qemu-devel
[Top][All Lists]
Advanced

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Qemu-devel] [PATCH v30 4/8] target/avr: Add instruction translation


From: Aleksandar Markovic
Subject: Re: [Qemu-devel] [PATCH v30 4/8] target/avr: Add instruction translation
Date: Sat, 12 Oct 2019 19:47:31 +0200

On Sat, Oct 12, 2019 at 6:34 PM Michael Rolnik <address@hidden> wrote:
>
> Hi Aleksandar.
>
> If I break it to multiple patches, does every patch have to compile?
>

Micheal,

Well, it does. This is because people are using various automated or
semi-automated
"bisect" scripts when they want to find what commit caused certain
problem, and if
any patch breaks build, this may make those "bisect" scripts not work.

But... since I see others are inclined to accept this patch 4 as-is, I
am not going to
place obstacles on that. So, it looks you can leave patch 4 as-is.

How ever, in future, when you hopefully submit some other larger piece of code,
I recommend to you to try not to place all code in a single patch, but
in several
logical sub-parts. This makes your patches easier to review, and there are some
other reasons too - for example, it is easier to spot a bug in a
smaller patch than
in a larger.

Again, for now, do not spend your time doing tedious job of splitting
this patch.

Yours,
Aleksandar

> On Fri, Oct 11, 2019 at 5:13 PM Aleksandar Markovic
> <address@hidden> wrote:
> >
> >
> >
> > On Monday, September 2, 2019, Michael Rolnik <address@hidden> wrote:
> >>
> >> This includes:
> >> - TCG translations for each instruction
> >>
> >> Signed-off-by: Michael Rolnik <address@hidden>
> >> ---
> >>  target/avr/translate.c | 2888 ++++++++++++++++++++++++++++++++++++++++
> >>  1 file changed, 2888 insertions(+)
> >>  create mode 100644 target/avr/translate.c
> >>
> >
> > Hi, Michael,
> >
> >
> > This patch is way too large. I suggest splitting it into:
> >
> > - register definitions
> > - load instruction handling
> > - store instruction handling
> > - logic instruction handling
> >
> > etc.
> >
> > Thanks, Aleksandar
> >
> > P.S. One more hurdle with your communication on the list is that you don't 
> > use "inline responding" while replaying, please use it in future. See other 
> > messages in the mailing list how "inline responding" looks.
> >
> >
> >
> >
> >>
> >> diff --git a/target/avr/translate.c b/target/avr/translate.c
> >> new file mode 100644
> >> index 0000000000..42cb4a690c
> >> --- /dev/null
> >> +++ b/target/avr/translate.c
> >> @@ -0,0 +1,2888 @@
> >> +/*
> >> + * QEMU AVR CPU
> >> + *
> >> + * Copyright (c) 2019 Michael Rolnik
> >> + *
> >> + * This library is free software; you can redistribute it and/or
> >> + * modify it under the terms of the GNU Lesser General Public
> >> + * License as published by the Free Software Foundation; either
> >> + * version 2.1 of the License, or (at your option) any later version.
> >> + *
> >> + * This library is distributed in the hope that it will be useful,
> >> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> >> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
> >> + * Lesser General Public License for more details.
> >> + *
> >> + * You should have received a copy of the GNU Lesser General Public
> >> + * License along with this library; if not, see
> >> + * <http://www.gnu.org/licenses/lgpl-2.1.html>
> >> + */
> >> +
> >> +#include "qemu/osdep.h"
> >> +#include "qemu/qemu-print.h"
> >> +#include "tcg/tcg.h"
> >> +#include "cpu.h"
> >> +#include "exec/exec-all.h"
> >> +#include "disas/disas.h"
> >> +#include "tcg-op.h"
> >> +#include "exec/cpu_ldst.h"
> >> +#include "exec/helper-proto.h"
> >> +#include "exec/helper-gen.h"
> >> +#include "exec/log.h"
> >> +#include "exec/gdbstub.h"
> >> +#include "exec/translator.h"
> >> +
> >> +/*
> >> + *  Define if you want a BREAK instruction translated to a breakpoint
> >> + *  Active debugging connection is assumed
> >> + *  This is for
> >> + *  
> >> https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests
> >> + *  tests
> >> + */
> >> +#undef BREAKPOINT_ON_BREAK
> >> +
> >> +static TCGv cpu_pc;
> >> +
> >> +static TCGv cpu_Cf;
> >> +static TCGv cpu_Zf;
> >> +static TCGv cpu_Nf;
> >> +static TCGv cpu_Vf;
> >> +static TCGv cpu_Sf;
> >> +static TCGv cpu_Hf;
> >> +static TCGv cpu_Tf;
> >> +static TCGv cpu_If;
> >> +
> >> +static TCGv cpu_rampD;
> >> +static TCGv cpu_rampX;
> >> +static TCGv cpu_rampY;
> >> +static TCGv cpu_rampZ;
> >> +
> >> +static TCGv cpu_r[NO_CPU_REGISTERS];
> >> +static TCGv cpu_eind;
> >> +static TCGv cpu_sp;
> >> +
> >> +static TCGv cpu_skip;
> >> +
> >> +static const char reg_names[NO_CPU_REGISTERS][8] = {
> >> +    "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
> >> +    "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
> >> +    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
> >> +    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
> >> +};
> >> +#define REG(x) (cpu_r[x])
> >> +
> >> +enum {
> >> +    DISAS_EXIT   = DISAS_TARGET_0,  /* We want return to the cpu main 
> >> loop.  */
> >> +    DISAS_LOOKUP = DISAS_TARGET_1,  /* We have a variable condition exit. 
> >>  */
> >> +    DISAS_CHAIN  = DISAS_TARGET_2,  /* We have a single condition exit.  
> >> */
> >> +};
> >> +
> >> +typedef struct DisasContext DisasContext;
> >> +
> >> +/* This is the state at translation time. */
> >> +struct DisasContext {
> >> +    TranslationBlock *tb;
> >> +
> >> +    CPUAVRState *env;
> >> +    CPUState *cs;
> >> +
> >> +    target_long npc;
> >> +    uint32_t opcode;
> >> +
> >> +    /* Routine used to access memory */
> >> +    int memidx;
> >> +    int bstate;
> >> +    int singlestep;
> >> +
> >> +    TCGv skip_var0;
> >> +    TCGv skip_var1;
> >> +    TCGCond skip_cond;
> >> +    bool free_skip_var0;
> >> +};
> >> +
> >> +static int to_A(DisasContext *ctx, int indx) { return 16 + (indx % 16); }
> >> +static int to_B(DisasContext *ctx, int indx) { return 16 + (indx % 8); }
> >> +static int to_C(DisasContext *ctx, int indx) { return 24 + (indx % 4) * 
> >> 2; }
> >> +static int to_D(DisasContext *ctx, int indx) { return (indx % 16) * 2; }
> >> +
> >> +static uint16_t next_word(DisasContext *ctx)
> >> +{
> >> +    return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
> >> +}
> >> +
> >> +static int append_16(DisasContext *ctx, int x)
> >> +{
> >> +    return x << 16 | next_word(ctx);
> >> +}
> >> +
> >> +static bool decode_insn(DisasContext *ctx, uint16_t insn);
> >> +#include "decode_insn.inc.c"
> >> +
> >> +static bool avr_have_feature(DisasContext *ctx, int feature)
> >> +{
> >> +    if (!avr_feature(ctx->env, feature)) {
> >> +        gen_helper_unsupported(cpu_env);
> >> +        ctx->bstate = DISAS_NORETURN;
> >> +        return false;
> >> +    }
> >> +    return true;
> >> +}
> >> +
> >> +static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
> >> +{
> >> +    TranslationBlock *tb = ctx->tb;
> >> +
> >> +    if (ctx->singlestep == 0) {
> >> +        tcg_gen_goto_tb(n);
> >> +        tcg_gen_movi_i32(cpu_pc, dest);
> >> +        tcg_gen_exit_tb(tb, n);
> >> +    } else {
> >> +        tcg_gen_movi_i32(cpu_pc, dest);
> >> +        gen_helper_debug(cpu_env);
> >> +        tcg_gen_exit_tb(NULL, 0);
> >> +    }
> >> +    ctx->bstate = DISAS_NORETURN;
> >> +}
> >> +
> >> +#include "exec/gen-icount.h"
> >> +
> >> +static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
> >> +{
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +    TCGv t2 = tcg_temp_new_i32();
> >> +    TCGv t3 = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
> >> +    tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
> >> +    tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
> >> +    tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
> >> +    tcg_gen_or_tl(t1, t1, t3);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
> >> +    tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
> >> +    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
> >> +
> >> +    tcg_temp_free_i32(t3);
> >> +    tcg_temp_free_i32(t2);
> >> +    tcg_temp_free_i32(t1);
> >> +}
> >> +
> >> +static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
> >> +{
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +    TCGv t2 = tcg_temp_new_i32();
> >> +
> >> +    /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
> >> +    tcg_gen_xor_tl(t1, Rd, R);
> >> +    tcg_gen_xor_tl(t2, Rd, Rr);
> >> +    tcg_gen_andc_tl(t1, t1, t2);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
> >> +
> >> +    tcg_temp_free_i32(t2);
> >> +    tcg_temp_free_i32(t1);
> >> +}
> >> +
> >> +static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
> >> +{
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +    TCGv t2 = tcg_temp_new_i32();
> >> +    TCGv t3 = tcg_temp_new_i32();
> >> +
> >> +    /* Cf & Hf */
> >> +    tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
> >> +    tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
> >> +    tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
> >> +    tcg_gen_and_tl(t3, t3, R);
> >> +    tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
> >> +    tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
> >> +    tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
> >> +    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
> >> +
> >> +    tcg_temp_free_i32(t3);
> >> +    tcg_temp_free_i32(t2);
> >> +    tcg_temp_free_i32(t1);
> >> +}
> >> +
> >> +static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
> >> +{
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +    TCGv t2 = tcg_temp_new_i32();
> >> +
> >> +    /* Vf */
> >> +    /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
> >> +    tcg_gen_xor_tl(t1, Rd, R);
> >> +    tcg_gen_xor_tl(t2, Rd, Rr);
> >> +    tcg_gen_and_tl(t1, t1, t2);
> >> +    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
> >> +
> >> +    tcg_temp_free_i32(t2);
> >> +    tcg_temp_free_i32(t1);
> >> +}
> >> +
> >> +static void gen_rshift_ZNVSf(TCGv R)
> >> +{
> >> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
> >> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
> >> +    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
> >> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
> >> +}
> >> +
> >> +static void gen_NSf(TCGv R)
> >> +{
> >> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
> >> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
> >> +}
> >> +
> >> +static void gen_ZNSf(TCGv R)
> >> +{
> >> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
> >> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
> >> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
> >> +}
> >> +
> >> +static void gen_push_ret(DisasContext *ctx, int ret)
> >> +{
> >> +    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
> >> +
> >> +        TCGv t0 = tcg_const_i32((ret & 0x0000ff));
> >> +
> >> +        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
> >> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
> >> +
> >> +        tcg_temp_free_i32(t0);
> >> +    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
> >> +
> >> +        TCGv t0 = tcg_const_i32((ret & 0x00ffff));
> >> +
> >> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
> >> +        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
> >> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
> >> +
> >> +        tcg_temp_free_i32(t0);
> >> +
> >> +    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
> >> +
> >> +        TCGv lo = tcg_const_i32((ret & 0x0000ff));
> >> +        TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
> >> +
> >> +        tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
> >> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
> >> +        tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
> >> +        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
> >> +
> >> +        tcg_temp_free_i32(lo);
> >> +        tcg_temp_free_i32(hi);
> >> +    }
> >> +}
> >> +
> >> +static void gen_pop_ret(DisasContext *ctx, TCGv ret)
> >> +{
> >> +    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
> >> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
> >> +        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
> >> +    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
> >> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
> >> +        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
> >> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
> >> +    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
> >> +        TCGv lo = tcg_temp_new_i32();
> >> +        TCGv hi = tcg_temp_new_i32();
> >> +
> >> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
> >> +        tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
> >> +
> >> +        tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
> >> +        tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
> >> +
> >> +        tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
> >> +
> >> +        tcg_temp_free_i32(lo);
> >> +        tcg_temp_free_i32(hi);
> >> +    }
> >> +}
> >> +
> >> +static void gen_jmp_ez(DisasContext *ctx)
> >> +{
> >> +    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
> >> +    tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
> >> +    ctx->bstate = DISAS_LOOKUP;
> >> +}
> >> +
> >> +static void gen_jmp_z(DisasContext *ctx)
> >> +{
> >> +    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
> >> +    ctx->bstate = DISAS_LOOKUP;
> >> +}
> >> +
> >> +/*
> >> + *  in the gen_set_addr & gen_get_addr functions
> >> + *  H assumed to be in 0x00ff0000 format
> >> + *  M assumed to be in 0x000000ff format
> >> + *  L assumed to be in 0x000000ff format
> >> + */
> >> +static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
> >> +{
> >> +
> >> +    tcg_gen_andi_tl(L, addr, 0x000000ff);
> >> +
> >> +    tcg_gen_andi_tl(M, addr, 0x0000ff00);
> >> +    tcg_gen_shri_tl(M, M, 8);
> >> +
> >> +    tcg_gen_andi_tl(H, addr, 0x00ff0000);
> >> +}
> >> +
> >> +static void gen_set_xaddr(TCGv addr)
> >> +{
> >> +    gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
> >> +}
> >> +
> >> +static void gen_set_yaddr(TCGv addr)
> >> +{
> >> +    gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
> >> +}
> >> +
> >> +static void gen_set_zaddr(TCGv addr)
> >> +{
> >> +    gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
> >> +}
> >> +
> >> +static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
> >> +{
> >> +    TCGv addr = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_deposit_tl(addr, M, H, 8, 8);
> >> +    tcg_gen_deposit_tl(addr, L, addr, 8, 16);
> >> +
> >> +    return addr;
> >> +}
> >> +
> >> +static TCGv gen_get_xaddr(void)
> >> +{
> >> +    return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
> >> +}
> >> +
> >> +static TCGv gen_get_yaddr(void)
> >> +{
> >> +    return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
> >> +}
> >> +
> >> +static TCGv gen_get_zaddr(void)
> >> +{
> >> +    return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
> >> +}
> >> +
> >> +/*
> >> + *  Adds two registers and the contents of the C Flag and places the 
> >> result in
> >> + *  the destination register Rd.
> >> + */
> >> +static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
> >> +    tcg_gen_add_tl(R, R, cpu_Cf);
> >> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
> >> +
> >> +    gen_add_CHf(R, Rd, Rr);
> >> +    gen_add_Vf(R, Rd, Rr);
> >> +    gen_ZNSf(R);
> >> +
> >> +    /* R */
> >> +    tcg_gen_mov_tl(Rd, R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Adds two registers without the C Flag and places the result in the
> >> + *  destination register Rd.
> >> + */
> >> +static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
> >> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
> >> +
> >> +    gen_add_CHf(R, Rd, Rr);
> >> +    gen_add_Vf(R, Rd, Rr);
> >> +    gen_ZNSf(R);
> >> +
> >> +    /* R */
> >> +    tcg_gen_mov_tl(Rd, R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Adds an immediate value (0 - 63) to a register pair and places the 
> >> result
> >> + *  in the register pair. This instruction operates on the upper four 
> >> register
> >> + *  pairs, and is well suited for operations on the pointer registers.  
> >> This
> >> + *  instruction is not available in all devices. Refer to the device 
> >> specific
> >> + *  instruction set summary.
> >> + */
> >> +static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv RdL = cpu_r[a->rd];
> >> +    TCGv RdH = cpu_r[a->rd + 1];
> >> +    int Imm = (a->imm);
> >> +    TCGv R = tcg_temp_new_i32();
> >> +    TCGv Rd = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
> >> +    tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
> >> +    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
> >> +
> >> +    /* Cf */
> >> +    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
> >> +    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
> >> +
> >> +    /* Vf */
> >> +    tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
> >> +    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
> >> +
> >> +    /* Zf */
> >> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
> >> +
> >> +    /* Nf */
> >> +    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
> >> +
> >> +    /* Sf */
> >> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
> >> +
> >> +    /* R */
> >> +    tcg_gen_andi_tl(RdL, R, 0xff);
> >> +    tcg_gen_shri_tl(RdH, R, 8);
> >> +
> >> +    tcg_temp_free_i32(Rd);
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Performs the logical AND between the contents of register Rd and 
> >> register
> >> + *  Rr and places the result in the destination register Rd.
> >> + */
> >> +static bool trans_AND(DisasContext *ctx, arg_AND *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
> >> +
> >> +    /* Vf */
> >> +    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
> >> +
> >> +    /* Zf */
> >> +    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
> >> +
> >> +    gen_ZNSf(R);
> >> +
> >> +    /* R */
> >> +    tcg_gen_mov_tl(Rd, R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Performs the logical AND between the contents of register Rd and a 
> >> constant
> >> + *  and places the result in the destination register Rd.
> >> + */
> >> +static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    int Imm = (a->imm);
> >> +
> >> +    /* op */
> >> +    tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
> >> +
> >> +    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
> >> +    gen_ZNSf(Rd);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Shifts all bits in Rd one place to the right. Bit 7 is held constant. 
> >> Bit 0
> >> + *  is loaded into the C Flag of the SREG. This operation effectively 
> >> divides a
> >> + *  signed value by two without changing its sign. The Carry Flag can be 
> >> used to
> >> + *  round the result.
> >> + */
> >> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +
> >> +    /* Cf */
> >> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
> >> +
> >> +    /* op */
> >> +    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
> >> +    tcg_gen_shri_tl(Rd, Rd, 1);
> >> +    tcg_gen_or_tl(Rd, Rd, t0);
> >> +
> >> +    gen_rshift_ZNVSf(Rd);
> >> +
> >> +    tcg_temp_free_i32(t0);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Clears a single Flag in SREG.
> >> + */
> >> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
> >> +{
> >> +    switch (a->bit) {
> >> +    case 0x00:
> >> +        tcg_gen_movi_tl(cpu_Cf, 0x00);
> >> +        break;
> >> +    case 0x01:
> >> +        tcg_gen_movi_tl(cpu_Zf, 0x01);
> >> +        break;
> >> +    case 0x02:
> >> +        tcg_gen_movi_tl(cpu_Nf, 0x00);
> >> +        break;
> >> +    case 0x03:
> >> +        tcg_gen_movi_tl(cpu_Vf, 0x00);
> >> +        break;
> >> +    case 0x04:
> >> +        tcg_gen_movi_tl(cpu_Sf, 0x00);
> >> +        break;
> >> +    case 0x05:
> >> +        tcg_gen_movi_tl(cpu_Hf, 0x00);
> >> +        break;
> >> +    case 0x06:
> >> +        tcg_gen_movi_tl(cpu_Tf, 0x00);
> >> +        break;
> >> +    case 0x07:
> >> +        tcg_gen_movi_tl(cpu_If, 0x00);
> >> +        break;
> >> +    }
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Copies the T Flag in the SREG (Status Register) to bit b in register 
> >> Rd.
> >> + */
> >> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
> >> +    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
> >> +    tcg_gen_or_tl(Rd, Rd, t1);
> >> +
> >> +    tcg_temp_free_i32(t1);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Conditional relative branch. Tests a single bit in SREG and branches
> >> + *  relatively to PC if the bit is cleared. This instruction branches 
> >> relatively
> >> + *  to PC in either direction (PC - 63 < = destination <= PC + 64). The
> >> + *  parameter k is the offset from PC and is represented in two's 
> >> complement
> >> + *  form.
> >> + */
> >> +static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
> >> +{
> >> +    TCGLabel *not_taken = gen_new_label();
> >> +    TCGCond cond = TCG_COND_EQ;
> >> +    TCGv var;
> >> +
> >> +    switch (a->bit) {
> >> +    case 0x00:
> >> +        var = cpu_Cf;
> >> +        break;
> >> +    case 0x01:
> >> +        cond = TCG_COND_NE;
> >> +        var = cpu_Zf;
> >> +        break;
> >> +    case 0x02:
> >> +        var = cpu_Nf;
> >> +        break;
> >> +    case 0x03:
> >> +        var = cpu_Vf;
> >> +        break;
> >> +    case 0x04:
> >> +        var = cpu_Sf;
> >> +        break;
> >> +    case 0x05:
> >> +        var = cpu_Hf;
> >> +        break;
> >> +    case 0x06:
> >> +        var = cpu_Tf;
> >> +        break;
> >> +    case 0x07:
> >> +        var = cpu_If;
> >> +        break;
> >> +    default:
> >> +        g_assert_not_reached();
> >> +    }
> >> +
> >> +    tcg_gen_brcondi_i32(tcg_invert_cond(cond), var, 0, not_taken);
> >> +    gen_goto_tb(ctx, 0, ctx->npc + a->imm);
> >> +    gen_set_label(not_taken);
> >> +
> >> +    ctx->bstate = DISAS_CHAIN;
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Conditional relative branch. Tests a single bit in SREG and branches
> >> + *  relatively to PC if the bit is set. This instruction branches 
> >> relatively to
> >> + *  PC in either direction (PC - 63 < = destination <= PC + 64). The 
> >> parameter k
> >> + *  is the offset from PC and is represented in two's complement form.
> >> + */
> >> +static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
> >> +{
> >> +    TCGLabel *not_taken = gen_new_label();
> >> +    TCGCond cond = TCG_COND_NE;
> >> +    TCGv var;
> >> +
> >> +    switch (a->bit) {
> >> +    case 0x00:
> >> +        var = cpu_Cf;
> >> +        break;
> >> +    case 0x01:
> >> +        cond = TCG_COND_EQ;
> >> +        var = cpu_Zf;
> >> +        break;
> >> +    case 0x02:
> >> +        var = cpu_Nf;
> >> +        break;
> >> +    case 0x03:
> >> +        var = cpu_Vf;
> >> +        break;
> >> +    case 0x04:
> >> +        var = cpu_Sf;
> >> +        break;
> >> +    case 0x05:
> >> +        var = cpu_Hf;
> >> +        break;
> >> +    case 0x06:
> >> +        var = cpu_Tf;
> >> +        break;
> >> +    case 0x07:
> >> +        var = cpu_If;
> >> +        break;
> >> +    default:
> >> +        g_assert_not_reached();
> >> +    }
> >> +
> >> +    tcg_gen_brcondi_i32(tcg_invert_cond(cond), var, 0, not_taken);
> >> +    gen_goto_tb(ctx, 0, ctx->npc + a->imm);
> >> +    gen_set_label(not_taken);
> >> +
> >> +    ctx->bstate = DISAS_CHAIN;
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Sets a single Flag or bit in SREG.
> >> + */
> >> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
> >> +{
> >> +    switch (a->bit) {
> >> +    case 0x00:
> >> +        tcg_gen_movi_tl(cpu_Cf, 0x01);
> >> +        break;
> >> +    case 0x01:
> >> +        tcg_gen_movi_tl(cpu_Zf, 0x00);
> >> +        break;
> >> +    case 0x02:
> >> +        tcg_gen_movi_tl(cpu_Nf, 0x01);
> >> +        break;
> >> +    case 0x03:
> >> +        tcg_gen_movi_tl(cpu_Vf, 0x01);
> >> +        break;
> >> +    case 0x04:
> >> +        tcg_gen_movi_tl(cpu_Sf, 0x01);
> >> +        break;
> >> +    case 0x05:
> >> +        tcg_gen_movi_tl(cpu_Hf, 0x01);
> >> +        break;
> >> +    case 0x06:
> >> +        tcg_gen_movi_tl(cpu_Tf, 0x01);
> >> +        break;
> >> +    case 0x07:
> >> +        tcg_gen_movi_tl(cpu_If, 0x01);
> >> +        break;
> >> +    }
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  The BREAK instruction is used by the On-chip Debug system, and is
> >> + *  normally not used in the application software. When the BREAK 
> >> instruction is
> >> + *  executed, the AVR CPU is set in the Stopped Mode. This gives the 
> >> On-chip
> >> + *  Debugger access to internal resources.  If any Lock bits are set, or 
> >> either
> >> + *  the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the 
> >> BREAK
> >> + *  instruction as a NOP and will not enter the Stopped mode.  This 
> >> instruction
> >> + *  is not available in all devices. Refer to the device specific 
> >> instruction
> >> + *  set summary.
> >> + */
> >> +static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) {
> >> +        return true;
> >> +    }
> >> +
> >> +#ifdef BREAKPOINT_ON_BREAK
> >> +    tcg_gen_movi_tl(cpu_pc, ctx->npc - 1);
> >> +    gen_helper_debug(cpu_env);
> >> +    ctx->bstate = DISAS_EXIT;
> >> +#else
> >> +    /* NOP */
> >> +#endif
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Stores bit b from Rd to the T Flag in SREG (Status Register).
> >> + */
> >> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +
> >> +    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
> >> +    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Calls to a subroutine within the entire Program memory. The return
> >> + *  address (to the instruction after the CALL) will be stored onto the 
> >> Stack.
> >> + *  (See also RCALL). The Stack Pointer uses a post-decrement scheme 
> >> during
> >> + *  CALL.  This instruction is not available in all devices. Refer to the 
> >> device
> >> + *  specific instruction set summary.
> >> + */
> >> +static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    int Imm = a->imm;
> >> +    int ret = ctx->npc;
> >> +
> >> +    gen_push_ret(ctx, ret);
> >> +    gen_goto_tb(ctx, 0, Imm);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Clears a specified bit in an I/O Register. This instruction operates 
> >> on
> >> + *  the lower 32 I/O Registers -- addresses 0-31.
> >> + */
> >> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
> >> +{
> >> +    TCGv data = tcg_temp_new_i32();
> >> +    TCGv port = tcg_const_i32(a->reg);
> >> +
> >> +    gen_helper_inb(data, cpu_env, port);
> >> +    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
> >> +    gen_helper_outb(cpu_env, port, data);
> >> +
> >> +    tcg_temp_free_i32(data);
> >> +    tcg_temp_free_i32(port);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Clears the specified bits in register Rd. Performs the logical AND
> >> + *  between the contents of register Rd and the complement of the 
> >> constant mask
> >> + *  K. The result will be placed in register Rd.
> >> + */
> >> +static bool trans_COM(DisasContext *ctx, arg_COM *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_xori_tl(Rd, Rd, 0xff);
> >> +
> >> +    tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
> >> +    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
> >> +    gen_ZNSf(Rd);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs a compare between two registers Rd and Rr.
> >> + *  None of the registers are changed. All conditional branches can be 
> >> used
> >> + *  after this instruction.
> >> + */
> >> +static bool trans_CP(DisasContext *ctx, arg_CP *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
> >> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
> >> +
> >> +    gen_sub_CHf(R, Rd, Rr);
> >> +    gen_sub_Vf(R, Rd, Rr);
> >> +    gen_ZNSf(R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs a compare between two registers Rd and Rr 
> >> and
> >> + *  also takes into account the previous carry. None of the registers are
> >> + *  changed. All conditional branches can be used after this instruction.
> >> + */
> >> +static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
> >> +    tcg_gen_sub_tl(R, R, cpu_Cf);
> >> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
> >> +
> >> +    gen_sub_CHf(R, Rd, Rr);
> >> +    gen_sub_Vf(R, Rd, Rr);
> >> +    gen_NSf(R);
> >> +
> >> +    /*
> >> +     * Previous value remains unchanged when the result is zero;
> >> +     * cleared otherwise.
> >> +     */
> >> +    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs a compare between register Rd and a 
> >> constant.
> >> + *  The register is not changed. All conditional branches can be used 
> >> after this
> >> + *  instruction.
> >> + */
> >> +static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    int Imm = a->imm;
> >> +    TCGv Rr = tcg_const_i32(Imm);
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
> >> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
> >> +
> >> +    gen_sub_CHf(R, Rd, Rr);
> >> +    gen_sub_Vf(R, Rd, Rr);
> >> +    gen_ZNSf(R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +    tcg_temp_free_i32(Rr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs a compare between two registers Rd and Rr, 
> >> and
> >> + *  skips the next instruction if Rd = Rr.
> >> + */
> >> +static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
> >> +{
> >> +    ctx->skip_cond = TCG_COND_EQ;
> >> +    ctx->skip_var0 = cpu_r[a->rd];
> >> +    ctx->skip_var1 = cpu_r[a->rr];
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Subtracts one -1- from the contents of register Rd and places the 
> >> result
> >> + *  in the destination register Rd.  The C Flag in SREG is not affected 
> >> by the
> >> + *  operation, thus allowing the DEC instruction to be used on a loop 
> >> counter in
> >> + *  multiple-precision computations.  When operating on unsigned values, 
> >> only
> >> + *  BREQ and BRNE branches can be expected to perform consistently.  When
> >> + *  operating on two's complement values, all signed branches are 
> >> available.
> >> + */
> >> +static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +
> >> +    tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
> >> +    tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
> >> +
> >> +    /* cpu_Vf = Rd == 0x7f */
> >> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
> >> +    gen_ZNSf(Rd);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  The module is an instruction set extension to the AVR CPU, performing
> >> + *  DES iterations. The 64-bit data block (plaintext or ciphertext) is 
> >> placed in
> >> + *  the CPU register file, registers R0-R7, where LSB of data is placed 
> >> in LSB
> >> + *  of R0 and MSB of data is placed in MSB of R7. The full 64-bit key 
> >> (including
> >> + *  parity bits) is placed in registers R8- R15, organized in the 
> >> register file
> >> + *  with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing 
> >> one DES
> >> + *  instruction performs one round in the DES algorithm. Sixteen rounds 
> >> must be
> >> + *  executed in increasing order to form the correct DES ciphertext or
> >> + *  plaintext. Intermediate results are stored in the register file 
> >> (R0-R15)
> >> + *  after each DES instruction. The instruction's operand (K) determines 
> >> which
> >> + *  round is executed, and the half carry flag (H) determines whether 
> >> encryption
> >> + *  or decryption is performed.  The DES algorithm is described in
> >> + *  "Specifications for the Data Encryption Standard" (Federal Information
> >> + *  Processing Standards Publication 46). Intermediate results in this
> >> + *  implementation differ from the standard because the initial 
> >> permutation and
> >> + *  the inverse initial permutation are performed each iteration. This 
> >> does not
> >> + *  affect the result in the final ciphertext or plaintext, but reduces
> >> + *  execution time.
> >> + */
> >> +static bool trans_DES(DisasContext *ctx, arg_DES *a)
> >> +{
> >> +    /* TODO */
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
> >> + *  Register in the Register File and the EIND Register in the I/O space. 
> >> This
> >> + *  instruction allows for indirect calls to the entire 4M (words) Program
> >> + *  memory space. See also ICALL. The Stack Pointer uses a post-decrement 
> >> scheme
> >> + *  during EICALL.  This instruction is not available in all devices. 
> >> Refer to
> >> + *  the device specific instruction set summary.
> >> + */
> >> +static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    int ret = ctx->npc;
> >> +
> >> +    gen_push_ret(ctx, ret);
> >> +    gen_jmp_ez(ctx);
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
> >> + *  Register in the Register File and the EIND Register in the I/O space. 
> >> This
> >> + *  instruction allows for indirect jumps to the entire 4M (words) Program
> >> + *  memory space. See also IJMP.  This instruction is not available in all
> >> + *  devices. Refer to the device specific instruction set summary.
> >> + */
> >> +static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    gen_jmp_ez(ctx);
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
> >> + *  the I/O space, and places this byte in the destination register Rd. 
> >> This
> >> + *  instruction features a 100% space effective constant initialization or
> >> + *  constant data fetch. The Program memory is organized in 16-bit words 
> >> while
> >> + *  the Z-pointer is a byte address. Thus, the least significant bit of 
> >> the
> >> + *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). 
> >> This
> >> + *  instruction can address the entire Program memory space. The Z-pointer
> >> + *  Register can either be left unchanged by the operation, or it can be
> >> + *  incremented. The incrementation applies to the entire 24-bit 
> >> concatenation
> >> + *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
> >> + *  capability can use the ELPM instruction to read the Fuse and Lock bit 
> >> value.
> >> + *  Refer to the device documentation for a detailed description.  This
> >> + *  instruction is not available in all devices. Refer to the device 
> >> specific
> >> + *  instruction set summary.
> >> + */
> >> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[0];
> >> +    TCGv addr = gen_get_zaddr();
> >> +
> >> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +
> >> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +
> >> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> >> +
> >> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> >> +
> >> +    gen_set_zaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Performs the logical EOR between the contents of register Rd and
> >> + *  register Rr and places the result in the destination register Rd.
> >> + */
> >> +static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +
> >> +    tcg_gen_xor_tl(Rd, Rd, Rr);
> >> +
> >> +    tcg_gen_movi_tl(cpu_Vf, 0);
> >> +    gen_ZNSf(Rd);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned
> >> + *  multiplication and shifts the result one bit left.
> >> + */
> >> +static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv R0 = cpu_r[0];
> >> +    TCGv R1 = cpu_r[1];
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
> >> +    tcg_gen_shli_tl(R, R, 1);
> >> +
> >> +    tcg_gen_andi_tl(R0, R, 0xff);
> >> +    tcg_gen_shri_tl(R1, R, 8);
> >> +    tcg_gen_andi_tl(R1, R1, 0xff);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
> >> +    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs 8-bit x 8-bit -> 16-bit signed 
> >> multiplication
> >> + *  and shifts the result one bit left.
> >> + */
> >> +static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv R0 = cpu_r[0];
> >> +    TCGv R1 = cpu_r[1];
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
> >> +    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
> >> +    tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
> >> +    tcg_gen_shli_tl(R, R, 1);
> >> +
> >> +    tcg_gen_andi_tl(R0, R, 0xff);
> >> +    tcg_gen_shri_tl(R1, R, 8);
> >> +    tcg_gen_andi_tl(R1, R1, 0xff);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
> >> +    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
> >> +
> >> +    tcg_temp_free_i32(t1);
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs 8-bit x 8-bit -> 16-bit signed 
> >> multiplication
> >> + *  and shifts the result one bit left.
> >> + */
> >> +static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv R0 = cpu_r[0];
> >> +    TCGv R1 = cpu_r[1];
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
> >> +    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
> >> +    tcg_gen_shli_tl(R, R, 1);
> >> +
> >> +    tcg_gen_andi_tl(R0, R, 0xff);
> >> +    tcg_gen_shri_tl(R1, R, 8);
> >> +    tcg_gen_andi_tl(R1, R1, 0xff);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
> >> +    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
> >> +
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Calls to a subroutine within the entire 4M (words) Program memory. The
> >> + *  return address (to the instruction after the CALL) will be stored 
> >> onto the
> >> + *  Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme 
> >> during
> >> + *  CALL.  This instruction is not available in all devices. Refer to the 
> >> device
> >> + *  specific instruction set summary.
> >> + */
> >> +static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    int ret = ctx->npc;
> >> +
> >> +    gen_push_ret(ctx, ret);
> >> +    gen_jmp_z(ctx);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
> >> + *  Register in the Register File. The Z-pointer Register is 16 bits wide 
> >> and
> >> + *  allows jump within the lowest 64K words (128KB) section of Program 
> >> memory.
> >> + *  This instruction is not available in all devices. Refer to the device
> >> + *  specific instruction set summary.
> >> + */
> >> +static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    gen_jmp_z(ctx);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
> >> + *  etc.) into register Rd in the Register File.
> >> + */
> >> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv port = tcg_const_i32(a->imm);
> >> +
> >> +    gen_helper_inb(Rd, cpu_env, port);
> >> +
> >> +    tcg_temp_free_i32(port);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Adds one -1- to the contents of register Rd and places the result in 
> >> the
> >> + *  destination register Rd.  The C Flag in SREG is not affected by the
> >> + *  operation, thus allowing the INC instruction to be used on a loop 
> >> counter in
> >> + *  multiple-precision computations.  When operating on unsigned numbers, 
> >> only
> >> + *  BREQ and BRNE branches can be expected to perform consistently. When
> >> + *  operating on two's complement values, all signed branches are 
> >> available.
> >> + */
> >> +static bool trans_INC(DisasContext *ctx, arg_INC *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +
> >> +    tcg_gen_addi_tl(Rd, Rd, 1);
> >> +    tcg_gen_andi_tl(Rd, Rd, 0xff);
> >> +
> >> +    /* cpu_Vf = Rd == 0x80 */
> >> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
> >> +    gen_ZNSf(Rd);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Jump to an address within the entire 4M (words) Program memory. See 
> >> also
> >> + *  RJMP.  This instruction is not available in all devices. Refer to the 
> >> device
> >> + *  specific instruction set summary.0
> >> + */
> >> +static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    gen_goto_tb(ctx, 0, a->imm);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Load one byte indirect from data space to register and stores an clear
> >> + *  the bits in data space specified by the register. The instruction can 
> >> only
> >> + *  be used towards internal SRAM.  The data location is pointed to by 
> >> the Z (16
> >> + *  bits) Pointer Register in the Register File. Memory access is limited 
> >> to the
> >> + *  current data segment of 64KB. To access another data segment in 
> >> devices with
> >> + *  more than 64KB data space, the RAMPZ in register in the I/O area has 
> >> to be
> >> + *  changed.  The Z-pointer Register is left unchanged by the operation. 
> >> This
> >> + *  instruction is especially suited for clearing status bits stored in 
> >> SRAM.
> >> + */
> >> +static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
> >> +{
> >> +    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
> >> +        gen_helper_fullwr(cpu_env, data, addr);
> >> +    } else {
> >> +        tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
> >> +    }
> >> +}
> >> +
> >> +static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
> >> +{
> >> +    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
> >> +        gen_helper_fullrd(data, cpu_env, addr);
> >> +    } else {
> >> +        tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] 
> >> */
> >> +    }
> >> +}
> >> +
> >> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rr = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +
> >> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> >> +        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
> >> +    tcg_gen_andc_tl(t1, t0, Rr);
> >> +
> >> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
> >> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> >> +
> >> +    tcg_temp_free_i32(t1);
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Load one byte indirect from data space to register and set bits in 
> >> data
> >> + *  space specified by the register. The instruction can only be used 
> >> towards
> >> + *  internal SRAM.  The data location is pointed to by the Z (16 bits) 
> >> Pointer
> >> + *  Register in the Register File. Memory access is limited to the 
> >> current data
> >> + *  segment of 64KB. To access another data segment in devices with more 
> >> than
> >> + *  64KB data space, the RAMPZ in register in the I/O area has to be 
> >> changed.
> >> + *  The Z-pointer Register is left unchanged by the operation. This 
> >> instruction
> >> + *  is especially suited for setting status bits stored in SRAM.
> >> + */
> >> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rr = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +
> >> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> >> +    tcg_gen_or_tl(t1, t0, Rr);
> >> +
> >> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
> >> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> >> +
> >> +    tcg_temp_free_i32(t1);
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Load one byte indirect from data space to register and toggles bits in
> >> + *  the data space specified by the register.  The instruction can only 
> >> be used
> >> + *  towards SRAM.  The data location is pointed to by the Z (16 bits) 
> >> Pointer
> >> + *  Register in the Register File. Memory access is limited to the 
> >> current data
> >> + *  segment of 64KB. To access another data segment in devices with more 
> >> than
> >> + *  64KB data space, the RAMPZ in register in the I/O area has to be 
> >> changed.
> >> + *  The Z-pointer Register is left unchanged by the operation. This 
> >> instruction
> >> + *  is especially suited for changing status bits stored in SRAM.
> >> + */
> >> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +
> >> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
> >> +    tcg_gen_xor_tl(t1, t0, Rd);
> >> +
> >> +    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
> >> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
> >> +
> >> +    tcg_temp_free_i32(t1);
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads one byte indirect from the data space to a register. For parts
> >> + *  with SRAM, the data space consists of the Register File, I/O memory 
> >> and
> >> + *  internal SRAM (and external SRAM if applicable). For parts without 
> >> SRAM, the
> >> + *  data space consists of the Register File only. In some parts the Flash
> >> + *  Memory has been mapped to the data space and can be read using this 
> >> command.
> >> + *  The EEPROM has a separate address space.  The data location is 
> >> pointed to by
> >> + *  the X (16 bits) Pointer Register in the Register File. Memory access 
> >> is
> >> + *  limited to the current data segment of 64KB. To access another data 
> >> segment
> >> + *  in devices with more than 64KB data space, the RAMPX in register in 
> >> the I/O
> >> + *  area has to be changed.  The X-pointer Register can either be left 
> >> unchanged
> >> + *  by the operation, or it can be post-incremented or predecremented.  
> >> These
> >> + *  features are especially suited for accessing arrays, tables, and Stack
> >> + *  Pointer usage of the X-pointer Register. Note that only the low byte 
> >> of the
> >> + *  X-pointer is updated in devices with no more than 256 bytes data 
> >> space. For
> >> + *  such devices, the high byte of the pointer is not used by this 
> >> instruction
> >> + *  and can be used for other purposes. The RAMPX Register in the I/O 
> >> area is
> >> + *  updated in parts with more than 64KB data space or more than 64KB 
> >> Program
> >> + *  memory, and the increment/decrement is added to the entire 24-bit 
> >> address on
> >> + *  such devices.  Not all variants of this instruction is available in 
> >> all
> >> + *  devices. Refer to the device specific instruction set summary.  In the
> >> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the 
> >> same
> >> + *  operation as LPM since the program memory is mapped to the data memory
> >> + *  space.
> >> + */
> >> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_xaddr();
> >> +
> >> +    gen_data_load(ctx, Rd, addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_xaddr();
> >> +
> >> +    gen_data_load(ctx, Rd, addr);
> >> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> >> +
> >> +    gen_set_xaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_xaddr();
> >> +
> >> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> >> +    gen_data_load(ctx, Rd, addr);
> >> +    gen_set_xaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads one byte indirect with or without displacement from the data 
> >> space
> >> + *  to a register. For parts with SRAM, the data space consists of the 
> >> Register
> >> + *  File, I/O memory and internal SRAM (and external SRAM if applicable). 
> >> For
> >> + *  parts without SRAM, the data space consists of the Register File 
> >> only. In
> >> + *  some parts the Flash Memory has been mapped to the data space and can 
> >> be
> >> + *  read using this command. The EEPROM has a separate address space.  
> >> The data
> >> + *  location is pointed to by the Y (16 bits) Pointer Register in the 
> >> Register
> >> + *  File. Memory access is limited to the current data segment of 64KB. To
> >> + *  access another data segment in devices with more than 64KB data 
> >> space, the
> >> + *  RAMPY in register in the I/O area has to be changed.  The Y-pointer 
> >> Register
> >> + *  can either be left unchanged by the operation, or it can be 
> >> post-incremented
> >> + *  or predecremented.  These features are especially suited for accessing
> >> + *  arrays, tables, and Stack Pointer usage of the Y-pointer Register. 
> >> Note that
> >> + *  only the low byte of the Y-pointer is updated in devices with no more 
> >> than
> >> + *  256 bytes data space. For such devices, the high byte of the pointer 
> >> is not
> >> + *  used by this instruction and can be used for other purposes. The RAMPY
> >> + *  Register in the I/O area is updated in parts with more than 64KB data 
> >> space
> >> + *  or more than 64KB Program memory, and the 
> >> increment/decrement/displacement
> >> + *  is added to the entire 24-bit address on such devices.  Not all 
> >> variants of
> >> + *  this instruction is available in all devices. Refer to the device 
> >> specific
> >> + *  instruction set summary.  In the Reduced Core tinyAVR the LD 
> >> instruction can
> >> + *  be used to achieve the same operation as LPM since the program memory 
> >> is
> >> + *  mapped to the data memory space.
> >> + */
> >> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_yaddr();
> >> +
> >> +    gen_data_load(ctx, Rd, addr);
> >> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> >> +
> >> +    gen_set_yaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_yaddr();
> >> +
> >> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> >> +    gen_data_load(ctx, Rd, addr);
> >> +    gen_set_yaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_yaddr();
> >> +
> >> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> >> +    gen_data_load(ctx, Rd, addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads one byte indirect with or without displacement from the data 
> >> space
> >> + *  to a register. For parts with SRAM, the data space consists of the 
> >> Register
> >> + *  File, I/O memory and internal SRAM (and external SRAM if applicable). 
> >> For
> >> + *  parts without SRAM, the data space consists of the Register File 
> >> only. In
> >> + *  some parts the Flash Memory has been mapped to the data space and can 
> >> be
> >> + *  read using this command. The EEPROM has a separate address space.  
> >> The data
> >> + *  location is pointed to by the Z (16 bits) Pointer Register in the 
> >> Register
> >> + *  File. Memory access is limited to the current data segment of 64KB. To
> >> + *  access another data segment in devices with more than 64KB data 
> >> space, the
> >> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer 
> >> Register
> >> + *  can either be left unchanged by the operation, or it can be 
> >> post-incremented
> >> + *  or predecremented.  These features are especially suited for Stack 
> >> Pointer
> >> + *  usage of the Z-pointer Register, however because the Z-pointer 
> >> Register can
> >> + *  be used for indirect subroutine calls, indirect jumps and table 
> >> lookup, it
> >> + *  is often more convenient to use the X or Y-pointer as a dedicated 
> >> Stack
> >> + *  Pointer. Note that only the low byte of the Z-pointer is updated in 
> >> devices
> >> + *  with no more than 256 bytes data space. For such devices, the high 
> >> byte of
> >> + *  the pointer is not used by this instruction and can be used for other
> >> + *  purposes. The RAMPZ Register in the I/O area is updated in parts with 
> >> more
> >> + *  than 64KB data space or more than 64KB Program memory, and the
> >> + *  increment/decrement/displacement is added to the entire 24-bit 
> >> address on
> >> + *  such devices.  Not all variants of this instruction is available in 
> >> all
> >> + *  devices. Refer to the device specific instruction set summary.  In the
> >> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the 
> >> same
> >> + *  operation as LPM since the program memory is mapped to the data memory
> >> + *  space.  For using the Z-pointer for table lookup in Program memory 
> >> see the
> >> + *  LPM and ELPM instructions.
> >> + */
> >> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +
> >> +    gen_data_load(ctx, Rd, addr);
> >> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> >> +
> >> +    gen_set_zaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +
> >> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
> >> +    gen_data_load(ctx, Rd, addr);
> >> +
> >> +    gen_set_zaddr(addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = gen_get_zaddr();
> >> +
> >> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
> >> +    gen_data_load(ctx, Rd, addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + * Loads an 8 bit constant directly to register 16 to 31.
> >> + */
> >> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    int imm = a->imm;
> >> +
> >> +    tcg_gen_movi_tl(Rd, imm);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads one byte from the data space to a register. For parts with SRAM,
> >> + *  the data space consists of the Register File, I/O memory and internal 
> >> SRAM
> >> + *  (and external SRAM if applicable). For parts without SRAM, the data 
> >> space
> >> + *  consists of the register file only. The EEPROM has a separate address 
> >> space.
> >> + *  A 16-bit address must be supplied. Memory access is limited to the 
> >> current
> >> + *  data segment of 64KB. The LDS instruction uses the RAMPD Register to 
> >> access
> >> + *  memory above 64KB. To access another data segment in devices with 
> >> more than
> >> + *  64KB data space, the RAMPD in register in the I/O area has to be 
> >> changed.
> >> + *  This instruction is not available in all devices. Refer to the device
> >> + *  specific instruction set summary.
> >> + */
> >> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = tcg_temp_new_i32();
> >> +    TCGv H = cpu_rampD;
> >> +    a->imm = next_word(ctx);
> >> +
> >> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
> >> +    tcg_gen_shli_tl(addr, addr, 16);
> >> +    tcg_gen_ori_tl(addr, addr, a->imm);
> >> +
> >> +    gen_data_load(ctx, Rd, addr);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Loads one byte pointed to by the Z-register into the destination
> >> + *  register Rd. This instruction features a 100% space effective constant
> >> + *  initialization or constant data fetch. The Program memory is 
> >> organized in
> >> + *  16-bit words while the Z-pointer is a byte address. Thus, the least
> >> + *  significant bit of the Z-pointer selects either low byte (ZLSB = 0) 
> >> or high
> >> + *  byte (ZLSB = 1). This instruction can address the first 64KB (32K 
> >> words) of
> >> + *  Program memory. The Zpointer Register can either be left unchanged by 
> >> the
> >> + *  operation, or it can be incremented. The incrementation does not 
> >> apply to
> >> + *  the RAMPZ Register.  Devices with Self-Programming capability can use 
> >> the
> >> + *  LPM instruction to read the Fuse and Lock bit values.  Refer to the 
> >> device
> >> + *  documentation for a detailed description.  The LPM instruction is not
> >> + *  available in all devices. Refer to the device specific instruction set
> >> + *  summary
> >> + */
> >> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[0];
> >> +    TCGv addr = tcg_temp_new_i32();
> >> +    TCGv H = cpu_r[31];
> >> +    TCGv L = cpu_r[30];
> >> +
> >> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> >> +    tcg_gen_or_tl(addr, addr, L);
> >> +
> >> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = tcg_temp_new_i32();
> >> +    TCGv H = cpu_r[31];
> >> +    TCGv L = cpu_r[30];
> >> +
> >> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> >> +    tcg_gen_or_tl(addr, addr, L);
> >> +
> >> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv addr = tcg_temp_new_i32();
> >> +    TCGv H = cpu_r[31];
> >> +    TCGv L = cpu_r[30];
> >> +
> >> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
> >> +    tcg_gen_or_tl(addr, addr, L);
> >> +
> >> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
> >> +
> >> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
> >> +
> >> +    tcg_gen_andi_tl(L, addr, 0xff);
> >> +
> >> +    tcg_gen_shri_tl(addr, addr, 8);
> >> +    tcg_gen_andi_tl(H, addr, 0xff);
> >> +
> >> +    tcg_temp_free_i32(addr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 
> >> is
> >> + *  loaded into the C Flag of the SREG. This operation effectively 
> >> divides an
> >> + *  unsigned value by two. The C Flag can be used to round the result.
> >> + */
> >> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +
> >> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
> >> +
> >> +    tcg_gen_shri_tl(Rd, Rd, 1);
> >> +
> >> +    tcg_gen_mov_tl(cpu_Zf, Rd);
> >> +    tcg_gen_movi_tl(cpu_Nf, 0);
> >> +    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
> >> +    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction makes a copy of one register into another. The source
> >> + *  register Rr is left unchanged, while the destination register Rd is 
> >> loaded
> >> + *  with a copy of Rr.
> >> + */
> >> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +
> >> +    tcg_gen_mov_tl(Rd, Rr);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction makes a copy of one register pair into another 
> >> register
> >> + *  pair. The source register pair Rr+1:Rr is left unchanged, while the
> >> + *  destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. 
> >>  This
> >> + *  instruction is not available in all devices. Refer to the device 
> >> specific
> >> + *  instruction set summary.
> >> + */
> >> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv RdL = cpu_r[a->rd];
> >> +    TCGv RdH = cpu_r[a->rd + 1];
> >> +    TCGv RrL = cpu_r[a->rr];
> >> +    TCGv RrH = cpu_r[a->rr + 1];
> >> +
> >> +    tcg_gen_mov_tl(RdH, RrH);
> >> +    tcg_gen_mov_tl(RdL, RrL);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned 
> >> multiplication.
> >> + */
> >> +static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv R0 = cpu_r[0];
> >> +    TCGv R1 = cpu_r[1];
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
> >> +
> >> +    tcg_gen_andi_tl(R0, R, 0xff);
> >> +    tcg_gen_shri_tl(R1, R, 8);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
> >> +    tcg_gen_mov_tl(cpu_Zf, R);
> >> +
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs 8-bit x 8-bit -> 16-bit signed 
> >> multiplication.
> >> + */
> >> +static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv R0 = cpu_r[0];
> >> +    TCGv R1 = cpu_r[1];
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +    TCGv t1 = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
> >> +    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
> >> +    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
> >> +
> >> +    tcg_gen_andi_tl(R0, R, 0xff);
> >> +    tcg_gen_shri_tl(R1, R, 8);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
> >> +    tcg_gen_mov_tl(cpu_Zf, R);
> >> +
> >> +    tcg_temp_free_i32(t1);
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
> >> + *  signed and an unsigned number.
> >> + */
> >> +static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
> >> +{
> >> +    if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
> >> +        return true;
> >> +    }
> >> +
> >> +    TCGv R0 = cpu_r[0];
> >> +    TCGv R1 = cpu_r[1];
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv Rr = cpu_r[a->rr];
> >> +    TCGv R = tcg_temp_new_i32();
> >> +    TCGv t0 = tcg_temp_new_i32();
> >> +
> >> +    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
> >> +    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
> >> +
> >> +    tcg_gen_andi_tl(R0, R, 0xff);
> >> +    tcg_gen_shri_tl(R1, R, 8);
> >> +
> >> +    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
> >> +    tcg_gen_mov_tl(cpu_Zf, R);
> >> +
> >> +    tcg_temp_free_i32(t0);
> >> +    tcg_temp_free_i32(R);
> >> +
> >> +    return true;
> >> +}
> >> +
> >> +/*
> >> + *  Replaces the contents of register Rd with its two's complement; the
> >> + *  value $80 is left unchanged.
> >> + */
> >> +static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
> >> +{
> >> +    TCGv Rd = cpu_r[a->rd];
> >> +    TCGv t0 = tcg_const_i32(0);
> >> +    TCGv R = tcg_temp_new_i32();
> >> +
> >> +    /* op */
> >> +    tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
> >> +    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
> >> +
> >> +    gen_sub_CHf(R, t0, Rd);
> >> +    gen_sub_Vf(R, t0, Rd);
> >> +    gen_ZNSf(R);
> >> +
> >> +    /* R */
> >> +    tcg_gen_mov_tl(Rd,--
> >> 2.17.2 (Apple Git-113)
> >>
> >>
>
>
> --
> Best Regards,
> Michael Rolnik



reply via email to

[Prev in Thread] Current Thread [Next in Thread]