[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[PATCH v18 2/8] numa: Extend CLI to provide memory latency and bandwidth
From: |
Tao Xu |
Subject: |
[PATCH v18 2/8] numa: Extend CLI to provide memory latency and bandwidth information |
Date: |
Wed, 27 Nov 2019 16:26:07 +0800 |
From: Liu Jingqi <address@hidden>
Add -numa hmat-lb option to provide System Locality Latency and
Bandwidth Information. These memory attributes help to build
System Locality Latency and Bandwidth Information Structure(s)
in ACPI Heterogeneous Memory Attribute Table (HMAT).
Signed-off-by: Liu Jingqi <address@hidden>
Signed-off-by: Tao Xu <address@hidden>
---
Changes in v18:
- Use qapi type uint64 and only nanosecond for latency (Markus)
Changes in v17:
- Add check when user input latency or bandwidth 0, the
lb_info_provided should also be 0. Because in ACPI 6.3 5.2.27.4,
0 means the corresponding latency or bandwidth information is
not provided.
- Fix the infinite loop when node->latency is 0.
Changes in v16:
- Initialize HMAT_LB_Data lb_data (Igor)
- Remove punctuation from error_setg (Igor)
- Correct some description (Igor)
- Drop statement about max value (Igor)
- Simplify struct HMAT_LB_Info and related code, unify latency
and bandwidth (Igor)
Changes in v15:
- Change the QAPI version tag to 5.0 (Eric)
---
hw/core/numa.c | 181 ++++++++++++++++++++++++++++++++++++++++++
include/sysemu/numa.h | 53 +++++++++++++
qapi/machine.json | 94 +++++++++++++++++++++-
qemu-options.hx | 47 ++++++++++-
4 files changed, 372 insertions(+), 3 deletions(-)
diff --git a/hw/core/numa.c b/hw/core/numa.c
index e60da99293..2183c8df1f 100644
--- a/hw/core/numa.c
+++ b/hw/core/numa.c
@@ -23,6 +23,7 @@
*/
#include "qemu/osdep.h"
+#include "qemu/units.h"
#include "sysemu/hostmem.h"
#include "sysemu/numa.h"
#include "sysemu/sysemu.h"
@@ -198,6 +199,173 @@ void parse_numa_distance(MachineState *ms,
NumaDistOptions *dist, Error **errp)
ms->numa_state->have_numa_distance = true;
}
+void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node,
+ Error **errp)
+{
+ int i, first_bit, last_bit;
+ uint64_t max_entry, temp_base_la;
+ NodeInfo *numa_info = numa_state->nodes;
+ HMAT_LB_Info *hmat_lb =
+ numa_state->hmat_lb[node->hierarchy][node->data_type];
+ HMAT_LB_Data lb_data = {};
+ HMAT_LB_Data *lb_temp;
+
+ /* Error checking */
+ if (node->initiator > numa_state->num_nodes) {
+ error_setg(errp, "Invalid initiator=%d, it should be less than %d",
+ node->initiator, numa_state->num_nodes);
+ return;
+ }
+ if (node->target > numa_state->num_nodes) {
+ error_setg(errp, "Invalid target=%d, it should be less than %d",
+ node->target, numa_state->num_nodes);
+ return;
+ }
+ if (!numa_info[node->initiator].has_cpu) {
+ error_setg(errp, "Invalid initiator=%d, it isn't an "
+ "initiator proximity domain", node->initiator);
+ return;
+ }
+ if (!numa_info[node->target].present) {
+ error_setg(errp, "The target=%d should point to an existing node",
+ node->target);
+ return;
+ }
+
+ if (!hmat_lb) {
+ hmat_lb = g_malloc0(sizeof(*hmat_lb));
+ numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb;
+ hmat_lb->list = g_array_new(false, true, sizeof(HMAT_LB_Data));
+ }
+ hmat_lb->hierarchy = node->hierarchy;
+ hmat_lb->data_type = node->data_type;
+ lb_data.initiator = node->initiator;
+ lb_data.target = node->target;
+
+ if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) {
+ /* Input latency data */
+
+ if (!node->has_latency) {
+ error_setg(errp, "Missing 'latency' option");
+ return;
+ }
+ if (node->has_bandwidth) {
+ error_setg(errp, "Invalid option 'bandwidth' since "
+ "the data type is latency");
+ return;
+ }
+
+ /* Detect duplicate configuration */
+ for (i = 0; i < hmat_lb->list->len; i++) {
+ lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i);
+
+ if (node->initiator == lb_temp->initiator &&
+ node->target == lb_temp->target) {
+ error_setg(errp, "Duplicate configuration of the latency for "
+ "initiator=%d and target=%d", node->initiator,
+ node->target);
+ return;
+ }
+ }
+
+ hmat_lb->base = hmat_lb->base ? hmat_lb->base : UINT64_MAX;
+
+ if (node->latency) {
+ /* Calculate the temporary base and compressed latency */
+ max_entry = node->latency;
+ temp_base_la = 1;
+ while (QEMU_IS_ALIGNED(max_entry, 10)) {
+ max_entry /= 10;
+ temp_base_la *= 10;
+ }
+
+ /* Calculate the max compressed latency */
+ hmat_lb->base = MIN(hmat_lb->base, temp_base_la);
+ max_entry = node->latency / hmat_lb->base;
+ hmat_lb->range_bitmap = MAX(hmat_lb->range_bitmap, max_entry);
+
+ /*
+ * For latency hmat_lb->range_bitmap record the max compressed
+ * latency which should be less than 0xFFFF (UINT16_MAX)
+ */
+ if (hmat_lb->range_bitmap >= UINT16_MAX) {
+ error_setg(errp, "Latency %" PRIu64 " between initiator=%d and
"
+ "target=%d should not differ from previously entered "
+ "min or max values on more than %d", node->latency,
+ node->initiator, node->target, UINT16_MAX - 1);
+ return;
+ }
+
+ /*
+ * Set lb_info_provided bit 0 as 1,
+ * latency information is provided
+ */
+ numa_info[node->target].lb_info_provided |= BIT(0);
+ }
+ lb_data.data = node->latency;
+ } else if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) {
+ /* Input bandwidth data */
+
+ if (!node->has_bandwidth) {
+ error_setg(errp, "Missing 'bandwidth' option");
+ return;
+ }
+ if (node->has_latency) {
+ error_setg(errp, "Invalid option 'latency' since "
+ "the data type is bandwidth");
+ return;
+ }
+ if (!QEMU_IS_ALIGNED(node->bandwidth, MiB)) {
+ error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and "
+ "target=%d should be 1MB aligned", node->bandwidth,
+ node->initiator, node->target);
+ return;
+ }
+
+ /* Detect duplicate configuration */
+ for (i = 0; i < hmat_lb->list->len; i++) {
+ lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i);
+
+ if (node->initiator == lb_temp->initiator &&
+ node->target == lb_temp->target) {
+ error_setg(errp, "Duplicate configuration of the bandwidth for
"
+ "initiator=%d and target=%d", node->initiator,
+ node->target);
+ return;
+ }
+ }
+
+ hmat_lb->range_bitmap |= node->bandwidth;
+ first_bit = ctz64(hmat_lb->range_bitmap);
+ hmat_lb->base = UINT64_C(1) << first_bit;
+ max_entry = node->bandwidth / hmat_lb->base;
+ last_bit = 64 - clz64(hmat_lb->range_bitmap);
+
+ /*
+ * For bandwidth, first_bit record the base unit of bandwidth bits,
+ * last_bit record the last bit of the max bandwidth. The max
compressed
+ * bandwidth should be less than 0xFFFF (UINT16_MAX)
+ */
+ if ((last_bit - first_bit) > UINT16_BITS || max_entry >= UINT16_MAX) {
+ error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and "
+ "target=%d should not differ from previously entered "
+ "values on more than %d", node->bandwidth,
+ node->initiator, node->target, UINT16_MAX - 1);
+ return;
+ }
+
+ /* Set lb_info_provided bit 1 as 1, bandwidth information is provided
*/
+ if (node->bandwidth) {
+ numa_info[node->target].lb_info_provided |= BIT(1);
+ }
+ lb_data.data = node->bandwidth;
+ } else {
+ assert(0);
+ }
+
+ g_array_append_val(hmat_lb->list, lb_data);
+}
+
void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp)
{
Error *err = NULL;
@@ -236,6 +404,19 @@ void set_numa_options(MachineState *ms, NumaOptions
*object, Error **errp)
machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu),
&err);
break;
+ case NUMA_OPTIONS_TYPE_HMAT_LB:
+ if (!ms->numa_state->hmat_enabled) {
+ error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
+ "(HMAT) is disabled, enable it with -machine hmat=on "
+ "before using any of hmat specific options");
+ return;
+ }
+
+ parse_numa_hmat_lb(ms->numa_state, &object->u.hmat_lb, &err);
+ if (err) {
+ goto end;
+ }
+ break;
default:
abort();
}
diff --git a/include/sysemu/numa.h b/include/sysemu/numa.h
index 788cbec7a2..70f93c83d7 100644
--- a/include/sysemu/numa.h
+++ b/include/sysemu/numa.h
@@ -14,11 +14,34 @@ struct CPUArchId;
#define NUMA_DISTANCE_MAX 254
#define NUMA_DISTANCE_UNREACHABLE 255
+/* the value of AcpiHmatLBInfo flags */
+enum {
+ HMAT_LB_MEM_MEMORY = 0,
+ HMAT_LB_MEM_CACHE_1ST_LEVEL = 1,
+ HMAT_LB_MEM_CACHE_2ND_LEVEL = 2,
+ HMAT_LB_MEM_CACHE_3RD_LEVEL = 3,
+ HMAT_LB_LEVELS /* must be the last entry */
+};
+
+/* the value of AcpiHmatLBInfo data type */
+enum {
+ HMAT_LB_DATA_ACCESS_LATENCY = 0,
+ HMAT_LB_DATA_READ_LATENCY = 1,
+ HMAT_LB_DATA_WRITE_LATENCY = 2,
+ HMAT_LB_DATA_ACCESS_BANDWIDTH = 3,
+ HMAT_LB_DATA_READ_BANDWIDTH = 4,
+ HMAT_LB_DATA_WRITE_BANDWIDTH = 5,
+ HMAT_LB_TYPES /* must be the last entry */
+};
+
+#define UINT16_BITS 16
+
struct NodeInfo {
uint64_t node_mem;
struct HostMemoryBackend *node_memdev;
bool present;
bool has_cpu;
+ uint8_t lb_info_provided;
uint16_t initiator;
uint8_t distance[MAX_NODES];
};
@@ -28,6 +51,31 @@ struct NumaNodeMem {
uint64_t node_plugged_mem;
};
+struct HMAT_LB_Data {
+ uint8_t initiator;
+ uint8_t target;
+ uint64_t data;
+};
+typedef struct HMAT_LB_Data HMAT_LB_Data;
+
+struct HMAT_LB_Info {
+ /* Indicates it's memory or the specified level memory side cache. */
+ uint8_t hierarchy;
+
+ /* Present the type of data, access/read/write latency or bandwidth. */
+ uint8_t data_type;
+
+ /* The range bitmap of bandwidth for calculating common base */
+ uint64_t range_bitmap;
+
+ /* The common base unit for latencies or bandwidths */
+ uint64_t base;
+
+ /* Array to store the latencies or bandwidths */
+ GArray *list;
+};
+typedef struct HMAT_LB_Info HMAT_LB_Info;
+
struct NumaState {
/* Number of NUMA nodes */
int num_nodes;
@@ -40,11 +88,16 @@ struct NumaState {
/* NUMA nodes information */
NodeInfo nodes[MAX_NODES];
+
+ /* NUMA nodes HMAT Locality Latency and Bandwidth Information */
+ HMAT_LB_Info *hmat_lb[HMAT_LB_LEVELS][HMAT_LB_TYPES];
};
typedef struct NumaState NumaState;
void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp);
void parse_numa_opts(MachineState *ms);
+void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node,
+ Error **errp);
void numa_complete_configuration(MachineState *ms);
void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms);
extern QemuOptsList qemu_numa_opts;
diff --git a/qapi/machine.json b/qapi/machine.json
index 27d0e37534..c741649d7b 100644
--- a/qapi/machine.json
+++ b/qapi/machine.json
@@ -426,10 +426,12 @@
#
# @cpu: property based CPU(s) to node mapping (Since: 2.10)
#
+# @hmat-lb: memory latency and bandwidth information (Since: 5.0)
+#
# Since: 2.1
##
{ 'enum': 'NumaOptionsType',
- 'data': [ 'node', 'dist', 'cpu' ] }
+ 'data': [ 'node', 'dist', 'cpu', 'hmat-lb' ] }
##
# @NumaOptions:
@@ -444,7 +446,8 @@
'data': {
'node': 'NumaNodeOptions',
'dist': 'NumaDistOptions',
- 'cpu': 'NumaCpuOptions' }}
+ 'cpu': 'NumaCpuOptions',
+ 'hmat-lb': 'NumaHmatLBOptions' }}
##
# @NumaNodeOptions:
@@ -557,6 +560,93 @@
'base': 'CpuInstanceProperties',
'data' : {} }
+##
+# @HmatLBMemoryHierarchy:
+#
+# The memory hierarchy in the System Locality Latency
+# and Bandwidth Information Structure of HMAT (Heterogeneous
+# Memory Attribute Table)
+#
+# For more information about @HmatLBMemoryHierarchy see
+# the chapter 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
+#
+# @memory: the structure represents the memory performance
+#
+# @first-level: first level of memory side cache
+#
+# @second-level: second level of memory side cache
+#
+# @third-level: third level of memory side cache
+#
+# Since: 5.0
+##
+{ 'enum': 'HmatLBMemoryHierarchy',
+ 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
+
+##
+# @HmatLBDataType:
+#
+# Data type in the System Locality Latency
+# and Bandwidth Information Structure of HMAT (Heterogeneous
+# Memory Attribute Table)
+#
+# For more information about @HmatLBDataType see
+# the chapter 5.2.27.4: Table 5-146: Field "Data Type" of ACPI 6.3 spec.
+#
+# @access-latency: access latency (nanoseconds)
+#
+# @read-latency: read latency (nanoseconds)
+#
+# @write-latency: write latency (nanoseconds)
+#
+# @access-bandwidth: access bandwidth (B/s)
+#
+# @read-bandwidth: read bandwidth (B/s)
+#
+# @write-bandwidth: write bandwidth (B/s)
+#
+# Since: 5.0
+##
+{ 'enum': 'HmatLBDataType',
+ 'data': [ 'access-latency', 'read-latency', 'write-latency',
+ 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
+
+##
+# @NumaHmatLBOptions:
+#
+# Set the system locality latency and bandwidth information
+# between Initiator and Target proximity Domains.
+#
+# For more information about @NumaHmatLBOptions see
+# the chapter 5.2.27.4: Table 5-146 of ACPI 6.3 spec.
+#
+# @initiator: the Initiator Proximity Domain.
+#
+# @target: the Target Proximity Domain.
+#
+# @hierarchy: the Memory Hierarchy. Indicates the performance
+# of memory or side cache.
+#
+# @data-type: presents the type of data, access/read/write
+# latency or hit latency.
+#
+# @latency: the value of latency from @initiator to @target proximity domain,
+# the latency unit is "ns(nanosecond)".
+#
+# @bandwidth: the value of bandwidth between @initiator and @target proximity
+# domain, the bandwidth unit is "B(/s)".
+#
+# Since: 5.0
+##
+{ 'struct': 'NumaHmatLBOptions',
+ 'data': {
+ 'initiator': 'uint16',
+ 'target': 'uint16',
+ 'hierarchy': 'HmatLBMemoryHierarchy',
+ 'data-type': 'HmatLBDataType',
+ '*latency': 'uint64',
+ '*bandwidth': 'size' }}
+
##
# @HostMemPolicy:
#
diff --git a/qemu-options.hx b/qemu-options.hx
index 63f6b33322..6a9f738dc5 100644
--- a/qemu-options.hx
+++ b/qemu-options.hx
@@ -168,16 +168,19 @@ DEF("numa", HAS_ARG, QEMU_OPTION_numa,
"-numa
node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
"-numa
node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
"-numa dist,src=source,dst=destination,val=distance\n"
- "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n",
+ "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
+ "-numa
hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n",
QEMU_ARCH_ALL)
STEXI
@item -numa
node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
@itemx -numa
node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
@itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
@itemx -numa
cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
+@itemx -numa
hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}]
@findex -numa
Define a NUMA node and assign RAM and VCPUs to it.
Set the NUMA distance from a source node to a destination node.
+Set the ACPI Heterogeneous Memory Attributes for the given nodes.
Legacy VCPU assignment uses @samp{cpus} option where
@var{firstcpu} and @var{lastcpu} are CPU indexes. Each
@@ -256,6 +259,48 @@ specified resources, it just assigns existing resources to
NUMA
nodes. This means that one still has to use the @option{-m},
@option{-smp} options to allocate RAM and VCPUs respectively.
+Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information
+between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory
Table (HMAT).
+Initiator NUMA node can create memory requests, usually it has one or more
processors.
+Target NUMA node contains addressable memory.
+
+In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the
memory
+hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the
structure
+represents the memory performance; if @var{hierarchy} is
'first-level|second-level|third-level',
+this structure represents aggregated performance of memory side caches for
each domain.
+@var{type} of 'data-type' is type of data represented by this structure
instance:
+if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or
'access|read|write'
+bandwidth of the target memory; if 'hierarchy' is
'first-level|second-level|third-level',
+'data-type' is 'access|read|write' hit latency or 'access|read|write' hit
bandwidth of the
+target memory side cache.
+
+@var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value,
+the possible value and units are NUM[M|G|T], mean that the bandwidth value are
+NUM byte (or MB/s, GB/s or TB/s depending on used suffix). And if input
bandwidth
+value without any unit, the unit will be B/s. Note that if latency or bandwidth
+value is 0, means the corresponding latency or bandwidth information is not
provided.
+
+For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and
+a ram, node 1 has only a ram. The processors in node 0 access memory in node
+0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s;
+The processors in NUMA node 0 access memory in NUMA node 1 with access-latency
10
+nanoseconds, access-bandwidth is 100 MB/s.
+@example
+-machine hmat=on \
+-m 2G \
+-object memory-backend-ram,size=1G,id=m0 \
+-object memory-backend-ram,size=1G,id=m1 \
+-smp 2 \
+-numa node,nodeid=0,memdev=m0 \
+-numa node,nodeid=1,memdev=m1,initiator=0 \
+-numa cpu,node-id=0,socket-id=0 \
+-numa cpu,node-id=0,socket-id=1 \
+-numa
hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5
\
+-numa
hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M
\
+-numa
hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10
\
+-numa
hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M
+@end example
+
ETEXI
DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
--
2.20.1
- [PATCH v18 0/8] Build ACPI Heterogeneous Memory Attribute Table (HMAT), Tao Xu, 2019/11/27
- [PATCH v18 4/8] hmat acpi: Build Memory Proximity Domain Attributes Structure(s), Tao Xu, 2019/11/27
- [PATCH v18 5/8] hmat acpi: Build System Locality Latency and Bandwidth Information Structure(s), Tao Xu, 2019/11/27
- [PATCH v18 6/8] hmat acpi: Build Memory Side Cache Information Structure(s), Tao Xu, 2019/11/27
- [PATCH v18 7/8] tests/numa: Add case for QMP build HMAT, Tao Xu, 2019/11/27
- [PATCH v18 8/8] tests/bios-tables-test: add test cases for ACPI HMAT, Tao Xu, 2019/11/27