> +}
>> +
>> +static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
>> +{
>> +    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
>> +        gen_helper_fullrd(data, cpu_env, addr);
>> +    } else {
>> +        tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
>> +    }
>> +}
>> +
>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rr = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> +        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
>> +    tcg_gen_andc_tl(t1, t0, Rr);
>> +
>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Load one byte indirect from data space to register and set bits in data
>> + *  space specified by the register. The instruction can only be used 
>> towards
>> + *  internal SRAM.  The data location is pointed to by the Z (16 bits) 
>> Pointer
>> + *  Register in the Register File. Memory access is limited to the current 
>> data
>> + *  segment of 64KB. To access another data segment in devices with more 
>> than
>> + *  64KB data space, the RAMPZ in register in the I/O area has to be 
>> changed.
>> + *  The Z-pointer Register is left unchanged by the operation. This 
>> instruction
>> + *  is especially suited for setting status bits stored in SRAM.
>> + */
>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rr = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> +    tcg_gen_or_tl(t1, t0, Rr);
>> +
>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Load one byte indirect from data space to register and toggles bits in
>> + *  the data space specified by the register.  The instruction can only be 
>> used
>> + *  towards SRAM.  The data location is pointed to by the Z (16 bits) 
>> Pointer
>> + *  Register in the Register File. Memory access is limited to the current 
>> data
>> + *  segment of 64KB. To access another data segment in devices with more 
>> than
>> + *  64KB data space, the RAMPZ in register in the I/O area has to be 
>> changed.
>> + *  The Z-pointer Register is left unchanged by the operation. This 
>> instruction
>> + *  is especially suited for changing status bits stored in SRAM.
>> + */
>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>> +    tcg_gen_xor_tl(t1, t0, Rd);
>> +
>> +    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads one byte indirect from the data space to a register. For parts
>> + *  with SRAM, the data space consists of the Register File, I/O memory and
>> + *  internal SRAM (and external SRAM if applicable). For parts without 
>> SRAM, the
>> + *  data space consists of the Register File only. In some parts the Flash
>> + *  Memory has been mapped to the data space and can be read using this 
>> command.
>> + *  The EEPROM has a separate address space.  The data location is pointed 
>> to by
>> + *  the X (16 bits) Pointer Register in the Register File. Memory access is
>> + *  limited to the current data segment of 64KB. To access another data 
>> segment
>> + *  in devices with more than 64KB data space, the RAMPX in register in the 
>> I/O
>> + *  area has to be changed.  The X-pointer Register can either be left 
>> unchanged
>> + *  by the operation, or it can be post-incremented or predecremented.  
>> These
>> + *  features are especially suited for accessing arrays, tables, and Stack
>> + *  Pointer usage of the X-pointer Register. Note that only the low byte of 
>> the
>> + *  X-pointer is updated in devices with no more than 256 bytes data space. 
>> For
>> + *  such devices, the high byte of the pointer is not used by this 
>> instruction
>> + *  and can be used for other purposes. The RAMPX Register in the I/O area 
>> is
>> + *  updated in parts with more than 64KB data space or more than 64KB 
>> Program
>> + *  memory, and the increment/decrement is added to the entire 24-bit 
>> address on
>> + *  such devices.  Not all variants of this instruction is available in all
>> + *  devices. Refer to the device specific instruction set summary.  In the
>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
>> + *  operation as LPM since the program memory is mapped to the data memory
>> + *  space.
>> + */
>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_xaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_xaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_load(ctx, Rd, addr);
>> +    gen_set_xaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads one byte indirect with or without displacement from the data space
>> + *  to a register. For parts with SRAM, the data space consists of the 
>> Register
>> + *  File, I/O memory and internal SRAM (and external SRAM if applicable). 
>> For
>> + *  parts without SRAM, the data space consists of the Register File only. 
>> In
>> + *  some parts the Flash Memory has been mapped to the data space and can be
>> + *  read using this command. The EEPROM has a separate address space.  The 
>> data
>> + *  location is pointed to by the Y (16 bits) Pointer Register in the 
>> Register
>> + *  File. Memory access is limited to the current data segment of 64KB. To
>> + *  access another data segment in devices with more than 64KB data space, 
>> the
>> + *  RAMPY in register in the I/O area has to be changed.  The Y-pointer 
>> Register
>> + *  can either be left unchanged by the operation, or it can be 
>> post-incremented
>> + *  or predecremented.  These features are especially suited for accessing
>> + *  arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note 
>> that
>> + *  only the low byte of the Y-pointer is updated in devices with no more 
>> than
>> + *  256 bytes data space. For such devices, the high byte of the pointer is 
>> not
>> + *  used by this instruction and can be used for other purposes. The RAMPY
>> + *  Register in the I/O area is updated in parts with more than 64KB data 
>> space
>> + *  or more than 64KB Program memory, and the 
>> increment/decrement/displacement
>> + *  is added to the entire 24-bit address on such devices.  Not all 
>> variants of
>> + *  this instruction is available in all devices. Refer to the device 
>> specific
>> + *  instruction set summary.  In the Reduced Core tinyAVR the LD 
>> instruction can
>> + *  be used to achieve the same operation as LPM since the program memory is
>> + *  mapped to the data memory space.
>> + */
>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_yaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_load(ctx, Rd, addr);
>> +    gen_set_yaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_yaddr();
>> +
>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads one byte indirect with or without displacement from the data space
>> + *  to a register. For parts with SRAM, the data space consists of the 
>> Register
>> + *  File, I/O memory and internal SRAM (and external SRAM if applicable). 
>> For
>> + *  parts without SRAM, the data space consists of the Register File only. 
>> In
>> + *  some parts the Flash Memory has been mapped to the data space and can be
>> + *  read using this command. The EEPROM has a separate address space.  The 
>> data
>> + *  location is pointed to by the Z (16 bits) Pointer Register in the 
>> Register
>> + *  File. Memory access is limited to the current data segment of 64KB. To
>> + *  access another data segment in devices with more than 64KB data space, 
>> the
>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer 
>> Register
>> + *  can either be left unchanged by the operation, or it can be 
>> post-incremented
>> + *  or predecremented.  These features are especially suited for Stack 
>> Pointer
>> + *  usage of the Z-pointer Register, however because the Z-pointer Register 
>> can
>> + *  be used for indirect subroutine calls, indirect jumps and table lookup, 
>> it
>> + *  is often more convenient to use the X or Y-pointer as a dedicated Stack
>> + *  Pointer. Note that only the low byte of the Z-pointer is updated in 
>> devices
>> + *  with no more than 256 bytes data space. For such devices, the high byte 
>> of
>> + *  the pointer is not used by this instruction and can be used for other
>> + *  purposes. The RAMPZ Register in the I/O area is updated in parts with 
>> more
>> + *  than 64KB data space or more than 64KB Program memory, and the
>> + *  increment/decrement/displacement is added to the entire 24-bit address 
>> on
>> + *  such devices.  Not all variants of this instruction is available in all
>> + *  devices. Refer to the device specific instruction set summary.  In the
>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
>> + *  operation as LPM since the program memory is mapped to the data memory
>> + *  space.  For using the Z-pointer for table lookup in Program memory see 
>> the
>> + *  LPM and ELPM instructions.
>> + */
>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    gen_set_zaddr(addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = gen_get_zaddr();
>> +
>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + * Loads an 8 bit constant directly to register 16 to 31.
>> + */
>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    int imm = a->imm;
>> +
>> +    tcg_gen_movi_tl(Rd, imm);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads one byte from the data space to a register. For parts with SRAM,
>> + *  the data space consists of the Register File, I/O memory and internal 
>> SRAM
>> + *  (and external SRAM if applicable). For parts without SRAM, the data 
>> space
>> + *  consists of the register file only. The EEPROM has a separate address 
>> space.
>> + *  A 16-bit address must be supplied. Memory access is limited to the 
>> current
>> + *  data segment of 64KB. The LDS instruction uses the RAMPD Register to 
>> access
>> + *  memory above 64KB. To access another data segment in devices with more 
>> than
>> + *  64KB data space, the RAMPD in register in the I/O area has to be 
>> changed.
>> + *  This instruction is not available in all devices. Refer to the device
>> + *  specific instruction set summary.
>> + */
>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_rampD;
>> +    a->imm = next_word(ctx);
>> +
>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>> +    tcg_gen_shli_tl(addr, addr, 16);
>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>> +
>> +    gen_data_load(ctx, Rd, addr);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Loads one byte pointed to by the Z-register into the destination
>> + *  register Rd. This instruction features a 100% space effective constant
>> + *  initialization or constant data fetch. The Program memory is organized 
>> in
>> + *  16-bit words while the Z-pointer is a byte address. Thus, the least
>> + *  significant bit of the Z-pointer selects either low byte (ZLSB = 0) or 
>> high
>> + *  byte (ZLSB = 1). This instruction can address the first 64KB (32K 
>> words) of
>> + *  Program memory. The Zpointer Register can either be left unchanged by 
>> the
>> + *  operation, or it can be incremented. The incrementation does not apply 
>> to
>> + *  the RAMPZ Register.  Devices with Self-Programming capability can use 
>> the
>> + *  LPM instruction to read the Fuse and Lock bit values.  Refer to the 
>> device
>> + *  documentation for a detailed description.  The LPM instruction is not
>> + *  available in all devices. Refer to the device specific instruction set
>> + *  summary
>> + */
>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[0];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_r[31];
>> +    TCGv L = cpu_r[30];
>> +
>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> +    tcg_gen_or_tl(addr, addr, L);
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_r[31];
>> +    TCGv L = cpu_r[30];
>> +
>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> +    tcg_gen_or_tl(addr, addr, L);
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv addr = tcg_temp_new_i32();
>> +    TCGv H = cpu_r[31];
>> +    TCGv L = cpu_r[30];
>> +
>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>> +    tcg_gen_or_tl(addr, addr, L);
>> +
>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>> +
>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>> +
>> +    tcg_gen_andi_tl(L, addr, 0xff);
>> +
>> +    tcg_gen_shri_tl(addr, addr, 8);
>> +    tcg_gen_andi_tl(H, addr, 0xff);
>> +
>> +    tcg_temp_free_i32(addr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
>> + *  loaded into the C Flag of the SREG. This operation effectively divides 
>> an
>> + *  unsigned value by two. The C Flag can be used to round the result.
>> + */
>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +
>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>> +
>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>> +
>> +    tcg_gen_mov_tl(cpu_Zf, Rd);
>> +    tcg_gen_movi_tl(cpu_Nf, 0);
>> +    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
>> +    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction makes a copy of one register into another. The source
>> + *  register Rr is left unchanged, while the destination register Rd is 
>> loaded
>> + *  with a copy of Rr.
>> + */
>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +
>> +    tcg_gen_mov_tl(Rd, Rr);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction makes a copy of one register pair into another register
>> + *  pair. The source register pair Rr+1:Rr is left unchanged, while the
>> + *  destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.  
>> This
>> + *  instruction is not available in all devices. Refer to the device 
>> specific
>> + *  instruction set summary.
>> + */
>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv RdL = cpu_r[a->rd];
>> +    TCGv RdH = cpu_r[a->rd + 1];
>> +    TCGv RrL = cpu_r[a->rr];
>> +    TCGv RrH = cpu_r[a->rr + 1];
>> +
>> +    tcg_gen_mov_tl(RdH, RrH);
>> +    tcg_gen_mov_tl(RdL, RrL);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned 
>> multiplication.
>> + */
>> +static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv R0 = cpu_r[0];
>> +    TCGv R1 = cpu_r[1];
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
>> +
>> +    tcg_gen_andi_tl(R0, R, 0xff);
>> +    tcg_gen_shri_tl(R1, R, 8);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
>> +    tcg_gen_mov_tl(cpu_Zf, R);
>> +
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
>> + */
>> +static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv R0 = cpu_r[0];
>> +    TCGv R1 = cpu_r[1];
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +    TCGv t1 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
>> +    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
>> +    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
>> +
>> +    tcg_gen_andi_tl(R0, R, 0xff);
>> +    tcg_gen_shri_tl(R1, R, 8);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
>> +    tcg_gen_mov_tl(cpu_Zf, R);
>> +
>> +    tcg_temp_free_i32(t1);
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
>> + *  signed and an unsigned number.
>> + */
>> +static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
>> +{
>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
>> +        return true;
>> +    }
>> +
>> +    TCGv R0 = cpu_r[0];
>> +    TCGv R1 = cpu_r[1];
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv Rr = cpu_r[a->rr];
>> +    TCGv R = tcg_temp_new_i32();
>> +    TCGv t0 = tcg_temp_new_i32();
>> +
>> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
>> +    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
>> +
>> +    tcg_gen_andi_tl(R0, R, 0xff);
>> +    tcg_gen_shri_tl(R1, R, 8);
>> +
>> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
>> +    tcg_gen_mov_tl(cpu_Zf, R);
>> +
>> +    tcg_temp_free_i32(t0);
>> +    tcg_temp_free_i32(R);
>> +
>> +    return true;
>> +}
>> +
>> +/*
>> + *  Replaces the contents of register Rd with its two's complement; the
>> + *  value $80 is left unchanged.
>> + */
>> +static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
>> +{
>> +    TCGv Rd = cpu_r[a->rd];
>> +    TCGv t0 = tcg_const_i32(0);
>> +    TCGv R = tcg_temp_new_i32();
>> +
>> +    /* op */
>> +    tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
>> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
>> +
>> +    gen_sub_CHf(R, t0, Rd);
>> +    gen_sub_Vf(R, t0, Rd);
>> +    gen_ZNSf(R);
>> +
>> +    /* R */
>> +    tcg_gen_mov_tl(Rd,--
>> 2.17.2 (Apple Git-113)
>>
>>


-- 
Best Regards,
Michael Rolnik



reply via email to

[Prev in Thread] Current Thread [Next in Thread]